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Abstract: The application of a deep learning algorithm (DL) can more accurately predict the initial
flowering period of Platycladus orientalis (L.) Franco. In this research, we applied DL to establish a
nationwide long-term prediction model of the initial flowering period of P. orientalis and analyzed
the contribution rate of meteorological factors via Shapely Additive Explanation (SHAP). Based
on the daily meteorological data of major meteorological stations in China from 1963-2015 and the
observation of initial flowering data from 23 phenological stations, we established prediction models
by using recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit
(GRU). The mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient
of determination (R?) were used as training effect indicators to evaluate the prediction accuracy.
The simulation results show that the three models are applicable to the prediction of the initial
flowering of P. orientalis nationwide in China, with the average accuracy of the GRU being the highest,
followed by LSTM and the RNN, which is significantly higher than the prediction accuracy of the
regression model based on accumulated air temperature. In the interpretability analysis, the factor
contribution rates of the three models are similar, the 46 temperature type factors have the highest
contribution rate with 58.6% of temperature factors’ contribution rate being higher than 0 and average
contribution rate being 5.48 x 10~%, and the stability of the contribution rate of the factors related to
the daily minimum temperature factor has obvious fluctuations with an average standard deviation
of 8.57 x 1073, which might be related to the plants being sensitive to low temperature stress. The
GRU model can accurately predict the change rule of the initial flowering, with an average accuracy
greater than 98%, and the simulation effect is the best, indicating that the potential application of the
GRU model is the prediction of initial flowering.

Keywords: P. orientalis; recurrent neural network; inverse distance weighting; accumulated air
temperature

1. Introduction

Flowering is one of the sensitive indicators for assessing climate change [1-6], which re-
flects changes in surface vegetation and eco-health [7]. Moreover, flowering has tremendous
economic value; plants with short flowering time displays have promoted the development
of tourism, and tourism activities characterized by flower viewing have gradually become
important cultural events, and the market is constantly expanding [8-10].

The climatic conditions have an impact on the initial flowering period of plants, and
air and soil temperature are the main factors [5,11-13]. Important progress has been made
in phenological research on flowering forecasting based on meteorological data, which has
mainly established statistical equations to predict flowering period based on the correlation
between meteorological data and phenological data [3,14,15]. In 1974, Richardson et al. [16]
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first proposed the application of the chill unit model to research on peach tree dormancy
prediction, which calculates the chill unit accumulation coinciding with the completion
of plant dormancy to evaluate the impact of low temperature in winter on flowering and
to predict the initial flowering period. In 1979, White [17] constructed a linear regression
model based on phenological data from 53 species of Montana, which support subsequent
flowering studies. In 1986, Anderson et al. [18] further obtained the ASYMCUR GDH model
that is an improved normal plant model to fit growing divide hour (GDH) responding to the
environment on the basis of the chill unit model, and carried out research on the prediction
of the tart cherry flowering period. In 1998, to avoid damage to plants caused by frost
and hazards brought by climate change, such as rising temperature, Hakkinen et al. [19]
used nearly 60 years of phenological data of birth bud observation in southern Finland
from 1896-1955 and meteorological data of light signal and air temperature to predict the
bud burst of birch trees by the light and temperature driven model. In recent years, as
data work has continued to improve, flowering forecasting has begun to focus on accurate
predictive models applied to a wide range of flowers. In 2004, Demeloabreu [20] carried out
flowering prediction for different olive varieties in multiple regions to analyze the impact
of global warming on olive production. Soil moisture is an important factor affecting spring
phenology, so Yashvir et al. [21] utilized soil moisture as a correction factor to improve
the accuracy of the original chickpea flowering prediction model in 2019. The research on
flowering period in China focuses on analyzing the mechanism of meteorological influence
on flowering. In 2019, Wu D et al. [22] conducted analysis through the forecasting model
of apple flowering in Shaanxi, which refers to prediction of flowering period at different
stations and analysis of the applicability by using the mechanistic models to simulate the
growth process of phenology. In 2021, Tan J et al. [23] conducted a fine fitting analysis of
cherry flowering and concluded that air temperature and precipitation are the main impact
factors of previous cherry period research at Wuhan University.

