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Abstract: Treated wastewater (TWW) is considered as an alternative for agricultural irrigation. The
aim of this study was to understand the medium- and long-term effects of TWW on soil physico-
chemical parameters. Two perimeters (P1 and P2)receiving TWW for 38 and 20 years, respectively,
in Tunisiawere selected for study. In each perimeter, two water types were adopted: TWW and
groundwater (GW). Soil physicochemical traits (pH, EC, and concentrations of Na+, K+, Ca2+, and
Mg2+) were measured up to 100 cm, and three indexes were calculated: sodium adsorption ratio
(SAR), cation ratio of structural stability (CROSS), and cation exchange capacity (CEC). Overall, all
soil parameters were significantly affected in the irrigation area using GW. However, in the case of
TWW, only the pH was found to be affected, increasing by 4.7% from P1 to P2. Moreover, compared
to GW, TWW enhanced the soil salinity by 127%, particularly at deeper subsoils. More interestingly,
the results revealed an accumulation of Mg2+, Ca2+, and K+ and a depletion of Na+ at the soil surface.
Notably, TWW showed the lowest CROSS and SAR indexes, indicating the benefits of applying
TWW even after long-term use in improving soil physicochemical parameters such as sodicity and
structural stability. Our results provide valuable information for decision-makers to use wastewater
in irrigated marginal soils.

Keywords: water reuse; sandy soil; physicochemical parameters; irrigation period; depth

1. Introduction

Due to the world’s rising fresh water scarcity, the reuse of treated wastewater (TWW)
for irrigation has been proposed as a substitute for using fresh water, particularly in arid
and semiarid regions such as Middle East and North Africa (MENA). In these regions,
irrigation water shortage has madetreated wastewater an attractive source of water for
sustainable agriculture in order to better preserve fresh water for human consumption [1].
In this regard, Thebo et al. [2] stated that over 20 million hectares of land wasirrigated
globally using reclaimed wastewater and that this number would significantly rise over the
next few decades as water stress increases. In Tunisia, the reuse of treated wastewater in
agriculture is an old practice. It dates back to 1965 with the creation of the first perimeter of
Soukra (Governorate of Ariana). Since the last century, according to the National Sanitation
Utility (NSU), the numbers of perimeters and treatment plants have continued to increase
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to reach 122 plants treating 284 mm3, which should serve 8435 hectares of agricultural
area. In addition, TWW reuse for agriculture offers some attractive environmental and
socioeconomic benefits. Compared to soil that has been irrigated with fresh water, TWW
reuse can enrich soils with nutrients such as N, P, and K [3]. Thus, the richness of TWW
in mainly nitrogenous fertilizing elements should lead to a reduction in input of mineral
fertilizers. Consequently, it allows an economic gain for farmers [4]. Additionally, due to
the high levels of BOD present, TWW is inhabited by a wide range of bacteria that promote
organic matter decomposition and preserve soil fertility. Thus, irrigation managed by TWW
could lead to better productivity [5].

Despite significant benefits, recycled water may deteriorate soil health in terms of
increased salinity and sodicity [6]. Indeed, the effect of TWW on soil salinity has been
the subject of several studies, but the results remain controversial [7]. According to many
works, the reuse of TWW increases soil salinity, especially in sandy soils [8]. According to
Changati et al. [9], water from wastewater irrigation enhanced the exchangeable sodium
concentration (Na+) and exchangeable sodium cation percentage (ESP) because of higher
electrical conductivity, total dissolved solids, and major ion concentrations. However,
Ahmed and El-hedek [10] found a decrease in the soil EC and pH. Such results could
depend on the variability of soil characteristics. The main factor affecting the management
of TWW irrigation is the interaction between the total mass of salts in the soil, salinity
of irrigation water (characterized by electrical conductivity, EC), and the ratio of sodium
and other cations in the solution (represented by the sodium absorption ratio, SAR) [11].
Recognizing the role of K+ and Mg2+, Rengasamy and Marchuk [12] proposed a cation
ratio of structural stability (CROSS) alternative to SAR. The CROSS was developed to
reflect the different dispersive powers of Na+ and K+ and the different flocculating powers
of Ca2+ and Mg2+. In this context, Moruga’n-Coronado et al. [13] showed a decrease
in aggregate stability for soils irrigated with TWW due to the high Na+ content. More
interestingly, the effect of TWW on soil fertility might be influenced by the application
period. In fact, numerous studies have documented increasing saline levels in the soil as a
result of continuous irrigation using recycled water. A large number of researchers have
similarly observed long-term salinity impacts of TWW in terms of EC, Na+, and SAR [14].
While various studies [15,16] have demonstrated an increase in soil salinity as a result
of recycled water irrigation, the phenomenon is highly variable depending on the soil
parameters, water quality, and application period of TWW.

