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Abstract: In this study, spectral data within the wavelength range of 400–780 nm were used to eval-

uate the ripeness stages of achacha fruits. The ripeness status of achacha fruits was divided into 

seven stages. Both average and pixel-based approaches were used to assess the ripeness. The accu-

racy and n-level-error accuracy of each ripeness stage was predicted by using classification models 

(Support Vector Machine (SVM), Partial Least Square Discriminant analysis (PLS-DA), Artificial 

Neural Network (ANN) and K-Nearest Neighbor (KNN)) and regression models (Partial Least 

Square Regression (PLSR) and Support Vector Regression (SVR)). Furthermore, how the curvature 

of the fruit surface affected the prediction of the ripeness stage was investigated. With the use of an 

averaged spectrum of fruit samples, the accuracy of the model used in this study ranged from 

52.25% to 79.75%, and the one-level error accuracy (94.75–100%) was much higher. The SVM model 

had the highest accuracy (79.75%), and the PLSR model had the highest one-level error accuracy 

(100%). With the use of pixel-based ripeness prediction results and majority rule, the accuracy 

(58.25–79.50%) and one-level-error accuracy (95.25–99.75%) of all models was comparable with the 

accuracy predicted by using averaged spectrum. The pixel-based prediction results showed that the 

curvature of the fruit could have a noticeable effect on the ripeness evaluation values of achacha 

fruits with a low or high ripeness stage. Thus, using the spectral data in the central region of achacha 

fruits would be a relatively reliable choice for ripeness evaluation. For an achacha fruit, the ripeness 

value of the fruit face exposed to sunlight could be one level higher than that of the face in shadow. 

Furthermore, when the ripeness value of achacha fruit was close to the mid-value of two adjacent 

ripeness stage values, all models had a high chance of having one-level ripeness errors. Thus, using 

a model with high one-level error accuracy for sorting would be a practical choice for the posthar-

vest processing of achacha fruits. 
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1. Introduction 

The ripening of fruits, usually involving color change and increasing sugar content, 

refers to the processes that occur at the later stages of maturation and the early stages of 

senescence for fruits [1]. Achacha (Garcinia humillis), which originates from Bolivia [2,3], 

has recently become one of Taiwan’s commercial plantation fruits. As the achacha fruits 

ripen, the skin color changes from green to yellow and then to dark orange. The color 

changes are due to the loss of chlorophyll and concomitant synthesis of the characteristic 

pigments, such as carotenoids [4]. At the current stage, in Taiwan, achacha fruits are har-

vested manually. Harvesters try to pick achacha fruits with proper maturity and to ensure 

that the fruit is not over-ripe or senescent; however, at which stage of maturity the achacha 

fruits should be picked from the tree is difficult to be judged by harvesters, sometimes 

because the color of the fruits varies under different light conditions. For example, the 

same achacha fruit exposed to direct sunlight or in the shadow of a tree may appear to 
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have different colors. Furthermore, under-ripe achacha fruits could be picked by mistake 

during the fast-paced harvesting process. Because the ripeness stage is an important indi-

cator of the quality of the achacha fruits from the customers’ perspective, determining the 

ripeness stage is an important task in the postharvest processing of achacha fruits. Cur-

rently, the ripeness stage of achacha fruits is visually identified by the farmer in front of 

the sorting line. The disadvantage of this method is low efficiency, prone to mistakes and 

inconsistency. Many physical and chemical features, such as size, shapes, texture, firm-

ness, colors, the concentration of chlorophyll, soluble solids content (SSC), starch, sugars, 

acids and oils, can be used to quantify fruit ripeness [5]. The use of non-destructive tech-

niques for fruit maturity assessment can be traced back to more than a half-century ago 

[6]. After that, many non-destructive fruit ripeness evaluation methods based on different 

technologies, including electrical bio-impedance [7], computer tomography, electric nose 

[8], magnetic resonance imaging, RGB color imaging [9], spectroscopy [10], spectral imag-

ing [11,12], ultrasound [13] have been developed. Among the aforementioned techniques, 

imaging technologies have emerged as powerful tools for sorting and grading fruits be-

cause the same data obtained by imaging technologies can be used not only for fruit ma-

turity measurement but also for other postharvest processing tasks, such as surface defect 

detection, size or shape grading. 

