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Abstract: A two-factor field experiment using sugar beet was conducted in 2016–2018 at Sokołowo in
Poland (φ 53◦5′16.05” N, λ 19◦6′21.07” E), in a strip-plot arrangement with four replicates. Strip-till (ST)
was compared to conventional tillage (CT) using four commercial sugar beet varieties (Alegra, Armesa,
Contenta, Julius). In each study year, the experiment was established on lessivé soils developed from
heavy loamy sand. The soil was rich in available macronutrients, while its reaction was neutral. The
plant density, sugar yield, roots quality, and technological sugar yield were determined. A significant
increase was found in root yield (6.6%) and, accordingly, in technological sugar yield (8.2%) in ST
treatment relative to CT. Consistently, an increasing trend was observed for the root sugar content
(0.21%). For the varieties examined, no preferences were observed in respect of tillage systems applied.
The direction of changes in root yield, sugar content, and technological sugar yield remained constant
regardless of the variety, tillage system, or the study year. The contents of potassium, sodium, and
α-amino-nitrogen responded equally to both the variety and study year; however, the direction of
changes in the above parameters was ambiguous and varied among the study years.

Keywords: sugar beet; strip-till; tillage system; variety

1. Introduction

Sugar beet production is concentrated in the EU regions, which have the most favorable
soil and climate conditions. The economic importance of sugar beet cultivation relies
heavily on sugar production for the domestic market and exports. This type of cultivation
provides satisfactory site conditions for the aftercrops [1].

In Poland, changes in the sugar beet production were enforced by reforms to the sugar
market in 2006–2010 and these differ by region. The end of sugar beet quotas in the EU led
to an increase in sugar beet cultivation areas in several EU member states including Poland.
Today, Poland, next to France, Germany, and the Netherlands belongs to four leading sugar
producers within the EU [2]. The years 2015–2010 witnessed an increase in Poland’s sugar
beet cultivation area by 39.5%, while the proportion of sugar beet cultivation in the crop
breakdown increased from 1.6 to 2.3% and amounted to 250 thousand ha. In Poland, the
average sugar beet root yield oscillates around 60 t ha−1, while the yield of technological
sugar is at the level of 7.9 t ha−1 [3,4]. The data reported by the European Commission
(2021) show a large variability in both sugar yield achieved and cultivation intensity in the
individual member states [5].

Many environmental and agronomic factors influence sugar beet yield and quality.
Thus, to harness maximum benefits from sugar beet, there is a need to select the most
appropriate varieties, planting time, and planting methods [6,7]. Innovative solutions are
sought in the field of sugar beet (Beta vulgaris L.) cultivation technology, to minimize the
number of tillage practices and the level of mineral fertilization [8]. Instead of plowing,
mulching and mixing techniques are being applied in the simplified tillage system without
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soil inversion [9]. In the sugar beet production in Poland, conventional tillage (CT) still pre-
vails which is based on plowing [10]. The CT system, however, is highly energy consuming
and requires many farming practices obligatory to prepare optimal sites destined for sugar
beet [11]. Ultimately, these practices may result in the increased compaction of lower soil
horizons and the formation of plow pans.

Consequently, the overarching objective now is to adopt simplified systems, which
reconcile maintaining site productivity and controlling wind erosion of soils, while at the
same time providing an alternative for traditional tillage systems [12–15]. Interest in the
simplified tillage system, which has been widely in South and North America—especially
the USA and Canada over many years, has grown substantially in numerous west European
and Asian countries as well as in Poland. This also applies to strip-till [15–23]. Tillage
systems differing in depth and intensity are well known to alter chemical and physical
soil properties affecting plant growth [17,24,25]. Advantages of strip tillage for sugar beet
production include reduced soil erosion, enhanced moisture retention relative to full-width
conventional tillage, improved seedbed environment relative to direct drilling, optimum
fertilizer placement, increased carbon sequestration, and reduced fuel consumption [26–30].
Where soil moisture conditions are suitable, strip-tillage can be a useful alternative to other
non-inversion tillage systems.