In Tunisia, there is consensus in the scientific literature about the impact of wastewater
irrigation on the physical and chemical properties of soil. However, there is little infor-
mation on the long-term impact of wastewater irrigation in sandy soil texture in semiarid
climatic conditions. Consequently, the potential effect of TWW on soil properties in the
medium and long-term requires additional research, especially in developing countries
such as Tunisia. To contribute to the current understanding of soil fertility, two perimeters
with differing TWW application length were studied in sandy soil texture. Different chem-
icals, soil properties, and sodicity and structural stability indexes were investigated in a
region northeast of Tunisia. The aim of this study was to (i) assess the effect of TWW on
soil physicochemical parameters after medium- and long-term application; (ii) highlight
the relationships between CEC, SAR, CROSS indexes, and soil exchangeable cations; and
(iii) provide additional information to farmers about irrigation management.

2. Materials and Methods
2.1. Environmental Background of the Study Area

This study was conducted at two sites corresponding to irrigation perimeters in the
northeast of Tunisia, namely, Oued Souhil (P1: 40G 40′9G 09′) and Beni Khiar (P2: 40G
57′9G 40′) (Figure 1).
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Figure 1. Map of the study areas.

The region of Nabeul is a coastal plain with a low extension. The geological outcrops
of the region have ages ranging from the upper Miocene to the Quaternary [17]. According
to the Regional Commissariat for Agricultural Development of Nabeul (RCAD Nabeul,
2020), this region is drained by a relatively dense hydrographic system. It is a series of
exoreic water courses parallel totemporary flow and whose catchment basins are of limited
extension. The two studied perimeters, P1 and P2, are crossed by Oued Souhil and Oued El
Kebir, respectively. These two oueds are among the most important oueds of the Nabeul
region and cover 43.8 and 22.1 km2 of surface, respectively (Table 1).

Table 1. Physical characteristics of catchment basins El Kebir and Souhil(RDAC Nabeul, 2020).

Catchment Basin Surface (km2) Length (km) Altitude (m) Input (mm3 year−1)

El Kebir 43.8 15.2 118 2.69

Souhil 22.1 12.5 104 1.35

For each of the two sites, P1 and P2, two sources of water were used: treated wastewater
(TWW) and groundwater (GW) (RCAD Nabeul, 2020). The P1 was irrigated for 38 years,
while P2was irrigated for 20 years. The groundwater used was part of the large coastal
aquifer system of Nabeul–Hammamet, which extends over an area of 100 km2. This
aquifer is characterized by low thickness of the reservoir rock varying from 1 to 3 m, high
salinity with more than 3.5 dS m−1, and pH of 8.08. For more than 50 years, it has been
overexploited, which has caused intrusion of the saline wedge along the coastal zone. The
inventory of water points shows that the water table of Nabeul–Hammamet is exploited
by 3930 surface wells producing about 15,106 m3 of water. The second irrigated water
source (TWW) was collected downstream of the Nabeul wastewater treatment plant, which
receives domestic and industrial effluents. It is characterized by an average basic pH value
of 7.7, and its EC reaches 4 dS m−1 (Table 2). Table 2 summarizes the physicochemical
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parameters. During the experiment, the mean annual temperature and rainfall registered
were 19◦C and 400 mm, respectively (RCAD Nabeul 2020).