Machine vision systems based on conventional RGB images have been adopted for 

fruit ripeness evaluation for many years. For example, tomato maturity was classified 

based on HSV color histogram and color moments extracted from RGB images captured 

using a computer vision system [14]. The combination of color feature and back propaga-

tion neural network (BPNN) was used to detect three maturity levels (green, orange and 

red) of tomatoes [15]. Cardenas-Perez et al. [16] proposed a ripening index (RPI) for as-

sessing apple ripeness (unripe, ripe and senescent). The ripeness of fruits was determined 

based on the external color using image processing techniques [17–19]. However, color 

features could be affected by factors such as light intensity and exposure time of the digital 

camera, which cause noise [20]. Furthermore, the color difference between intermediate 

adjacent ripeness levels might not be significant [21]. Thus, it could be difficult to distin-

guish multiple intermediate adjacent ripeness stages of fruits by RGB images. In addition 

to using color digital cameras to obtain RGB imaging, hyperspectral imaging (HSI) sys-

tems have been successfully used for the assessment of fruit ripeness. HSI systems can 

acquire data in both spatial and spectral domains at the same time [22]. The ripening of 

fruits usually involves chemical processes, such as chlorophyll degradation, changes in 

respiration, biosynthesis of carotenoids and changes in ethylene production [23]. Many of 

the visible changes throughout the ripening process are ascribed to changes in pigmenta-

tion induced by changes in chlorophyll content and accumulation of carotenoids. Com-

pared with using RGB images obtained by digital image sensors with broadband Bayer 

filter mosaic, the changes in ripeness stages can be better observed using high spectral 

resolution data obtained by hyperspectral imaging systems, because, for fruits without 

significant color difference between intermediate adjacent ripeness levels, the ripeness 

level can be differentiated better based on the subtle spectral shifts in the measured spec-

tra. Logan et al. used RGB images and hyperspectral images to analyze the ripeness of 

fruits and vegetables. The results showed that hyperspectral images outperform RGB im-

ages for age classification on all their tested produce [24]. Furthermore, Zhang et al. used 

VIS-NIR and NIR hyperspectral image data to evaluate the maturity of strawberries with 

three levels [25], and Wei et al. classified four ripeness levels of persimmons using VIS-

NIR hyperspectral image data [26]. 

Machine learning classification models using hyperspectral data were widely used 

for maturity assessment. To name a few, a Support Vector Machine (SVM) was used to 

evaluate the ripeness of strawberries [25] and blueberries [27]. An artificial Neural Net-

work (ANN) was used to recognize bananas with four ripeness levels [28]. Soft independ-

ent modeling of class analogies (SIMCA) was used for bananas [29] and pears [30]). Linear 

Discriminant Analysis (LDA) was applied to tomatoes [31] and apples [32]. 
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The objective of this study was to develop ripeness stage evaluation models with the 

use of HSI data for achacha fruits. Both pixel-based and averaged hyperspectral data were 

used in this study. The performance of classification and regression models was investi-

gated. Furthermore, how the curvature of the fruit surface affects the prediction of the 

ripeness stage was explored. 

2. Materials and Methods 

2.1. Hyperspectral Image Data Acquisition and Preparation 

A custom-made push-broom Hyperspectral Imaging (HSI) system was used to ob-

tain spectral data of achacha fruits. The system consists of a Basler Ace acA2440-175 um 

monochrome camera, an Imaging spectrograph (Imspector V10E, Spectral Imaging Ltd., 

Oulu, Finland) with 23 mm C-mount zoom lens (OLE23-f/2.4, Spectral Imaging Ltd., Oulu, 

Finland), two halogen lamps, a computer (3.1 GHz Ryzen 9-3900 CPU, 32 GB memory) 

and a motorized positioning sample table driven by an AC servo motor (SDE-010A2, Shih-

lin, Taiwan) and PWM signals from data acquisition devices (NI-myDAQ, National In-

struments, Austin, TX, USA). The spectral images were acquired by a GUI program de-

veloped in Labview software 2020. The black-and-white calibration was performed on the 

raw data obtained by the hyperspectral imaging system to obtain the relative reflectance 

[33]. The black reference images were obtained by turning off the light sources and cover-

ing the lens with a black cap, and the white reference images were acquired with the use 

of a white diffuse board. 