Modern machinery has made it possible to till strips in a single pass and at the same
time apply fertilizers and sow seeds. In strip-tillage, strips of deeply loosened soil of several
centimeters to several tens of centimeters wide are prepared for sowing seeds. These strips
are separated by strips of untilled soil. A loosened soil strip is narrow and the width
of non-loosened interrow is greater than in traditional seed drilling. The proportion of
tilled to untilled area is about 1:2 or even higher [18,31]. Consequently, strip-till combines
advantages of conventional and no-till cultivation. In the U.S., strip-tillage creates narrow
tilled strips, which are typically 100–300 mm wide and raised 80–200 mm above the
surrounding undisturbed ground. In recent years, strip-tillage machines have been largely
re-designed using a system of shanks and colters which provide greater fuel efficiency and
faster operating speeds than previous designs [19].

ST can significantly reduce fuel consumption, CO2 emissions, the time required for
field preparation, and the overall production cost compared with CT systems [31–35].
Additionally, ST shows a very favorable effect on the agricultural soil properties and on
the environment [36,37]. As compared with the soil under conventional plow tillage (CT),
the content of organic carbon and its fraction [38,39], the soil moisture, especially in the
periods of rainfall deficit, the number of microorganisms, earthworms, and certain groups
of predatory arthropods as well as the enzymatic activity, are higher [18,23]. Al-Kaisi et al.
(2014) found that the effect of zero tillage and strip-till was the most beneficial for the sta-
bility of micro- and macro-aggregates. A significant positive correlation was also recorded
between the content of organic carbon in soil and the water resistance of micro- and
macro-aggregates [40].

Strip-till technology is being increasingly applied in other plant cultivation, especially
those sown in wide-spaced rows, such as maize, soybean, sunflower, or watermelon [18,41–46].
However, strip-till gives good results too in plants with narrow spacing, such as cereal
crops [47,48] rapeseed [49–51], or peas [18,52].

The spread of strip-till is consistent with the challenges of climate policies since re-
ducing the number of cultivation treatments diminishes greenhouse gas emissions [53].
Strip-till in crop production presents an advantageous solution both economically and
environmentally. The results of studies by Faber and Jarosz (2018) indicate that Polish agri-
culture has the capacity to cut greenhouse gas emissions by about 30% due to appropriate
changes in agricultural practices up to the year 2030 [54]. Bearing in mind the commitment
to meet the European requirements concerning the reduction in GHG emissions, the im-
plementation of strip-till in the sugar beet cultivation is fully justified. The present study
was undertaken with a view to getting farmers on board with changing their techniques of
sugar beet cultivation.
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The hypothesis adopted in this study is that strip-till outperforms conventional tillage
and leads to an increase in root and sugar yield, irrespective of the variety applied.

2. Materials and Methods
2.1. Experimental Design

Field experiments using sugar beet were conducted in 2016–2018 at Sokołowo near
Golub-Dobrzyń in the Kujawsko-Pomorskie voivodeship (φ 53◦5′16.05” N, λ 19◦6′21.07” E
(Figure 1)). Analyses were made based on the results of a two-factor experiment set in a
strip-plot arrangement with four replicates. The experimental factors involved: (i) tillage
method: plowing (CT) and strip-till (ST) as well as (ii) four diploid varieties of sugar beet
(Beta vulgaris ssp. vulgaris).
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Figure 1. Geographical location of the study, Sokołowo, Poland, [55].

In each study year, the experiment was established on lessivé soils developed from
heavy loamy sand and classified to IVa soil quality class. The soil was rich in avail-
able phosphorus (7.8–17.9 mg kg−1), potassium (24.1–25.7 mg kg−1), and magnesium
(8.2–10.5 mg kg−1), while its reaction was neutral (pH 6.3–6.8).