Table 2. Mean values of chemical properties of treated wastewater (TWW) generated by the wastew-
ater treatment plant of Nabeul and groundwater (GW) from 2016 to2020 (RDAC Nabeul 2020).

Parameter TWW GW Standars *

pH 7.7 8.08 6.5–8.5
EC (dS m−1) 4 3.5 7
Cl− (mg L−1) 705 390 2000
Na+ (mg L−1) 516 590 -
K+ (mg L−1) 41.5 25 -

Ca2+ (mg L−1) 25 12 -
Mg2+ (mg L−1) 30 3 -

SS (mg L−1) 17 4.3 30
COD (mg L−1) 56 19 90
BOD5 (mg L−1) 30 4.27 30

* Tunisian standards for wastewater reuse (NT 106.03).

The soil texture at the two perimeters was sandy in all depths surveyed. Table 3
illustrates the average proportions of sand, clay, and silt of the two perimeters (P1 and P2)
in each depth until 100cm.

Table 3. Soil texture in each depth of perimeters P1 and P2.

Depth (cm) Sand (%) Clay (%) Silt (%) Soil Texture

0–20 79.5 ± 1 12.5 ± 1.0 8.0 ± 1.0 Sandy
20–40 79.0 ± 0.5 13.5 ± 0.5 7.5 ± 0.5 Sandy
40–60 78.5 ± 0.3 14.5 ± 0.3 7.0 ± 0.3 Sandy
60–80 79.0 ± 0.5 13.0 ± 0.5 8.0 ± 0.5 Sandy

80–100 79.0 ± 0.5 14.0 ± 0.5 7.0 ± 0.5 Sandy
Percentage values are means of three replicates in each perimeter ± SD.

2.2. Experimental Design and Soil Sampling

At each irrigation perimeter (P1 and P2), the study adopted a completely randomized
design with two main factors: two sources of irrigation water (GW and TWW) and five soil
depths (0–20, 20–40, 40–60, 60–80, and 80–100 cm).

At each irrigated perimeter, three plots were selected for each irrigation source (TWW
and GW). For each plot, sampling was carried out by taking soil from the five depths.
In each soil depth, five cores were sampled and homogenized. Samples were collected
using an auger for a total of 30 samples for each perimeter. The crop cultivated in the two
perimeters was citrus. The soil samples were air-dried, sieved trough 2 mm mesh, kept in
plastic bags, and transferred to the laboratory for pH, EC, and nutrient content analysis.

2.3. Element Analysis

The pH, electrical conductivity (EC),and concentrations of soluble cations Na+, K+,
Ca2+, and Mg2+ were determined in soil pore water (saturated paste extract). To prepare this,
200 g of air-dried soil was used, and the soil pastes were left for 24 h to reach equilibrium.
Subsequently, the vacuum extracts were collected [18].

Soil pH level was determined using the WTW inoLab 7110 pH meter. EC was measured
using theinoLab 7110conductivity benchtop meter. The concentrations of soluble Ca2+ and
Mg2+ were measured using the EDTA titration method [19], while the Na+ and K+ were
determined using a flame photometer [20]. The nutrients K+, Na+, Ca2+, and Mg2+ were
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used to calculate the sodium adsorption ratio (SAR) (Equation (1)) and the cations ratio of
soil structural stability (CROSS) (Equation (2)).

SAR =
Na√

(Ca + Mg)/2
(1)

CROSS =
(Na + 0.56 K)√
(Ca + 0.6 Mg)/2

(2)

Cation exchange capacity (CEC) was calculated using the sum of Na+, K+, Ca2+, and
Mg2+ concentrations. All concentrations are expressed as millimole of chargeL−1 [12].

2.4. DATA Analysis

Collected data were subjected to the two-way analysis of variance (ANOVA) test, and
differences between means were determined according to the Duncan significant difference
test (p < 0.05) using SPSS software, version 16 S, to assess the differences in soil properties
between the two irrigation practices under medium- and long-term irrigations in different
soil depths. Pearson correlation coefficient analysis was used to examine the correlation
between CEC, SAR, CROSS, and the different cations under each irrigation type.