Current research on flowering forecasting has problems, such as the limited time and
space range of accurate predictions and uncertainty around meteorological factors affecting
flowering, and currently the demand for initial flowering periods of plants in the Chinese
flowering market covers the whole country. A solution for spatial phenology modelling
may be to model phenology using herbarium and Citizen Science records and gridded
climatic data. Recently, the flowering of Anemone nemorosa was modelled in this way
across Europe. However, this approach has some limitations related to the availability of
replicated phenological observations and spatial and taxonomic biases [24]. Hence, long-
term local monitoring data are still invaluable in phenological studies. With the in-depth
integration of artificial intelligence (AI) and meteorological big data, more scholars have
begun to pay attention to the application of machine learning (ML) in phenology [25], but
detailed research on deep learning (DL) in flowering prediction is lacking.

In our research, we demonstrate the capabilities of deep learning algorithms that have
so far been used to a limited extent in phenological research. We believe that the results
obtained in our study will find wide application and contribute to a better understanding
of the phenological response of plants to meteorological conditions. We also analyze
the contribution of each factor via Shapely Additive Explanation (SHAP) to interpret the
deep learning model. We expect to provide a scientific basis for nationwide long-term,
data-driven flowering prediction models based on our research.

2. Materials and Methods
2.1. Studied Species

P. orientalis (Cupressaceae) is also named tujia or arborvitae. Its initial flowering period
is from March to April, and its cones mature in October.

P. orientalis has good stress resistance, which can withstand various extreme environ-
mental conditions [26,27], such as drought, high temperature and low temperature stress,
etc. However, the geographical advantages of abundant rainfall and high humidity in
southern China can ensure its more healthy growth [28].
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P. orientalis is one of the most widely distributed plants produced in southern Inner
Mongolia, Jilin, Liaoning, Hebei, Shanxi, Shandong, Jiangsu, Zhejiang, Fujian, Anhui,
Jiangxi, Henan, Shaanxi, Gansu, Sichuan, Yunnan, Guizhou, Hubei, Hunan, northern
Guangdong and northern Guangxi in China [29].

2.2. Region

The research is to establish prediction models of initial flowering period of P. orientalis
in China in the Chinese region (73°33’ E-135°05' E, 3°51" N-53°33’ N). Due to the large area,
the distribution of meteorological elements in China is complex, mainly reflected in the
uneven distribution of air temperature, precipitation and humidity, etc.

Temperature regions are divided by accumulated temperature. In China, there are five
temperature regions of tropical, subtropical, warm temperate, mesotemperate and cold,
whose accumulated temperature value is increasing from north to south, so lower latitude
affects the growth process of plants less. There is also a special Qinghai Tibet Plateau region
influenced by high altitude of an average 4000 m [30].

According to the humidity index (HI), China can be divided into four regions, namely,
arid region (AR), semi-arid region (SAR), semi-humid region (SHR) and humid region
(HR) [31]. And HI can reflect the regional humidity, which affects the physiological process
of plants through the influence on the water potential, which is the key to the process of
plant water absorption. The partition result can be obtained in Figure 1.

900

Figure 1. China’s regional map of (a) administrative division, and (b) arid-humid division. Beijing,
Tianjing, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang,
Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guandong, Guangxi, Hainan, Chongqing,
Sichuan, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Taiwan, Hongkong
and Macao are denoted by numbers from 1 to 34 in (a), respectively. The arid region (AR), semi-arid
region (SAR), semi-humid region (SHR) and humid region (HR) are denoted by numbers 1, 2, 3 and
4, respectively.

The analysis of the impact of China’s meteorological element conditions on the spatial
distribution of P. orientalis in the initial flowering period is regional, so we introduced China’s
administrative division to help spatial analysis. The vector diagram of the division of ad-
ministrative regions in China is derived from the National Platform for Common Geospatial
Information Services (https:/ /www.tianditu.gov.cn (accessed on 8 September 2022)).

2.3. Materials

Phenological data are observational data that reflect periodic biological phenomena
including initial flowering period, which refers to the time of one or few flowers fully open.
To obtain enough data for DL training, we collected the initial flowering data of P. orientalis
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from the National Earth System Science Data Center (https://geodata.cn/ (accessed on 13
July 2022)) and the Earth Big Data Science Data Center of the Chinese Academy of Sciences
(https:/ /data.casearth.cn/ (accessed on 11 August 2022)) and selected available data that
included city stations in Baoding, Beijing, Changde, Guiyang, Hohhot, Shanghai, Foshan,
Nanjing, Nanchang, Hefei, Harbin, Kunming, Guilin, Wuhan, Minqin, Shenyang, Tai’an, Xi'an,
Chongging, Yinchuan, Changchun, Changsha and Yancheng from 1961-2015. The spatial
distribution can be obtained in Figure 2. A total of 357 valid data points were obtained.