2.2. Achacha Samples 

The achacha fruits with various ripeness stages were obtained from an orchard in 

Pingtung, Taiwan. The specimens were stored at room temperature (25 °C), and hyper-

spectral images of specimens were obtained within two days after specimens were har-

vested. Seven ripeness stages were used to discern the various ripening levels of the 

achacha fruits. The total number of achacha specimens used in this study was 414. When 

preparing the data for training and validation, the extremes were numbered as ripeness 

stage “1” and “7”. Then the rest of the samples were sorted into five fairly equal intervals. 

Finally, the two most representative samples of the seven ripeness stages were selected 

for obtaining hyperspectral image data for training and validation of ripeness evaluation 

models. The pseudo-RGB images, created by combining three wavelengths (Red: 622 nm; 

Green: 530 nm; Blue: 465 nm), of the most representative samples of the seven ripeness 

stages are shown in Figure 1. Except at ripeness stage 1 (green) or 7 (deep orange), achacha 

fruits more or less have a mix of colors or color gradients with the neighboring ripeness 

stage. At ripeness stages 2 and 3, the surface of the achacha fruits consists of mixed colors 

of green and yellow mottles. For achacha fruits at ripeness stages 2 to 6, since sunlight 

exposure can accelerate the color changing of the fruit surface, the side exposed to sunlight 

usually had a riper look than that of the opposite side for the same fruit. 
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Figure 1. Seven ripeness stages of achacha fruits. 

In order to create a mask for separating the fruit sample from the background, an 

ANN classification model was trained to differentiate fruit pixels from background pixels 

using HSI data (Figure 2b). The curvature of the achacha fruits led to intensity distortion 

during the scan. The intensity of the spectral data of pixels near the border was low. There-

fore, the mask image was eroded from the border to remove pixels belonging to severe 

intensity distortion regions (Figure 2c). Because the ripeness stages of the achacha fruits 

were visually assigned by human experts, spectral data within the wavelength range of 

400–780 nm were used in this study. 

 

Figure 2. (a) RGB image of achacha fruit, (b) full mask containing fruit sample and (c) eroded mask 

to define region of interest (ROI) for ripeness evaluation. 

2.3. Training and Validation Data Preparation 

For each ripeness stage, 20,000 labeled data points were randomly selected from the 

region defined by the eroded mask of the two most representative achacha fruit samples 

shown in Figure 1; the data were divided into training and validation sets. The training 

set was used for model training, and the validation set was used for the selection of hy-

perparameters. 

2.4. Ripeness Evaluation Models 

Classification models were widely used to classify the ripeness stage of fruits. For 

example, with the use of RGB images, tomatoes were classified into 3 ripeness levels [15]; 

by using hyperspectral image data, navel oranges and okras were classified into 3 ripeness 

levels [34,35]. However, in general, classification models are used for predicting discrete 

labels, and regression models are used for predicting continuous quantities. The ripening 

of fruits is a continuous process. The color of achacha fruits continuously changes from 

green to yellow and to dark orange when ripening; the evaluation of the ripeness stage of 

achacha fruits can be considered a regression problem. In this study, both classification 

models (Support Vector Machine (SVM), Partial Least Square Discriminant analysis (PLS-

DA), Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN)) and regression 

models (Partial Least Square Regression (PLSR) and Support Vector Regression (SVR)) 

were used to identify the ripeness stage of achacha fruits. For regression models, the pre-

dicted levels were obtained by rounding the regression output to the nearest integer value. 



Agriculture 2022, 12, 2145 5 of 16 
 

 

PLSR projects both independent and dependent variables to new spaces to find the 

direction in which independent variables can explain dependent variables as much as 

possible. PLSR relieves the limitation of multiple-variable linear regression on correlated 

data and therefore is effective for use as a regression model for full wavelength hyper-

spectral data [5]. PLS-DA was developed based on the Partial Least Square (PLS) algo-

rithm for classification purposes. For binary problems, PLS-DA is performed by training 

a PLSR model with dummy variables representing the 2 classes, then separating them, 

such as by thresholding. In multiclass problems, a one-versus-rest (one-vs.-rest) scheme 

is applied. The PLS base algorithms were used to predict ripeness [29,30,36] and ripeness 

parameters, such as firmness [26], Ripening Index (RPI) and Internal Quality Index (IQI) 

[37]. In this study, the optimal number of components for PLS and PLS-DA was obtained 

by performing a Least Mean Squared Error (LMSE) evaluation on the validation data set. 