3. Results
3.1. Soil pH

Our results showed that pH values depended significantly (p < 0.05) on the period of
TWW application and the water type. In contrast to TWW, soil pH did not change with the
period of irrigation using GW. Overall, we noted an increase in pH values when applying
TWW, particularly in the oldest irrigated perimeter. In addition, regardless of the water
type, data revealed a significant increase in pH, which remained alkaline through all soil
depths. Using TWW, the pH changed across depths, with the values being 2.8% lower in
P2 than in P1 at 0–60 cm (Table 4).

3.2. Soil Electrical Conductivity (EC)

The EC varied significantly according to water type and soil depth (D), while it was
not significantly affected by the period of TWW application. In contrast, soil EC decreased
by 29% after 38 years of using GW for irrigation. Regardless of the period of irrigation, in
the case of TWW, the results showed an increase in EC by 34% from the top soil (0–20 cm)
to deep soil (80–100 cm), while it was reverse in the case of GW, which indicated a decrease
in EC by 29% from the top to deep soil layers (Table 4).

3.3. Cation Element Contents and Cation Exchange Capacity (CEC)

No significant effect was detected for cation element contents and the CEC according
to the period of TWW application (Table 5). However, the results showed a decrease in CEC
after 38 years of irrigation using GW. In addition, Na+, K+, and Ca2+ contents decreased
according to the irrigation period from 20 to 38 years of GW application by 20, 15, and 50%,
respectively. Meanwhile, Mg2+ concentration increased by 43% after 38 years of irrigation
with GW. CEC and cation element contents remained dependent on the water irrigation
type and depth (D).
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Table 4. Changes in soil pH, CE, SAR, and CROSS according to soil depth and period of irrigation with GW (a) and TWW (b) in P1 and P2 areas.

(a) GW

Period of
irrigation pH EC (dS m−1) SAR (mmole0.5 L−0.5) CROSS (mmole0.5 L−0.5)

with GW (IP)

P1 (38 years) 8.19 0.48 1.37 1.66
P2 (20 years) 8.23 0.62 1.51 1.73

Depth (cm) (D) P1 P2 P1 P2 P1 P2 P1 P2

0–20 8.54 a ± 0.2 8.16 c ± 0.0 0.64 b ± 0.0 0.7 a ± 0.0 1.03 d ± 0.2 1.11 cd ± 0.0 1.43 c ± 0.2 1.66 b ± 0.0
20–40 8.17 c ± 0.0 8.07 d ± 0.0 0.48 e ± 0.0 0.69 a ± 0.0 1.49 b ± 0.0 1.4 b ± 0.0 1.91 a ± 0.0 1.59 b ± 0.0
40–60 8.33 b ± 0.0 8.09 d ± 0.0 0.38 g ± 0.0 0.64 b ± 0.0 1.74 a ± 0.1 1.81 a ± 0.0 1.97 a ± 0.2 1.92 a ± 0.0
60–80 8.08 d ± 0.0 8.36 b ± 0.0 0.48 e ± 0.0 0.58 c ± 0.0 1.41 b ± 0.0 1.48 b ± 0.0 1.7 b ± 0.0 1.61 b ± 0.0

80–100 7.87 e ± 0.0 8.48 a ± 0.0 0.42 f ± 0.0 0.53 d ± 0.0 1.21 c ± 0.0 1.76 a ± 0.1 1.3 c ± 0.0 1.88 a ± 0.1

IP ns * * *
D * * * *

IP × D * * * *

(b) TWW

Period of
irrigation

with TWW (IP)
pH EC (dS m−1) SAR (mmole0.5L−0.5) CROSS (mmole0.5L−0.5)