Notwithstanding the tillage system, the level of mineral fertilization was equal for all
the treatments. Phosphorus in the form of enriched superphosphate (17.4% P) was applied
in a single dose of 17.4 P ha−1, prior to sowing a cover crop in autumn. Potassium in the
amount of 100 kg K ha−1 was sown in split doses: 40 kg K ha−1 after forecrop harvesting,
and 60 kg K ha−1 as potassium chloride salt (49.8% K) in the spring, four weeks prior to
beet planting. Nitrogen fertilizers were applied on two dates: 40 kg N ha−1 on the sowing
day, in the form of nitrochalk (27% N), and 80 kg N ha−1 after two weeks from sowing, as
urea ammonium nitrate solution (RSM 32). On the first date, nitrogen was surface spread in
the CT treatment, while in the ST treatment, applied into the rows at a depth of 0.15–0.25 m.
The forecrop was winter wheat, which after harvest, was tilled using stubble aggregate,
and an intercrop was sown using an aftercrop mix of white mustard (dominating species),
fodder pea, sunflower, and common (blue) phacelia. In the traditional tillage treatment,
the aftercrop biomass was incorporated into the soil during plowing at a depth of 0.20 m,
while in the strip-till it remained as mulch for the winter. Strip tillage was performed with
an RTK-GPS-based 6- or 12-row shank tiller (row width 0.45 m) equipped with a leading
colter, row-cleaner, covering disk, and packer roll-er wheel (Kverneland, Kultistrip, DE, or
Horsch, Focus, DE). The strips were 0.17–0.22 m deep and 0.20 m wide. Beet seeds were
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sown on the following dates: 4 April 2016; 15 April 2017, and 12 April 2018, with 0.20 m
between plants and 0.45 m between rows.

2.2. Plant Material

Four commercial varieties of sugar beet (Beta vulgaris ssp. vulgaris) were used with the
following trade names specified on the labels (Alegra, Armesa, Contenta, and Julius). The
Alegra and Contenta varieties were admitted to cultivation in Poland based on ‘The Polish
National List’ (NLI) [56] while Armesa and Julius based on ‘Common catalog of varieties
of agricultural plant species’ (CCA) [57]. The varieties are characterized in Table 1.

Table 1. Characteristics of the varieties.

Variety Breeder Representative Type Year of Registration

Alegra DLF Seeds A/S
Roskilde, Denmark

Hilleshög sp. z o.o.
Iława, Poland N 2012

Armesa DLF Beet Seed ApS
Holeby, Denmark

Hilleshög sp. z o.o.
Iława, Poland N 2014

Contenta DLF Seeds A/S
Roskilde, Denmark

Hilleshög sp. z o.o.
Iława, Poland N 2015

Julius Strube D&S GmbH
Söllingen, Germany

Hilleshög sp. z o.o.
Iława, Poland NZ 2011

N type—higher yield and average sugar content; NZ type—combined yield and sugar content.

2.3. Sample Collection and Analysis

The plant density per plot unit was determined on two instances during the growing
season: at BBCH 12 phase (2 leaves—first pair of leaves—unfolded) and BBCH 49 phase
(beet root has reached harvestable size) of technological maturity. At the BBCH 49 phase,
beets were hand-harvested upon scalping, sampling plants from the four central 6 m long
rows which resulted in a surface of 10.8 m2 per plot. The total experimental plot surface for
a given treatment was (2.7 × 20 m) 54 m2. Results are expressed in t/ha.

The roots quality (contents of sugar, potassium (K), sodium (Na), α-amino nitrogen
(N-α)) was determined based on 32 roots sampled randomly from each plot. Analyzes of
the quality parameters were performed on the Venema automatic line at the Kutno Sugar
Beet Breeding Laboratory Ltd. (Straszków, Poland) in Straszków.

Sugar content was measured according to ICUMSA Method GS 6-3 (1994) “Polariza-
tion of sugar beet by the macerator or cold aqueous digestion and aluminum sulphate
single method”.

Potassium and sodium content was measured according to ICUMSA Method GS
6-7 (2007) “Determination of potassium and sodium in sugar beet by flame photometry—
official single method”.

N-α was measured according to ICUMSA Method GS 6-5 (2007) “α-Amino nitrogen
in sugar beet by the copper method single method”.

The refined sugar content (RSC) was computed following the algorithm below [58]:

RSC = Pol − [0.177·(K + Na) + 0.247·(N − α) + 1.08] (1)

YST = (YRY·RSC): 100 (2)

where:

Pol—sugar content (%);
K, Na, N-α—the content of potassium, sodium, α—amino-nitrogen (mmol 100 g−1);
YRY—root yield (Mg ha−1);
YST—technological sugar yield.