SVM is a popular model for ripeness classification [25,27] due to its ability to work 

well with a limited number of samples. A binary SVM model tries to find the separating 

hyperplane that can separate the 2 classes with the largest margin to the support vectors. 

In this study, multiclass SVM was performed through a one-vs.-one scheme. Support Vec-

tor Regression (SVR) is a regression version of SVM. Instead of considering all prediction 

errors, SVR ignores errors smaller than a threshold defined by an ε-insensitive tube [38], 

so it becomes less sensitive to noise as well as more robust [39]. SVR was used to predict 

parameters related to ripeness, such as anthocyanin concentration, pH index and sugar 

content of wine grape berries [40]. The kernel trick is commonly applied for SVM and SVR 

to tackle nonlinearly separable problems. In this study, Radial Basis Function (RBF) kernel 

was used for SVM and SVR models. 

KNN is a model that can be used for both classification and regression. Without train-

ing, the prediction of new data points is based on K nearest training point(s), where K is 

the number of considered nearest neighbors. In ripeness evaluation, the KNN classifica-

tion form is commonly used [27,29]. In this study, K was chosen as 1, and the Standardized 

Euclidean distance was used. ANN is widely used in many fields, including ripeness clas-

sification [28,41,42]. ANN models can distinguish classes via training weights and bias 

using backpropagation. In this study, the ANN model structure had 3 layers, including 

an input layer (381 nodes), a hidden layer (500 nodes, ReLU activation function), and an 

output layer (7 nodes, Softmax activation function). 

2.5. Pixel-Based Classification and One-Level Error Prediction 

When performing ripeness stage assessment using data from imaging devices, such 

as color CCD cameras or hyperspectral imaging systems, using the average of image data 

from the region of interest (ROI) as the single data point to represent the whole fruit for 

training and predicting is a common method adopted by researchers. With the use of the 

mean spectrum of each fruit sample, strawberries were classified into 3 ripeness levels by 

SVM [25]. Bananas were classified into 3 ripeness stages using the mean spectrum aver-

aged from the ROIs of two sides with the tip-end and stalk-end removed [29]. Tomatoes 

were classified into 4 ripeness stages using the mean spectrum representing each sample 

averaged from 100 × 100 pixels at the center of the ROI [20]. However, for fruits that have 

a non-uniform color distribution at certain ripeness stages, the use of averaged data could 

lose the information related to the mixed color and color gradient and may produce in-

correct predictions. In order to solve the non-uniform color issue, Amirulah et al. [43] and 

Garcia et al. [44] use a pixel-based approach to investigate starfruit and tomato ripening 

stages. 

Polder et al. used a pixel-based approach to grade tomatoes into 5 ripeness levels. In 

addition to an exact prediction, one-level error prediction was also considered. The ripe-

ness of the sample was decided through the majority rule of all pixels within the mask, 

and the one-level error accuracy was also investigated [45]. The ripening process of 

achacha fruits is a continual progression, and there are no clear separation borders be-

tween consecutive ripeness stages. Furthermore, achacha fruits more or less have a mix of 
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colors or color gradients between the neighboring ripeness stages. In this study, both av-

erage and pixel-based approaches were used for the ripeness stage study of achacha fruits. 

The accuracy (named as exact accuracy in this study) and n-level error accuracy of the 

ripeness stage evaluation models were investigated. For the n-level error accuracy (n is a 

positive integer), the predicted ripeness stage within an n-level higher or lower than the 

actual label was considered correct. The formula for n-level-error accuracy calculation is 

Number of prediction of Predicted level - Actual level n
n-level-error accuray=

Total number of prediction

  (1)

Furthermore, for the pixel-based approach, how the curvature of fruits affects the 

ripeness predictions were also examined. 