70°E 80°E 90°E 100°E 110°E 120°E 130°E 140°E
1 1 1 1 1 1 1 1
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Figure 2. Geographical distribution map of phenological stations.

The meteorological data were obtained from the China Meteorological Science Data
Sharing Network “China Ground Meteorological Data Dataset V3.0”. A total of 23 basic city
stations were selected, and we obtained the meteorological elements of average temperature
(°C), daily minimum temperature (°C), daily maximum temperature (°C), daily average
ground temperature (°C), daily average precipitation (mm), daily average sunshine hours
(h), daily average relative humidity (%), and daily average pressure (Pa) from 1 January to
30 April 1961 to 2015 in these stations.

2.4. Methods
2.4.1. Selection of Meteorological Factors

The effect of air temperature on the initial flowering period is most pronounced,
followed by sunshine and precipitation [11,21]. In ecological research, crop growth and
development need to accumulate to a certain sum of temperature, so the air temperature is
usually expressed in cumulative amount, which is referred to as the accumulated temper-
ature. According to different time scales, the action time of accumulated temperature is
varied. In the process of growth, crops respond to the temperature limit, which is the lower
limit temperature. When the temperature is lower than the lower limit temperature, the
plants will not grow and develop. The accumulated amount of temperature above the lower
limit temperature is the active accumulated temperature, and the accumulated difference
between the temperature and the lower limit temperature is the effective accumulated
temperature, which can be applied to air temperature and ground temperature.
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Ef fective accumulated temperature =Y _ (T; — Co) (1)
Accumulated temperature = ZTZ' (2)
Active accumulated temperature =Y T; T; >Cy 3)

where T; is the daily average temperature, and Cy is the lower limit temperature.

Since the initial flowering period of Platycladus orientails is mainly in the middle of
April, we focused on the meteorological data from January to April. During data processing,
we read the meteorological data from each station and used 0 °C, 3 °C, 5 °C AND 10 °C
as the lower limit temperatures to calculate the effective accumulated temperature and
counted the accumulated temperature and average temperature from January to early April
for ten days and the average ground temperature monthly and other factors, as detailed in
Table 1.

Table 1. Table of meteorological factors affecting the initial flowering of P. orientalis.

Meteorological . Number
Elements Meteorological Factors of Factors

—_

The effective cumulative temperature of 0 °C, 3 °C, 5 °C,

10 °C (°C);

Active temperature (°C);

Accumulated temperature (°C);

Accumulated temperature for ten days (°C);

Average temperature for ten days (°C); 46

Days when the minimum/maximum temperature is less

than 0 °C, 5 °C, 10 °C (d);

7. Days when the minimum/maximum temperature is more
than 0 °C, 5 °C, 40 °C (d);

8. Average monthly minimum/maximum temperature from

January to April (°C).

Temperature

ARSI

1. Accumulate ground temperature (°C);

Ground Average monthly ground temperature from January to
temperature April (°C); 7
Days when the ground temperature is less than 0 °C (d);

Days when the ground temperature is more than 40 °C (d).

N

Ll

Ju

Cumulative precipitation (mm);

Average precipitation (mm);

Accumulated monthly precipitation from January to 10
April (mm);

Average monthly precipitation from January to April (mm).

N

Precipitation

I

Hours of
sunshine

Total hours of sunshine (h);
Monthly hours of sunshine from January to April (h).

Relative
humidity

Average relative humidity (%);

Average relative humidity for ten days (%). 1

M= e

—_

Pressure Average pressure for ten days (hPa). 10

Because different meteorological data have different degrees of influence [23], we
considered different time resolutions when establishing meteorological factors. For exam-
ple, we mainly deal with accumulated temperature for ten days when doing accumulated
temperature calculation through Equation (2), which is a method to calculate ten days of
the month. Therefore, each month will have three different accumulated temperatures for
ten days values, which are divided into an early value, middle value and late value.
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2.4.2. Data Processing

For the convenience of comparison between two different years, we use the data of
ordinal number from 1 January to the current date as phenological data of flowering.