Agriculture 2022, 12, 166 5 of 15

2.4. Statistical Methods

The results were statistically analyzed using ANOVA analysis of variance for a two-
factor experiment according to the scheme for the strip-plot designs [59,60]. The study
years were adopted as a constant effect. Homogenous groups were determined using the
Tukey test at a significance level of p = 0.05. To intercompare the contributions assigned
to each of the experimental factors and their interactions in explaining the variance of the
dependent variable relative to their common errors, the partial coefficients eta-square (ηp

2)
were calculated [61]. Additionally, an independent analysis of contrasts was conducted
to estimate the differences between varieties under various tillage systems, for each va-
riety and parameter [62]. Calculations were made using Statistica 12.0 software (TIBCO,
Palo Alto, CA, USA) and ARM 2021.0 (Agricultural Research Management) (GDM Data,
Brookings, SD, USA).

2.5. Weather Conditions

For assessing weather conditions in the examined region, average monthly values
and long-term data for precipitation and temperature were obtained from the Institute of
Meteorology and Water Management IMGW (the Głodowo Station) (Figure 2). Weather
conditions varied over the study years, in terms of both precipitation amount and temper-
ature distribution. Precipitation deficiencies relative to the normative long-term values
were found in April and September 2016, amounting to 64% and 33%, respectively. The
subsequent year of study (2017) was extremely wet and cool, with the only exception noted
in April when precipitation was 64% lower relative to the normative values. For the period
June–September, the monthly precipitation amounts significantly exceeded the many-year
average. The increases in precipitation were most pronounced in June and September, and
were 91% and 128%, respectively. At the same time, monthly average temperatures were
lower than the normative values. Unlike 2017, 2018 was very dry and warm. Except for
April, precipitation deficiencies were observed over the entire growing season with the
highest severity in August and September (48% and 38% of the average norm). The average
daily temperatures over the above period were higher than the many-year averages with
the largest deviation in April and May, amounting to 3.5 and 3.2 ◦C, respectively.
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3. Results
3.1. Root Yield and Technological Sugar Yield

Analysis of variance revealed that the tillage method had a significant effect on yields
of roots (Figure 3) and technological sugar (Figure 4). A significant increase in the root
yield F(1,3) = 77.85; p = 0.003; ηp

2 = 96.3% as well as in the technological sugar yield
(SY) F(1,3) = 62.85; p = 0.004; ηp

2 = 95.4%, was found in ST relative to CT, amounting to
6.6% and 8.2%, respectively. Variety was also found to have a highly significant effect on
the variability of root yield F(3,9) = 11.31, p = 0.002, ηp

2 = 79.0%, the root sugar content
F(3,9) = 76.65, p < 0.001, ηp

2 = 9.2% as well as on the technological sugar yield F(3,9) = 4.74,
p = 0.030, ηp

2 = 61.2%.
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None of the interactions: tillage system × variety (A × B) and year × tillage system ×
variety (R × A × B) were found to be statistically significant for the root yield, root sugar
content, or the technological sugar yield. However, interaction: year × variety (R × B),
F(6,9) = 5.32; p < 0.013; ηp

2 = 78.0% was observed to significantly affect the level of sugar
content. This shows that changes in sugar content were ambiguous and varied between the
study years.

From among the features examined, interaction: year × tillage system (R × A) was
significant only in the case of root yield F(2,3) = 12.38; p = 0.036; ηp

2 = 89.2%. In 2016, the
root yields were comparable under both treatments, whereas in 2017 and 2018, they were
higher under ST treatment, with differences ranging to 1.5, 7.3, and 11.6%, respectively.

Considering the average yield values gained over the three study years, the highest
root yield was obtained for the Armesa variety (76.39 t·ha−1), while the lowest for the
Alegra (68.82 t·ha−1), the difference being 11.0%. Taking into account factors such as variety
and tillage system, a higher root yield was observed under ST, irrespective of the variety.
Regardless of the tillage system, the size of root yield followed a declining trend: Armesa >
Contenta > Julius > Alegra.

Relative to the CT system, statistically significant differences were obtained in terms of in-
creased yield: for the Alegra variety (t(1,51) = 2.62; p = 0.012), Armesa (t(1,51) = 2.74; p = 0.008)
and Contenta (t(1,51) = 3.51; p < 0.001), amounting to 6.7%, 6.3%, and 8.5%, respectively. No
significant difference in yield was observed for the Julius variety (t(1,51) = 1.89; p = 0.064);
nevertheless, an increasing trend (4.7%) was noted under the ST system.