P1 (38 years) 8.4 1.3 0.8 1.1

P2 (20 years) 8.0 1.2 1.0 1.3

Depth (cm) (D) P1 P2 P1 P2 P1 P2 P1 P2

0–20 8.3 ab ± 0.0 7.6 b ± 0.0 1.1 a ± 0.0 1.2 a ± 0.2 0.6 a ± 0.0 0.3 a ± 0.0 0.9 a ± 0.0 0.7 a ± 0.0
20–40 8.5 a ± 0.0 8.0 ab ± 0.0 1.3 a ± 0.0 0.8 a ± 0.0 0.8 a ± 0.0 0.8 a ± 0.0 1.1 a ± 0.0 1.0 a ± 0.1
40–60 8.6 a ± 0.0 8.2 ab ± 0.0 1.2 a ± 0.0 1.2 a ± 0.0 0.8 a ± 0.1 1.3 a ± 0.0 1.0 a ± 0.1 1.5 a ± 0.0
60–80 8.3 ab ± 0.0 8.1 ab ± 0.0 1.3 a ± 0.0 1.3 a ± 0.0 0.7 a ± 0.0 1.0 a ± 0.0 1.1 a ± 0.0 1.3 a ± 0.0

80–100 8.2 ab ± 0.0 8.2 ab ± 0.0 1.6 a ± 0.0 1.5 a ± 0.0 1.0 a ± 0.0 1.2 a ± 0.0 1.3 a ± 0.0 1.6 a ± 0.1

IP * ns ns ns
D ns ns ns ns

IP × D ns ns ns ns

GW: groundwater; TWW: treated wastewater; EC: electrical conductivity; SAR: sodium adsorption ratio; CROSS: cations ratio of soil structural stability; P1: Oued Souhil area; P2: Beni
Khiar area. Significant differences between different levels foreach depth are indicated by lower case letters; ns: not significant, *: significant at p < 0.05.
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Table 5. Changes in soil Ca2+, Mg2+, K+, and Na+ concentrations and CEC according to depth and irrigation period with GW (a) and TWW (b) in P1 and P2 areas.

(a) GW

Irrigation
period Ca2+ (mmoleL−1) Mg2+(mmoleL−1) K+(mmoleL−1) Na+(mmoleL−1) CEC (mmoleL−1)

with GW (IP)

P1 (38 years) 1.52 0.72 0.32 1.4 3.95
P2 (20 years) 2.29 0.41 0.37 1.7 4.79

Depth (cm) (D) P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0–20 2.04 d ± 0.0 3.64 a ± 0.0 0.68 d ± 0.0 0.11 g ± 0.0 0.69 b ± 0.0 0.31 a ± 0.0 1.2 h ± 0.2 1.52 def ± 0.0 4.62 b ± 0.2 6.58 a ± 0.1
20–40 1.14 g ± 0.0 2.5 b ± 0.2 0.57 e ± 0.0 0.23 f ± 0.0 0.47 c ± 0.0 0.35 d ± 0.0 1.38 g ± 0.0 1.63 cd ± 0.0 3.55 e ± 0.1 4.71 b ± 0.2
40–60 0.8 h ± 0.5 1.59 e ± 0.0 0.53 e ± 0.0 0.23 f ± 0.0 0.1 f ± 0.0 0.11 f ± 0.0 1.42 fg ± 0.0 1.72 bc ± 0.0 2.84 f ± 0.3 3.65 de ± 0.0
60–80 1.36 f ± 0.1 2.04 d ± 0.0 0.8 c ± 0.1 0.91 b ± 0.0 0.31 e ± 0.0 0.06 g ± 0.0 1.46 efg ± 0.0 1.8 ab ± 0.0 3.93 cd ± 0.1 4.81 b ± 0.0

80–100 2.27 c ± 0.0 1.7 e ± 0.2 1.02 a ± 0.0 0.57 e ± 0.0 0.03 h ± 0.0 0.06 g ± 0.0 1.55 de ± 0.0 1.87 a ± 0.0 4.87 b ± 0.1 4.2 c ± 0.0