With each meteorological factor as the independent variable and ordinal number as the
dependent variable, a phenological-meteorological dataset is constructed, and the dataset
is normalized to facilitate weight distribution in the deep learning model. At a ratio of 7:3,
we divided the training dataset and test dataset for model training and modelled effect
evaluation to ensure sufficient samples during training, whose distribution is the same and
not repeated, to evaluate the quality of model training.

In order to make each factor value dimensionless in the process of DL training, we
normalized the data by max-min method, which will limit each data point to 0-1.

, ¥ — min

y = (4)

max — min
where 1/’ is normalized value, y is value to be normalized, min is the minimum value of the
same value and max is the maximum value of the same value.

2.4.3. Deep Learning Model

In current prediction research, such as Southern Oscillation, local evaporation and
drought prediction, the deep learning algorithm has a better fitting ability and can improve
the spatial resolution of prediction [32,33]. Compared with other common networks such as
convolutional neural network (CNN) and artificial neural network (ANN), recurrent neural
networks have a significant role in time series processing. The initial flowering period is
predicted by three common deep learning prediction models, namely, the recurrent neural
network (RNN), long short-term memory (LSTM), and the gated recurrent unit (GRU).

e  Compared with other neural networks, the RNN can predict the current input value
by combining the input values of the first N time series, that is, it has correlation in the
time series.

e LSTM can learn the long-term dependence between two variables and retain the error,
which can be maintained at a constant level when backpropagation is carried out along
the time layer [34,35]. LSTM is equipped with three gating devices to filter the input
data, namely, the input gate, forget gate and output gate. The forget gate will generate
a value between 0 and 1 according to the output and current input of the previous
time to decide whether to retain the information of the previous time [35]. The time
function of the forget gate is mainly controlled by the sigmoid activation function:

ft:U(Wf'[l’lt—l,Xt]+bf) (5)

where f is the forget gate, W is the weight matrix, by is the offset term, and ¢ is the
sigmoid activation function. The closer the value of f; is to 0, the more items will
be forgotten.

e Compared with the LSTM model, the GRU simplifies the calculation steps and sub-
stantially increases the training speed, while the GRU also uses a gate device to filter
information, namely, the reset gate and update gate. In the process of training, the
input information will not be cleared by the gate device, but the necessary informa-
tion will be retained in the next cycle, and the information will be saved to avoid
the problem of gradient disappearance. Since there are only two gate structures, the
actual running time of the GRU model is substantially less than that of LSTM with
fewer network parameters, so the risk of GRU model overfitting is smaller under the
condition of ensuring accuracy.
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2.4.4. Training Effect Indicators

The mean squared error (MSE) is used as a loss function, and the mean absolute error
(MAE), mean absolute percentage error (MAPE) and coefficient of determination (R?) are
utilized as the training effect indicators to evaluate the model performance.

1 )
MSE = — 3} (vi — i) (©6)
i=1
1 m
MAE = Y (i — 9| 7)
i=1
0 Mmoo\ 4.
MAPE — 100% y oL ®)
=l Yi
s (vi — 90)°
R*=1- ==l 25 ©)
it (i — ;)

where y; is the true value, §; is the predicted value, m is the number of samples, and ¥, is
the mean of the prediction.

MSE has high robustness, and it can effectively converge with a fixed learning rate,
so the model with MSE as the loss function can maintain the accuracy in the process of
convergence compared with the model with MAE as loss function [36]. MAE and MAPE
are commonly employed indicators to reflect the degree of deviation between the predicted
value and the true value. R? is mainly used to judge the linear relationship between
the model prediction and the true value. Therefore, when the value of R? is near 1, the
simulation degree of the model is accurate. The above four indicators are applied as
mathematical definitions in general statistical research, so they are highly recognized.

2.4.5. Interpretability Model Based on SHAP

Shapely Additive Explanation (SHAP) is a method which uses game theory that is
used to study the mathematical theory of contribution rate as the ideological carrier to
calculate the impact of the characteristic variables of sample data on the results of the
prediction model and then to measure the contribution of these characteristic variables.
This approach explains the CART-based complex integrated learning model [37].

The core of SHAP is to calculate the Shapley value of variables, which represents the
importance of determining the influence of various factors on the prediction.

3 |S|!<|M||A;'S—1>! [F(SU{i}) — fu(S)] 10)
SCM\{i} '

i =

where M denotes all feature sets S represents subsets of 7, fy(S U {i}) is the predicted value
of the characteristic variable containing only S U {i} in the sample data, and has a Shapley
value of 7.