3. Results and Discussion 

3.1. Spectral Characteristics of Different Ripeness Stages  

The average spectra of the seven ripeness stages of achacha fruits are shown in Figure 

3. For achacha fruits at ripeness stages 1 and 2, the rapid change in reflectance in the near-

infrared range (red edge) can be clearly seen. For fruit at ripeness stage 1 (green), the fruit 

surface is completely green, and chlorophylls are the dominant photosynthetic pigments. 

The reflectance peak (or chlorophyll bump) and the valley of the spectrum are located at 

wavelengths corresponding to the local minimum and maximum absorption wavelengths 

(550 nm and 670 nm) of chlorophyll, respectively [46,47]. At ripeness stage 2, there is an 

obvious break in color from green to yellow; however, the color of the skin is not uniform. 

The reflectance of the spectrum is higher than that of stage 1 due to the appearance of 

beta-carotene; however, the absorption peak and valley of chlorophyll can still be ob-

served. Most of the surface is not green at ripeness stage 3; instead of chlorophylls, beta-

carotene is the dominant pigment. Although the absorption peak (670 nm) of chlorophyll 

still can be observed, the reflectance of spectra at a wavelength greater than 520 nm is 

higher than those of fruits at ripeness stages 1 and 2 since beta-carotene has low absorp-

tion of light with a wavelength higher than 520 nm. For the achacha fruits at ripeness stage 

4~7, the reflectance of spectrum or color depends on the breaking down status of chloro-

phyll and carotene. In general, the molecules of carotene are more stable than those of 

chlorophyll. 

 

Figure 3. Spectra of 7 ripeness levels. 
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3.2. Average-Spectrum Approach Using Regression and Classification Algorithms 

The exact accuracy and n-level error accuracy of the six ripeness evaluation models 

with the use of averaged spectral data of ROI of each fruit are shown in Figure 4. The exact 

accuracy of all models used in this study ranges from 52.25% to 79.75%. Compared with 

other models, PLS-based models had the lowest accuracy. In this study, the optimal num-

bers of components chosen, through Least Mean Squared Error (LMSE) on the validation 

data set, for PLSR and PLS-DA are 26 and 48, respectively. The degrees of accuracy of 

PLS-DA and PLSR are 57.25% and 64.25%, respectively. Furthermore, the support vector-

based models had the highest accuracy. The degrees of accuracy of SVR and SVM are 

79.75% and 75.75%, respectively. 

Of all models, the one-level error accuracy is much higher than exact accuracy. Fur-

thermore, the regression models have higher one-level error accuracy than classification 

models do. Both one-level error accuracies of PLSR and SVR are higher than 99%. The 

reason why regression models have higher one-level error accuracy could be regression 

models retain the information about the order of the ripeness levels. Compared to classi-

fication models, most incorrect predictions of regression models fell into adjacent ripeness 

levels instead of other ones. 

The PLSR model has the highest one-level error accuracy (100%); however, the PLS-

DA model has the lowest one-level error accuracy. Moreover, PLS-DA is the only algo-

rithm with a prediction error higher than 2-level (0.75% and 0.25% for three- and four-

level errors, respectively). Although PLS-DA was commonly used for ripeness prediction 

with high accuracy using averaged spectrum [29,30,36], it seems that it is not suitable for 

the ripeness evaluation of achacha fruits. 

 

Figure 4. (a) The exact accuracy and n-level-error accuracy of the six ripeness evaluation mod-

els using averaged spectral data and (b) close-up of prediction accuracy. 
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Figure 5 shows the exact accuracy and n-level-error accuracy of the six ripeness eval-

uation models using pixel-based prediction and the majority rule approach. For the clas-

sification models, the output of pixels is considered as the labels of ripeness level; the 

majority rule can be applied to the classification results to obtain the ripeness level of the 

fruit. Because, for the regression models, the ripeness value of each pixel is a real number, 

the classification results were converted to the labels of ripeness level before applying the 

majority rule. The conversion rules are as follows. For a pixel with a ripeness value less 

than 1.5, the ripeness level is 1; for a pixel with a ripeness value within the interval of [n − 

0.5, n + 0.5) where n is an integer ranges from 2 to 6, the ripeness level is n; and for pixel 

with ripeness value equal or greater than 6.5, the ripeness level is 7. The exact and n-level-

error accuracies of the six models using pixel-based prediction and majority rule are com-

parable to those of the six models using the average spectrum. Thus, the same pixel-based 

spectral data can be used for defect classification (if necessary) and ripeness evaluation, 

and there is no need to prepare an additional average spectrum for ripeness assessment. 