The highest yield of technological sugar was obtained for the Contenta variety
(10.58 t·ha−1), while the lowest for the Alegra variety (9.87 t·ha−1). The two latter varieties
differed by 7.2%. Regardless of the study year and the variety, a significantly higher yield
of technological sugar was obtained under the ST system: (Alegra t(1,51) = 3.82; p < 0.001,
Armesa t(1,51) = 3.31; p = 0.002, Contenta t(1,51) = 4.78; p < 0.001, and Julius t(1,51) = 2.13;
p = 0.038). In terms of the sugar yield, the differences between the varieties were 9.4, 7.8,
11.0, and 4.7%, respectively.

No significant effect was found of the tillage treatment and variety on the plant density
in both the BBCH 12 and BBCH 49 phases. The average plant density in the BBCH 12 phase
was at the level of 99.34 thousand plants per ha−1. The number of plants was slightly
reduced over the growing season, on average by 4.7% (Table 2).

Table 2. Effect tillage system end variety on plants density per 10 m2.

Factor Plant Growth Stage

BBCH 12 BBCH 49

Tillage system (A)

Conventional tillage 99.79 ± 12.22 94.43 ± 13.01

Strip-Till 98.90 ± 10.09 94.88 ± 12.37

ns ns

Variety (B)

Alegra 98.71 ± 10.12 93.08 ± 10.60

Armesa 98.29 ± 11.23 95.59 ± 14.28

Contenta 100.42 ± 11.86 96.65 ± 14.57

Julius 99.96 ± 11.88 93.30 ± 10.98

ns ns
ns—F statistic not significant.
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3.2. Qualitative Assessment of Sugar Beets
3.2.1. Sugar Content

The technical quality of sugar beet roots is defined by the content of sugar and some
compounds, which interfere with the extraction of white sugar in the course of the produc-
tion process. The above compounds are generally defined as molassogenic substances and
include α-amino-nitrogen, sodium, and potassium [63]. From a technological perspective,
the higher the sugar content and the lower that of impurities, the higher the quality of
sugar beets.

No notable differences were observed between the ST and CT systems in terms of the
sugar content, F(1,3) = 6.63; p = 0.082; ηp

2 = 6.9%; nevertheless, an increasing trend was
largely noted under ST, which was on average 0.21 percent points (pp) (Figure 5). The
highest sugar content was noted for the Julius variety (16.66%), and the lowest for the
Armesa variety (15.38%). The abovementioned varieties differed by 1.29 pp. Depending on
the varieties examined, the root sugar content was either positively or not at all affected
by the ST system. A significantly higher sugar content was demonstrated for the Alegra
(t(1,51) = 3.14; p = 0.003) and Contenta varieties (t(1,51) = 2.74; p = 0.008). The increases,
relative to the CT system, were 0.37 and 0.33 pp, respectively.
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Figure 5. Effect of tillage system and variety on sugar content in root in field experiment in the years
2016–2018. Means followed by the same letter are not significantly different according to Tukey’s test
at p = 0.05; the lettering at the top of the chart is for averages for the variety—lowercase and tillage
systems—uppercase; the lettering at the bottom of the chart is for a single contrast of the growing
systems within one variety.

3.2.2. Content of Potassium, Sodium and α-Amino-Nitrogen in Roots

Irrespective of the study year, no significant effect was observed of the tillage system
on the root content of molassogenic substances (K, Na, and N-α) (Figures 6–8). The
variability among the above parameters responded mainly to the year of study and the
variety, whereas that of sodium was affected by the combined action of the parameters and
the tillage system.

Considering the root content of K, Na, and N-α, the coefficient ηp
2 was highest for the

effect of variety (B) and the interaction: year × variety (R × B). The above relations were:
for K—94.5 and 80.2%; for N—98.3 and 98.4%; and for N-α—91.5 and 95.1%, respectively.