As the complexity of using the Shapley value to traverse all subsets exponentially
increases, this leads to an excessively long computing time and increases the computational
burden, Lundberg and Lee proposed the Tree SHAP model based on the tree model in
machine learning combined with the Shapley value [37]. In this research, we used the Deep
SHAP model interpreter to rank the contribution of 89 meteorological factors that affect
the initial flowering of P. orientalis. The Deep SHAP model avoids heuristic selection of
linearized components but enables effective linearization from the SHAP values calculated
for each component [37]. Therefore, the contribution of different factors in each sample to
the model prediction can be achieved via Deep SHAP.
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2.4.6. Overall Process of Predicting the Initial Flowering Period in DL

Based on the phenological observation city network and the meteorological observa-
tion data of China, we built a comprehensive dataset of the initial flowering and meteo-
rology, importing the dataset into the RNN, LSTM, and GRU models as input vectors and
using MSE as the loss function. When the loss function converges, the model is considered
mature. MAE, MAPE and R? are selected as evaluation indicators to express the prediction
effect. In order to compare the difference between the initial flowering period prediction
model based on deep learning algorithms and the traditional flowering prediction models,
we selected the multiple linear regression model based on accumulated air temperature as
the representative of the traditional initial flowering period prediction model, and com-
pared the prediction effect of this model with DL The interpretability model based on
SHAP is adopted to further analyze the interpretability and stability of the model. This
process can be obtained in Figure 3.

Dataset contribution Model establishment
» RNN [C>
Data of flowering <::> Mete(:ll_‘:);)glml Long
: I\ Deep time
|: learning » LSTM :> series
I model model in
Meteorology- China
Flowering
» GRU [C>
Dataset
Result and analysis
|:\'> Result analysis
Input \ 4 .
— - Comparison Discuss
Prediction Initial between —
. ~ Interpretability on deep
model of flowering > output and |::> analysis learnin
arborvitae period the true g
value model
|:> Spatial analysis

Figure 3. Flow figure of establishing DL models.

3. Results
3.1. Basic Characteristics of P. orientalis during Initial Flowering

As shown in Table 2, the flowering period of P. orientalis has obvious regional char-
acteristics: with an increase in latitude, the average initial flowering period is gradually
postponed, and the ordinal number of cities in northeast China is nearly 80 d (as a unit
representing days), higher than that of coastal cities in south China such as Foshan and
Shanghai etc., which is related to the generally high light, temperature and precipitation
resources in south China. The dispersion degree of the initial flowering period of different
stations can be obtained from the standard deviation. The standard deviation of 23 stations
is concentrated at approximately 10 d. The maximum of Kunming station is 23.93 d, and
the minimum of Harbin station is 1.50 d. Among all the data, the ordinal number of
the earliest flowering period is 5 d observed at Kunming station, and that of the latest
flowering period is 136 d at Minqin station. There are obvious interannual fluctuations and
spatial differences in the observation data of each station, and the degree of dispersion is
large with the range is 131 and normalized standard deviation is more than 0.2. Therefore,
it is necessary to establish an accurate prediction model to effectively predict the initial
flowering of P. orientalis nationwide.
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Table 2. Table of ordinal number information of P. orientalis” initial flowering period.

. Average Minimum Maximum Standard .
Station Value (1 Value (d) Value (d) Range () peviation (@)  Okewness  Kurtosis
Baoding 95.00 76 111 35 10.29 —0.16 —0.28
Beijing 86.97 65 108 43 10.03 0.12 —0.59
Changde 59.88 38 78 40 10.06 —0.27 0.026
Guiyang 57.05 33 86 53 13.89 —0.11 —0.44
Hohhot 108.00 101 121 20 6.31 0.97 0.19
Shanghai 63.38 50 76 26 7.61 —0.04 —0.07
Foshan 48.78 32 65 33 12.27 —0.08 —1.88
Nanjing 44.90 31 55 24 7.30 —0.36 —0.69
Nanchang 55.78 25 76 51 13.43 —0.58 0.34
Hefei 63.93 41 78 37 11.11 —0.67 —0.70
Harbin 130.50 129 132 3 1.50 0.01 0.01
Kunming 40.08 5 98 93 23.96 0.93 0.95
Guilin 43.35 22 74 52 16.51 0.80 —0.33
Wuhan 88.05 52 112 60 18.94 —041 —-1.17
Mingin 104.93 92 136 44 10.76 1.61 4.07
Shenyang 111.20 104 122 18 7.33 0.69 —2.49
Tai’an 76.25 70 86 16 6.01 1.29 1.78
Xi’an 65.86 46 81 35 8.20 —0.43 0.51
Chongging 54.62 24 76 52 14.99 —0.39 ~1.05
Yinchuan 110.21 84 123 39 12.90 —0.83 —0.67
Changchun 111.96 93 129 36 791 0.12 0.89
Changsha 54.00 45 63 18 9.00 0.01 0.01
Yancheng 68.09 44 80 36 8.09 —1.09 1.69