 

Figure 5. (a) The exact accuracy and n-level-error accuracy of the six ripeness evaluation models 

using pixel-based prediction and majority rule and (b) the close-up of prediction accuracy. 

Because the ripeness outputs of regression models (SVR and PLSR) are real numbers, 

additionally applying the majority rule to the pixel-based classification results to obtain 

the ripeness level of a fruit, the mean or average of pixel-based prediction results can also 

be used to obtain the ripeness stage of fruits. In this study, the mean of pixel-based pre-

diction results was rounded to an integer to be the ripeness level of achacha fruits. Figure 

6 shows the exact accuracy and n-level-error accuracy of regression models using the av-

erage and majority rule of pixel-based prediction results. For both average and majority 

rule approaches, SVR has higher exact accuracy; however, PLSR has higher one-level error 

accuracy. PLSR using the average approach has the highest one-level error accuracy and 

has no ripeness stage error of more than one level; in addition, the predicting speed of the 
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PLSR model is much faster (about 400 times) than that of the SVR model in this study. 

Therefore, the pixel-based approach using the PLSR model is more suitable for on-line 

real-time sorting applications if a one-level error is acceptable. 

 

Figure 6. The accuracy and n-level-error accuracy of the regression models using (a) the average 

and (b) majority rule of pixel-based prediction results. 

3.3. The Effect of Curvature on Ripeness Evaluation 

When performing hyperspectral imaging acquisition using uniform illumination, re-

flected light from regions near the edge of an object with a curved surface will have its 

intensity reduced greatly [48] and may have undesired imaging artifacts [49]. In this work, 

no surface curvature effect correction algorithm was applied to the hyperspectral data of 

achacha fruit samples because the correction needs fruit shape information, which should 

be obtained by using an extra device, such as a 3D profilometer. Figure 7 shows the effect 

of curvature on ripeness evaluation results of regression models. The pixel-based predic-

tion results of samples with low, medium and high ripeness levels evaluated using PLSR 

and SVR models are shown in Figure 7b,c, respectively. The curvature of fruit has a similar 

influence on the ripeness evaluation results of both models; however, the curvature effects 

on the two models are not the same. For fruit that had a low ripeness stage, the curvature 

effect shifts the ripeness values to higher values for the PLSR model and to lower values 

for the SVR model, respectively. The curvature of the fruit has no obvious effect on the 

ripeness evaluation values of both models for medium ripeness fruits. Furthermore, the 

curvature of high ripeness stage fruits moves the ripeness values to lower values for both 

models. However, the effect on the SVR model, shown in Figure 7c, is more serious. It is 

worth noting that, for both models, the ripeness evaluation results of the central regions 

of samples are relatively consistent, except that the ripeness values predicted by PLSR are 

slightly higher than those predicted by SVR for the high ripeness level fruit. 

The aforementioned results suggest that using the spectral data in the central region 

of achacha fruits would be a relatively reliable option for ripeness evaluation. In this 

study, the original mask of the fruit was eroded by a diamond structuring element with 

101 × 101 kernel size. Depending on the fruit size, about 50% to 65% of the area was 

eroded. 
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Figure 7. (a) RGB images of samples with low, medium and high ripeness stages. Ripeness values 

evaluated by using (b) PLSR and (c) SVR models. 

Figure 8 shows the normalized histograms (bin width = 0.01) and standard deviations 

of the ripeness value distribution of pixels in ROI of the typical fruit samples at different 

ripeness stages predicted by PLSR and SVR models. The shapes of histograms of the PLSR 

model, compared with those of the SVR model, are closer to normal distribution. However, 

the standard deviations of the SVR model were significantly lower than those of the PLSR 

model, and the reason could be that the SVR can ignore smaller errors and thus are less 

sensitive to noise [38,39]. The sample with ripeness stage three has the largest standard 

deviation and the widely spread pixel-based classification results, and thus the sample is 

more prone to the occurrence of one-level error. The reason why fruits at ripeness stage 

three had the largest standard deviation of ripeness value could be due to the combined 

effects of color gradient caused by non-uniform sunlight exposure and the mixed color 

between the neighboring ripeness stages. 
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Figure 8. The normalized histograms of ripeness value distributions of typical fruit samples at 

different ripeness stages classified by (a) PLSR and (b) SVR models. (c) The related standard devi-

ations of histograms. 