IP * * * * *
D * * * * *

IP × D * * * * *

(b) TWW

Irrigation
period Ca2+ (mmoleL−1) Mg2+(mmoleL−1) K+(mmoleL−1) Na+(mmoleL−1) CEC (mmoleL−1)

with TWW (IP)

P1 (38 years) 2.2 1.0 0.6 1.0 4.7
P2 (20 years) 2.3 1.0 0.5 1.2 5.0

Depth (cm) (D) P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

0–20 2.6 a ± 0.0 3.3 a ± 0.0 0.9 a ± 0.0 1.4 a ± 0.0 0.8 a ± 0.0 1.0 a ± 0.0 0.7 a ± 0.0 0.6 a ± 0.0 5.1 a ± 0.1 6.4 a ± 0.1
20–40 2.6 a ± 0.0 1.8 a ± 0.0 0.7 a ± 0.0 0.9 a ± 0.0 0.5 a ± 0.0 0.4 a ± 0.0 1.1 a ± 0.0 0.9 a ± 0.1 4.9 a ± 0.1 4.0 a ± 0.1
40–60 2.0 a ± 0.5 2.3 a ± 0.0 1.1 a ± 0.0 0.9 a ± 0.0 0.4 a ± 0.0 0.2 a ± 0.0 1.0 a ± 0.0 1.7 a ± 0.0 4.5 a ± 0.5 5.2 a ± 0.1
60–80 1.8 a ± 0.1 2.0 a ± 0.1 1.1 a ± 0.0 0.8 a ± 0.1 0.6 a ± 0.0 0.3 a ± 0.0 0.9 a ± 0.0 1.3 a ± 0.0 4.4 a ± 0.2 4.3 a ± 0.1
80–100 2.0 a ± 0.0 2.0 a ± 0.3 1.1 a ± 0.0 0.8 a ± 0.0 0.5 a ± 0.0 0.7 a ± 0.0 1.2 a ± 0.0 1.4 a ± 0.0 4.8 a ± 0.1 5.0 a ± 0.4

IP ns ns ns ns ns
D ns ns ns ns ns

IP × D ns ns ns ns ns

GW: groundwater; TWW: treated wastewater; CEC: cation exchange capacity; P1: Oued Souhil area; P2: BeniKhiar area; significant differences between different levels for each depth are
indicated by lower case letters; ns: not significant; *: significant at p < 0.05.
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As shown in Table 5, compared to GW, irrigation with TWW led to a significant
increase in Ca2+, Mg2+, and K+ soil concentrations and CEC. More interestingly, this
increase particularly concerned the two elements Ca2+ and K+ at the top soil layer. Indeed,
regardless of the duration of irrigation with TWW, the CEC in GW irrigated soils was 10%
lower than CEC in TWW irrigated soils. The soil samples from plots irrigated with TWW
had Ca2+, Mg2+, and K+ contents that were 18, 71 and 68% higher, respectively, than soil
samples from GW irrigated plots. Na+ content in GW irrigated soils was 40% higher than
in TWW irrigated soils. For both the studied areas (P1 and P2), when GW was used for
irrigation, the concentration of K+ decreased by 93% from the soil surface (0–20 cm) to
the deepest layer (80–100 cm), while the concentration of Mg2+ increased by 50% from the
soil surface (0–20 cm) to the deepest layer (80–100 cm). Regardless of the water type and
duration ofTWW irrigation, the Ca2+ content was higher in the 0–20 cm (2.8 mmoleL−1)
layer and in the deepest layer (2 mmoleL−1) than in the medium soil layers (20–60 cm). In
the same way, the soil concentrations of K+ and Mg2+ in TWW irrigated soils were greater
in top soil (K+ and Mg2+concentrations of 0.9 and 1.1 mmoleL−1, respectively) and in the
deepest layers (K+ and Mg2+concentrations of 0.6 and 0.9 mmoleL−1, respectively) than in
the medium layers (K+ and Mg2+concentrations of 0.4 and 0.9 mmoleL−1, respectively).