3.2. Model Training Effect

Normalized meteorological data and initial flowering data were imported into the DL
models as inputs. It can be seen from Figure 4 that with the increase in the training epoch
which represents the number of cycles in the training process, the loss functions of the
three deep learning models converge, which shows that the prediction error of the model
reaches a small value. Therefore, the training is stopped, and the flowering prediction test

is conducted.

0.05

0.00

Training epoch

Figure 4. The training process of deep learning models.
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In the test dataset, the MAE of the three models is small, and the MAPE of LSTM
and the GRU is less than 1%. The R? values are greater than 0.99, indicating that there is a
significant linear relationship between the true value and the predicted value, which can be
obtained in Table 3.

Table 3. Table of prediction effect of DL.

Models and Indicators RNN LSTM GRU
MAE 1.50 x 1072 518 x 10~4 216 x 1074

MAPE 456 0.16 0.05

R? 0.99 0.99 0.99

Typical stations, Yancheng station, Guiyang station and Beijing station, are selected
from 23 stations, and prediction analysis is performed. Figure 5 shows that the three deep
learning models can better simulate the actual local data of the initial flowering period. The
fluctuation trend of the LSTM and GRU models is different from that of the actual extreme
years, which is mainly characterized by hysteresis, and the simulated fluctuation change is
always smaller than the actual value in the year with obvious changes.

g 4- Z
§ g 004 — —
5] >
=) = -
8 21 57 —— RNN
1
! & —1.0
5 S ] LSTM
£ 07 5 -15-
5 5l —— GRU
8 S —2.0-
.:_2_ 45
Q .=
t,]@ 2 _,1b)
2 =
m_4 T 1 1T 17T 17 T 1T 1T T T T T T°1 p"_3~0IIIIIIIIIIIIIIIIII
S N I O 0o Al T O 0o A T O 0o VO AT OV XVOATOXDOA T OO A
>~ > > - 0 0 0 X0 X0 DN DN DYDY © >~ 00 000NN OO OO
(=)o) Nie) Bile) lie Ne e NN e N e e le) le) B o) Ne) e NN el [©2 e Ne o) e lle e le)llo o o el el ol o]
— g e ] e el e ] p— e - O] N N AN AN AN
en
E 0- —_———— —— e
=
(]
0
=
@]
£ -1+
(]
=
@]
.=
=
2
3727
S ()
T T T T T T T T T T T T T T T T T T
= (9] v 0 — <t o~ j o O [*)) N v 0 — < c~ je]
v \O \O \O c~ c~ c~ 0 0 0 0 (=) (=) (=) ] ] ] —
(@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) (@) j j j j
— — — — — — — — — — — — — — o o o o

Figure 5. Interannual variation figure of prediction error of (a) Yancheng city, (b) Guiyang city, and

(c) Beijing city.

3.3. Interpretability of DL Models

In Deep SHAP, a single sample will output SHAP values of different factors. We used
the data of all samples including the training dataset and test dataset, which is a matrix
of 89 meteorological factors and ordinal number of initial flowering period. Therefore, a
matrix of SHAP values of the same size can be obtained. We explore the importance of
different meteorological factors to model prediction by taking the average SHAP value of
the whole sample as the factor contribution rate and analyze the stability of different factors
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by using the change in the SHAP value of different samples in various meteorological
factors as the stability index.

Figure 6a—c shows the analysis thermodynamic diagrams of RNN, LSTM and GRU.
Its x-axis represents 89 meteorological factors, which are shown by x1-x89, and the order
of meteorological factors is from the effective accumulated temperature of 0 °C to early
average pressure for ten days in April. The y-axis represents 357 samples, which are
shown by A1-A357. According to SHAP, the value greater than 0 in the thermodynamic
diagrams promotes the prediction effect of the model, while the value less than 0 reduces
the prediction effect, and we used color palette to indicate whether the value is greater
than 0.
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Figure 6. SHAP analysis figure of deep learning models (a). RNN contribution analysis thermody-
namic diagram; (b). LSTM contribution analysis thermodynamic diagram; (c). GRU contribution
analysis thermodynamic diagram; (d). Analysis figure of average contribution of each factor.