The regression models using a pixel-based approach have high one-level error accu-

racy; however, applying different statistical methods to the same pixel-based classification 

outcomes can result in different ripeness levels. The three typical cases shown in Figure 9 

are used to illustrate how the distribution of ripeness values of pixels and the statistical 

methods affect the classification outcome of achacha fruits. 

It can be seen from Figure 9a,b that, for fruits with the histograms of pixel-based 

prediction results close to Gaussian distributions, the means of ripeness value are close to 

the ripeness value corresponding to histograms’ peaks. If the mean of ripeness values of 

the sample is far away from the bounds of intervals used to calculate the mode, the ripe-

ness levels predicted using the mean or mode of ripeness values would be the same. On 

the other hand, if the mean is close to a bound of intervals, the ripeness levels predicted 

using the mean or mode have a high chance of being one level different. For example, as 

shown in Figure 9a, the mean ripeness value (6.045) of fruit is far away from the bounds 

(5.5 and 6.5) used to compute mode, and thus the ripeness levels predicted using the mean 

or mode of ripeness values are the same (stage 6). In contrast, the mean ripeness value 

(5.504) of fruit shown in Figure 9b is only slightly higher than the upper bound (5.5) of the 

interval for mode calculation because 51.09% and 48.62% of pixels had ripeness values 

within the intervals 4.5, 5.5 and 5.5, 6.5 respectively, the ripeness level predicted the using 

mean ripeness value is one level higher than that predicted using the mode of the histo-

gram. This specific sample was correctly predicted at level 5 by using mode since the dis-

tribution of level five is 2.47% higher than that of level 6. However, it was misclassified as 

level 6 using the mean of ripeness values due to the long spread of the histogram on the 
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right-hand side. For fruit with non-Gaussian distributions of ripeness value histogram 

shown in Figure 9c, the standard deviation of the histogram is larger than that of fruit 

with Gaussian distributions of ripeness value histogram. Thus, the ripeness level calcu-

lated using the majority vote (mode) or the rounded average (mean) could have a higher 

chance of being different. 

One thing that should be pointed out is that defect pixels, when performing pixel-

based classification, on the fruit surface can have abnormal ripeness values, which are 

much higher or lower than the ripeness value the fruit should have. For fruits with small 

defect area(s), which were not screened out by the sorting algorithm, the highly abnormal 

ripeness values in a small area could have a more significant effect on the ripeness value 

calculation based on mean rather than mode. Therefore, for achacha fruits with minor 

defects, using the mode to obtain the ripeness level from pixel-based classification out-

comes could be more reliable than using the mean. 

 

Figure 9. Ripeness evaluation of fruit samples based on classification results using different statis-

tical methods. The histograms of pixel-based ripeness prediction results which are (a,b) close to 

Gaussian distribution and (c) non-Gaussian distribution. 

Although mere visual inspection by human vision allows inspectors to perform ripe-

ness stage sorting of fruits, quantification can be enhanced and standardized if fruits un-

der inspection can be compared to some type of standard. Thus, color charts have been 

developed to make the ripeness evaluation of fruits more objective and allow normaliza-

tion of the measurements of different inspectors. The photo shown in Figure 1 can be used 

as a ripeness chart to measure the ripeness stage of achacha fruits by inspectors. It is worth 

noting that the ripening of fruits is a continuous process. When the ripeness value is close 

to the bounds n − 0.5 or n + 0.5 of interval for mode calculation, using human vision, ma-

chine vision with an RGB camera or a hyperspectral imaging system to classify the ripe-

ness stage has a high chance of having one-level ripeness errors. For example, the ripeness 

stages of specimens shown in Figure 10b,d were assigned as four and six, respectively, by 
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human experts; however, the ripeness statuses of these samples predicted by all models 

are stage 5 (one level higher or lower than the assigned ripeness stages correspondingly). 