Taking account of the three-year average values of the above parameters, interpreted
separately for each variety, no effect was found of the tillage system on the root content
of K and N-α. The analysis of contrasts revealed that the tillage system had no significant
effect on the content of K and N-α in roots.
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Figure 6. Effect of tillage system and variety on K content in root in field experiment in the years
2016–2018. Means followed by the same letter are not significantly different according to Tukey’s test
at p = 0.05; the lettering at the top of the chart is for averages for the variety—lowercase and tillage
systems—uppercase; the lettering at the bottom of the chart is for a single contrast of the growing
systems within one variety.
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Figure 7. Effect of tillage system and variety on Na content in root in field experiment in the years
2016–2018. Means followed by the same letter are not significantly different according to Tukey’s
test at p = 0.05; the lettering at the top of the chart is for averages for the variety—lowercase and
growing systems—uppercase; the lettering at the bottom of the chart is for a single contrast of the
tillage systems within one variety.
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Figure 8. Effect of tillage system and variety on N-α-amin content in root in field experiment in
the years 2016–2018. Means followed by the same letter are not significantly different according to
Tukey’s test at p = 0.05; the lettering at the top of the chart is for averages for the variety—lowercase
and growing systems—uppercase; the lettering at the bottom of the chart is for a single contrast of
the tillage systems within one variety.

However, the impact of the tillage treatment on the root sodium content was ambigu-
ous. Depending on the variety, ST resulted in either an increase or decrease in the sodium
content in roots. Significant contrasts were proven for both the Contenta-, t(1,51) = 3.72,
p < 0.001 and Julius varieties, t(1,51) = −4.55, p < 0.001. The differences under ST relative to
CT were 18.0% and −21.8%, respectively.

The impact of the tillage system on the root sodium content was ambiguous. An
insignificant contrast was found for the Armesa and Alegra varieties. A significantly higher
root content of sodium for the Contenta variety was found under ST, t(1,51) = 3.72, p < 0.001,
whereas for the Julius variety under CT, t(1,51) = −4.55, p < 0.001.

4. Discussion

Taking into account the study’s objective, we focused on the evaluation of the yield
efficiency of tillage systems and the quality parameters of four sugar beet varieties. As the
benchmark, the classic conventional tillage system was adopted, which is still a dominating
practice in Poland for growing sugar beet. The quick and uniform emergence of sugar
beet plants is a prerequisite for the rapid development of an adequate leaf canopy that
facilitates efficient light interception and high yield [64]. The tillage system in our study did
not affect the emergence speed and, ultimately, the plant stocking density on the set dates.
Similarly, Afshar et al. [65] showed no differences in the plant density between the three
systems of sugar beet cultivation. Yield is determined by many interacting factors and the
effects of tillage systems are neither consistent nor predictable. One of the basic elements
essential for evaluating the conditions of growth and yield production performance for
a given variety is to relate the results obtained to the yield potential [66]. Over the study
years (2016–2018), the yield potential of sugar beets, as defined by COBORU [56], was
as follows: 88.4 t ha−1; 88.9 t ha−1 and 80.5 t ha−1. In our study, the yield production
performance of sugar beets was utilized in 83% in 2016, 87% in 2017, and 82% in 2018,
relative to the yield potential established by COBORU. The size of the root and sugar yields
obtained in this study may be explained based on a group of natural and agrotechnical
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factors, and principally, in terms of variability of weather conditions (precipitation sum and
distribution, temperature) and agrochemical conditions, i.e., nutrient availability. Weather
conditions varied greatly over the study years, from extremely dry in 2018 to extremely
wet in 2017, which was the major driver of yield variability over the respective years.
Muchova et. al. [67], Hartmann et al. [68], and Pacuta et al. [69] also showed the effect of
weather conditions on the root and sugar yield performance in sugar beets. Moisture is
critically important at the phase of intensive leaf development, which attains the maximal
size at the turn of July and August. In our study, water deficiency was particularly severe in
2016 and 2017. However, despite the moisture deficit in the periods of critical demand, the
level of root and technological sugar yield obtained was relatively high and significantly
exceeded the country’s average, which reflects the fertility of the study sites.