Therefore, Figure 6a—c can reflect the contribution rate stability of each meteorological
factor though the change of SHAP value of each factor in different samples. In the thermal
image, the meteorological factors with obvious fluctuations in the contribution rates of
different models are similar and mainly concentrated in various factors related to the
minimum temperature. The SHAP value of temperature factors is stable near the positive
value, while the SHAP value of pressure factors is stable at the negative value.

According to Figure 6d, among different deep learning models, the average factor
contribution rate is different with the range being 0.011 and normalized standard deviation
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being 0.2, but in general, temperature factors are more important to the model with 58.6%
of temperature factors values being higher than 0. Other factors are less important to the
model, and some factors have negative SHAP values, which means they have a negative
role in improving model prediction. GRU is more sensitive to input factors, so the absolute
value of the contribution rate of GRU factors is higher than that of the other two models,
while LSTM is the least sensitive to input factors, among which the absolute value of
contribution rate of RNN, LSTM and GRU are 8.22 x 10~%,5.87 x 107%,3.25 x 1072,

3.4. Comparison between DL and the Traditional Prediction Model

Non-DL flowering prediction methods usually use a few meteorological factors to
establish regression models to forecast the initial flowering period, such as a multiple
linear regression model, which is a linear regression model with multiple independent
variables [38,39]. However, the simple linear models have difficulty accurately predicting
flowering period. Chen and others have established a linear mode of multiple linear
regression and nonlinear models of polynomial regression between the cherry flowering
period and climate factors, and determined that they have a good simulation effect for the
nonlinear modes with an average error of prediction less than 1.5 d [23,40]. In the neural
network structure of deep learning, there are linear operations such as the convolution
layer and nonlinear operations such as the activation function. To test the prediction effect
of the deep learning model, we also select the multivariate linear regression model based
on the accumulated temperature as the contrast for comparison.

According to the research of most scholars [9,13,19,20,22,23,33], we use the effective
accumulated temperature (whose lower limit temperatures are 0 °C, 3 °C, 5 °C and 10 °C),
active accumulated temperature and total accumulated temperature as variable factors to
establish a multiple linear regression model:

y = 166.33x1 — 261.86x; + 59.07x3 -+ 38.79x4 — 0.85x5 — 1.57x¢ + 0.77 (11)

where x1, x2, x3, and x4 are the effective accumulated temperatures whose lower limit
temperature are 0 °C, 3 °C, 5 °C and 10 °C, x5 is the active accumulated temperature, and
X is the total accumulated temperature. The coefficient of each independent variable is its
linear relationship with y.

According to the deep learning models and multiple linear regression model, the
prediction accuracy of each model is evaluated via MAE, MAPE and R?, and the results
can be obtained from Table 4.

Table 4. Table of comparison between deep learning model and multiple linear regression.

Model Deep Learning Model Multiple Linear
Indicator RNN LSTM GRU Mean Regression Model
MAE 150 x 1072 518 x10~% 216 x10~% 512 %1073 0.06
MAPE 4.56 0.16 0.053 1.59 15.45
R2 0.99 0.99 0.99 0.99 0.84

By comparison, the accuracy of the deep learning model was significantly higher than
that of the multiple linear regression model with a confidence level of 0.05. And through
the multicollinearity analysis, it can be found that in the multiple linear regression model,
there is a collinearity problem between the 0 °C effective accumulated temperature and the
10 °C effective accumulated temperature.

3.5. Spatial Distribution and Interpolation of Prediction for DL

Due to the relationship between meteorological elements and space (longitude and
latitude), we utilized all phenological data and verified the deep learning model at different
stations to show the impact of spatial factors on flowering prediction. We import all the
samples into the trained models and calculate the difference with the true value to get
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the prediction error. When the error is more than 0 d, it means that the prediction results
are ahead of the initial flowering period. The smaller the absolute error, the better the
prediction effect. According to the Figure 7, the prediction average error of the RNN
model lag behind the true value, mainly focusing on (—2d, —1d) and (—3d, —2d), while
the prediction error of LSTM and GRU are mainly focused on (—1d, 0d), but the error of
LSTM results exceeds 3d. By comparison, the prediction results of the GRU model are more
accurate and stable.