Furthermore, for achacha fruits at ripeness stages from two to six, the ripeness values of 

the face exposed to sunlight could be one level higher than that of the face in the shadow 

when using the current seven-level ripeness scale. For this reason, dividing the ripeness 

status of achacha into more stages (levels) would have limited usage to improve the ripe-

ness evaluation of achacha fruits. Taking the aforementioned circumstances into consid-

eration, using models with high one-level error accuracy for on-line sorting of achacha 

fruits would be a more practical option. 

It is worth noting that, for regression models, the ripeness values are real numbers, 

so the ripeness value (n + 0.5) at the midpoint of two adjacent ripeness levels (n and n + 1) 

can be assigned to suitable fruits by human experts and combine the spectral data to the 

training data set to improve the model without increasing the number of ripeness level. 

Furthermore, although the ripeness level n was assigned to pixels with ripeness value 

within the interval of [n − 0.5, n + 0.5), this interval can be adjusted to meet specific re-

quirements of ripeness stage output if necessary without re-training the regression mod-

els. Thus, compared to classification models for fruit ripeness level determination [17–19], 

regression models could have more flexibility when they are deployed to the sorting line 

of fruits. 

 

Figure 10. (a,c,e) Fruit samples of reference stages four, five and six. (b) Fruit samples with ripeness 

stage four assigned and classified as ripeness stage five by all models. (d) Fruit samples with ripe-

ness stage six assigned and classified as ripeness stage five by all models. 

In this study, only spectral reflectance was used to evaluate the ripeness stage of the 

fruit. However, the physicochemical properties of achacha fruits with the same color or 

spectral reflectance from different farms, may more or less vary due to different cultivar 

and environmental factors [50]. Therefore, the evaluation of other ripeness properties, 

such as SSC [51,52], Total Soluble Solids (TSS) [53] and acidity [54,55], can help the ripen-

ing evaluation of achacha fruits. However, the advantages of using color or spectral fea-

tures to evaluate fruit ripeness are non-invasive and fast, so they are suitable for on-line 

postharvest processing. In future study, ripeness properties, obtained from invasive tests, 

such as SSC, TSS and Titratable acidity, can be combined with spectral data to refine the 

ripeness evaluation models. 

4. Conclusions 

The hyperspectral image data were used to evaluate the seven ripeness stages of 

achacha fruits. Classification and regression machine learning models were used to assess 

the accuracy and n-level-error accuracy of ripeness stages. The spectral data used for train-

ing and validation were selected from the two most representative achacha fruit samples 

of each ripeness stage. Besides using an averaged spectrum of fruit samples to predict the 

ripeness stage, pixel-based ripeness prediction results of fruit samples were also used to 

evaluate the ripeness stage. With the use of averaged spectral data, the support-vector-

based models (SVM and SVR) have higher accuracy than other models, and the PLS-based 

models (PLSR and PLS-DA) have the lowest accuracy. Furthermore, the regression mod-

els (PLSR and SVR) have the highest one-level error accuracy. With the use of pixel-based 

ripeness prediction results and majority rule, the accuracy and one-level error accuracy of 

all models used in this study are comparable to the accuracy and one-level error accuracy 
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predicted by models using averaged spectrum. Thus, the same pixel-based spectral data 

can be used for ripeness evaluation and defect classification (if necessary) of achacha 

fruits. The ripening of fruits is a continuous process. When the ripeness value of achacha 

fruit is close to the mid value of two adjacent ripeness stage values, all models have a high 

chance of having one-level ripeness errors. The use of high one-level-error accuracy mod-

els would be a practical option for the postharvest process of achacha fruits. The PLSR has 

the highest one-level error accuracy and has no ripeness stage error of more than one level; 

additionally, the predicting speed of the PLSR model is fast. Therefore, the pixel-based 

approach using the PLSR model is suitable for on-line real-time sorting applications. For 

fruits with low or high ripeness stages, the curvature of the fruit has a noticeable influence 

on the ripeness evaluation values. Thus, using only spectral data in the central region of 

achacha fruits would be a relatively reliable choice for ripeness evaluation. In order to 

improve the ripeness evaluation models, ripeness properties obtained from invasive tests 

can be combined with spectral data to train the machine learning models. 
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