To date, the studies on alternative tillage systems in sugar beet production technology
have yielded no explicit results and have revealed a wide differentiation of root and sugar
yields as well as of quality parameters [2,24]. Van den Putte et al. [70] found that sugar beet
yield reduction under no-till was very substantial and concluded that this practice is not
economically viable. Several year-long studies by Kordas and Zimny [71] revealed that,
especially in the early vegetation stage, direct sowing results in a significant increase in
soil compaction, which eventually, may be reflected in the declining yield. Results of most
research studies [19,31,72] show that strip-tillage does not differ from conventional tillage
systems for sugar beet yield and sugar production. Strip tillage for sugar beet production
was superior to direct drilling in most cases. Given the similar yields and potential cost
savings from fuel and labor, strip-tillage is a feasible and potentially profitable alternative
to conventional full-width tillage for sugar beet production. Research by Gaj et al. [15]
showed explicitly that the choice of tillage method was a secondary issue if plants were
grown on fertile sites and over the years with a regular precipitation distribution during
the growing season. The tillage method also affects the uptake of nutrients by sugar beets.
Gaj et al. [73] demonstrated that nutrient uptake per yield unit was higher in sugar beets in
the classic system with plowing than in the treatments with reduced tillage. A lower uptake
of nitrogen under reduced tillage may be due to the abundant growth of lateral roots in
the mulch systems as well as a shorter main root, which indicates disturbances of vertical
growth, and consequently, a lower uptake of nutrients from deeper soil layers as well as
changes in the quality parameters. Laufer and Koch (2017) reported that a lower nitrogen
uptake in the strip-tillage system is due to a slower rate of N mineralization processes
occurring in the soil. Therefore, using non-inversion tillage systems that disturb less soil
compared to plow-based systems may suffer transitory N limitation because soil organic
matter decomposes more slowly, thus decreasing the rate of nitrogen mineralization [74].
Other researchers [70,75–78] have proven that tillage and incorporation of the intercrop
residue into the soil decrease soil thickness and increase the total soil porosity. This helps
to improve moisture conditions and increases the content of organic carbon, total nitrogen,
and the available forms of potassium and magnesium. Consequently, these processes lead
to enhanced soil fertility, an increased rate of microbial decomposition of intercrop biomass,
which, ultimately, is reflected in the improvement of the root yield size.

The site effect and genotype–environment interaction do not relate solely to the root
yield, but also to its technical quality, including polarization and the content of molassogenic
substances [79,80]. Compounds such as α-amino nitrogen, K, and Na in beet pulp are
considered substances that affect sugar recovery [81]. The tillage systems tested had a
significant effect on the technological sugar yield, which was higher in ST.

In our study, the sugar beet quality parameters were only slightly dependent on the
tillage system applied.

The variety effect regarding the sugar content was more pronounced than the effect of
the tillage system. Barłóg and Grzebisz [82] demonstrated that the variability in weather
conditions is the largest determinant to the quality of sugar beets, yet there are differences
between varieties. At the same time, the authors emphasize the complexity of the relation-
ship between the quantitative and qualitative features of sugar beet yield, and between the
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yield size and parameters such as polarization and the content of molassogenic substances,
in particular.

Rother [83], based on studies conducted in several locations in 1994–1995, found that
the root sugar content varied between years and sites with differences up to 6%, whereas
between the fertilization levels, varieties, and harvest date showed differences up to 4%.
Thus, the issue of sugar beet quality in the alternative tillage systems requires special
attention from the producer, in view of a series of additional factors restricting the growth
of plants. The literature data [73,84] show that a reduction in the root sugar content and an
increase in α-amino-nitrogen are due to the increase in the root nitrogen. Hoffmann [85]
and Hoffmann and Märländer [86] emphasize the importance of location and weather
conditions in determining the quality of sugar beet.

5. Conclusions

The results of this study showed that strip-till is highly effective for sugar beet pro-
duction. Relative to conventional tillage, in strip-till, a significant increase was found for
root yield (6.6%) and technological sugar (8.2%). The variability in the above parameters
depended primarily on the tillage system applied, while that of the root sugar content was
largely associated with the variety. Among the varieties, no preferences were observed
towards the tillage systems tested; nevertheless, there was significant variability in the
yields of roots and technological sugar, as well as in the contents of sugar, potassium,
sodium, and α-amino-nitrogen. However, the direction of changes in the above parameters
was ambiguous and varied between the study years.
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