0 450 900 1800 2700
N KM

Figure 7. Spatial distribution map of (a) RNN, (b) LSTM, and (c) GRU prediction error.

Since most phenological observation stations in the dataset are concentrated in major
urban areas of China and observation data in Northwest and Southwest China are missing,
inverse distance weighting (IDW) is used for the average spatial prediction results of deep
learning models. According to Figure 8, the interpolation results of the three models show
similar characteristics. The similar characteristics are that in terms of latitude, ordinal num-
ber of initial flowering period gradually increases from low latitudes 15° N to high latitudes
55° N and present an obvious hierarchical structure, which is the layered structure of early,
middle and late initial flowering periods from south China to north. The late flowering area
mainly consists of Inner Mongolia and the three eastern provinces of Heilongjiang, Jilin
and Liaoning, the middle flowering area mainly consists of central China, and the early
flowering area mainly consists of the Yangtze River Delta, including Jiangsu, Zhejiang and
Shanghai. The early flowering area and late flowering area have obvious differences in the
initial flowering period. A possible main reason is that the late flowering area has a higher
latitude, a smaller solar altitude angle, and less radiation, so the accumulated temperature
and other resources are insufficient.

The prediction ordinal number of initial flowering period in different regions is similar
in the three DL models with an average leaner trend between prediction value and years
being —0.01, which means that the initial flowering period of P. orientalis in China will
advance by about 1.31d each year.
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Figure 8. Spatial interpolation map of (a) RNN, (b) LSTM, and (c) GRU’s average prediction.

4. Discussion

In this research, we employed deep learning to excavate the deep information relation-
ship between the initial flowering period and phenology and realized a long-term flowering
prediction model in China. The accuracy of the RNN, LSTM and GRU deep learning models
is significantly higher than that of the traditional flowering prediction models based on
multiple linear regression. Via interpretability analysis and spatial analysis, model stability
problems such as factor sensitivity and error spatial distribution are explained.

From the viewpoint of some scholars, temperature is the main influencing factor
affecting phenology [41-47], because it acts as a signal to regulate the dormancy process of
plants [48]. Therefore, the mathematical regression models are built around accumulated
air temperature, average air temperature and other factors related to temperature such as
effective accumulated air temperature, etc. However, such models may have errors in the
prediction effect over a short time and couldn’t be applied to nationwide initial flowering
period forecasts with the MAE, MAPE being higher than DL models and R? being lower.

Due to different meteorological conditions, the flowering period presents diversity
in space [30]. In addition, because of the impact of climate change, the change of meteo-
rological conditions in China is also different over time, showing the increase of annual
temperature and precipitation [49,50]. This research achieves accurate nationwide predic-
tion of a single species in China with the error of the initial flowering period reduced to
less than 1 d, which provides more accurate data support for phenology research. With
the development of industrialization, carbon emission might be the main factor affecting
the opening process of flowers. Thus, this research provides a model basis for quantitative
research on flowering changes in future scenarios.

However, there are some uncertainties in this research. The first uncertainty pertains
to the data. We use the data of observation stations in major cities in China, with missing
data from western China, which causes serious deviations between the prediction results and
the actual value in this region. For DL, the SHAP of different models varies, and there is an
obvious difference in the contribution of the three models to some meteorological factors,
which makes it difficult to judge the correlation between such factors and the flowering period.
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5. Conclusions

We predicted and analyzed the initial flowering period of P. orientalis in China through
DL model, and the most important results of our study can be summed up as follows:

(1) The initial flowering in China mainly occurs from the beginning of February to the
end of April, and it has spatial differences, which are later in northern China than in
southern China.

(2) The DL model is suitable for nationwide flowering prediction in China, and the
average error of DL is only within 2 d.

(38) Comparing the RNN, LSTM and the GRU, we find that the GRU is more suitable for
the prediction model of initial flowering, with higher accuracy and more stable spatial
predictions.

(4) The initial flowering period of P. orientalis in China presents obvious hierarchical
characteristics, which are mainly manifested in the southern region where the flow-
ering period is the earliest. With the increase in latitude, the initial flowering period
gradually increases from south to north.

Although the variation in the contribution degree of output in the prediction of the
initial flowering period can suggest different mechanisms of meteorological disasters
affecting flowering process, our research is still insufficient.
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