3.4. Soil Adsorption Ratio (SAR)

Soil SAR was not significantly affected by the period of irrigation with TWW and
did not significantly differ with depth in soils irrigated with TWW. However, using GW,
the period of irrigation significantly affected the soil SAR (p < 0.05). The effects of water
type and depth on soil sodicity were significant in both perimeters. In general, soil SAR
was much higher in plots irrigated with GW (1.4 and 1.5 mmole0.5 L−0.5 in P1 and P2,
respectively) than soils irrigated with TWW (0.8 and 0.9 mmole0.5 L−0.5in P1 and P2,
respectively) (Table 4).

3.5. Cation Ratio for Soil Structural Stability (CROSS)

Soil CROSS was not significantly affected by the different durations of TWW applica-
tion and remained equal over the entire depth up to 1 m. However, the period of irrigation
with GW significantly affected the soil CROSS (p < 0.05). The effects of water type and depth
on the soil CROSS were significant for both perimeters. Generally, soil CROSS was much
higher in plots irrigated with GW (1.7 mmole0.5 L−0.5 in P1 and P2) than soils irrigated with
TWW (1.1 and 1.2 mmole0.5 L−0.5 in P1 and P2, respectively) (Table 4).

3.6. Relationship between CEC, SAR, CROSS, and Cation Concentrations

The correlation between CEC and cation concentrations was assessed in TWW and GW
irrigated soils regardless of irrigation period. As shown in Figure 2, a positive correlation
was obtained between CEC and Ca2+, Mg2+, and K+ concentrations (r = 0.91 ***, r = 0.53 **,
and r = 0.64 ***, respectively) in TWW irrigated soils. In the case of GW irrigated soils,
a positive correlation was obtained between CEC and Ca2+, K+, and Na+ concentrations
(r = 0.97 ***, r = 0.66 ***, and r = 0.11 ns, respectively).

The treatment TWW led to a significant negative correlation between SAR and Ca2+

and Mg2+ (r = −0.46 ** and r = −0.6 ***, respectively) and between CROSS and Ca2+ and
Mg2+ (r = −0.45 * and r = −0.52 **, respectively) (Figure 3). GW application showed a
significant negative correlation between Mg2+ and K+ concentrations (r = −0.54 **) in both
the P1and P2 study areas (Figure 4).
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wastewater and across all depths. *, **, *** Significant at p < 0.05, p < 0.01, and p < 0.001, respectively.
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4. Discussion
4.1. Effects of TWW and Application Period on Physicochemical Properties

Irrigation with treated wastewater significantly altered all the physicochemical param-
eters. In the current study, the TWW period only had an impact on the soil pH. Indeed,
compared to irrigation period of 20 years, soil pH increased after 38 years of wastew-
ater application. This increase might be ascribed to processes such denitrification [21],
which requires one mole of H+ for every mole of denitrified NO3

-and decarboxylation and
deamination (organic anions and amino acids) activities that use protons [22]. Previous
studies [23,24] have also reported increased soil pH with wastewater irrigation. In addition,
according to Hidri et al. [25], the increase in pH after long-term TWW application could be
explained by the modification in the bacterial community structure as a result of a decrease
in abundance of Actinobacteria and an increase in abundance of Gammaproteobacteria,
which is positively correlated to soil pH [26]. In contrast to TWW, the long-term application
of GW had altered all soil parameters except the pH. In fact, we noted a decrease in EC,
CEC, SAR, and CROSS properties. The improvement of soil traits after 38 years of irrigation
with GW might be attributed to the increase in Mg2+ concentration and the decrease in K+

and Na+ contents in the soil solution. Indeed, the continuous application of GW can cause
the accumulation of Mg2+ cation, which enhances the leaching of K+ and Na+ cations to
the deep soil layers [27].

The results of this study showed that soil EC was not significantly influenced by the du-
ration of applied TWW; it was only affected by the water type. Similarly, Barbosa et al. [28]
analyzed the physicochemical parameters in soil irrigated with TWW and also found
that long-term wastewater application did not increase the soil salinity. In contrast,
Khaskhoussy et al. [29] used wastewater in irrigation and observed an increase in soil
salinity. In fact, the richness of organic matter in TWW may result in an increase in nutri-
ents that affect the EC of the soil [24]. Higher soil salinity associated with TWW irrigation
could be due to the higher amounts of soluble salts in TWW than in GW, which may cause
soil salinization.

The composition of cations in the soil solution and the CEC were not influenced by the
different durations of TWW application in the P1 and P2study areas. However, the different
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water types did affect the two parameters. The CEC is directly related to the capacity of
soil to absorb or exchange cations [30]. The CEC values obtained in this study were higher
in the soil treated with TWW than GW. These obtained values can be attributed to the
relatively high soil organic matter (SOM)in wastewater [31]. Opoku-Kwanowaa et al. [32]
stated that organic matter is responsible for the CEC of soils. Because organic matter is
negatively charged, the more negatively charged the surfaces that are present and available,
the more positively charged ions (cations) they will attract. The CEC difference between
GW irrigated soils and TWW irrigated soils corresponded with higher concentrations of
Ca2+, Mg2+, and K+ in TWW than GW. The positive correlation between CEC and Ca2+,
Mg2+, and K+ concentrations of TWW irrigated soils indicated that CEC of TWW irrigated
soils was occupied by Ca2+, Mg2+, and K+ in order of importance. The increase in Ca2+,
Mg2+, and K+ concentrations due to wastewater application agrees with the findings of
Tarchouna et al. [33] and Heidarpour et al. [34], who also reported an increase in these
elements after irrigation with wastewater. On the other hand, the positive correlation
between CEC and Ca2+, Na+, and K+ concentrations of GW irrigated soils showed that
CEC of GW irrigated soils was occupied by Ca2+, Na+, and K+ in order of importance.
Indeed, soils irrigated with GW are characterized by much larger sodium content than soils
irrigated with TWW.

The current study demonstrated that in terms of sodium adsorption ratio (SAR), all
values were below the FAO safe limits (3.0). However, we noted that the SAR of soil
irrigated with TWW was lower than that with GW. Contrarily to our findings, a set of
studies reported that the SAR was higher for TWW than GW [35]. In our case, these
findings might be explained by the natural accumulation of Na+ ion concentration in soil
solution in the case of GW. In addition, according to Changati et al. [36], TWW is relative to
divalent cations that facilitate Na+ removal and its leaching into deeper soil layers.

The data also revealed that the CROSS was higher for GW than TWW, indicating that
the latter aided in maintaining soil structure. The results provide additional and convincing
evidence in support of earlier arguments presented in the literature that TWW is a potential
option to improve the soil structure [9]. The significant negative relationship between
CROSS and both Mg2+ and Ca2+ further support the beneficial effect of TWW in improving
soil structural stability. More interestingly, these results indicate that the decrease in CROSS
in soils irrigated with TWW is relative to divalent cations present in TWW, which facilitate
Na+ removal and its leaching into deeper soil layers. Thus, TWW might be considered as a
good solution to reclaim soil sodicity and structural stability as it readily supplies Ca2+ and
Mg2+ cations to counter Na+ cation in the soil solution [27].

4.2. Effects of the Interactive Soil Layer and Water Type on Physicochemical Attributes

Our data revealed that at both perimeters, the migration of salt was governed by
sandy soil texture, lateral drainage flows, and principally water irrigation composition,
which resulted in a salt accumulation trend in the subsoil (60–100 cm) for TWW but only
in the soil surface (0–40 cm) in the case of GW. The trend for TWW might be attributed to
leaching and drainage, with the richness of divalent cations in TWW causing leaching of
monovalent cations (e.g., K+ and Na+) in the deeper subsoil. In addition, this trend might
be explained by the improvement of permeability due to TWW irrigation, as mentioned by
Azouzi et al. [1]. More importantly, the specific trend of the K+ cation, whichhad increased
concentration in the soil surface and the deeper subsoil, indicates a likely fertilizing effect
of TWW. This was proven in a previous study conducted on an experimental field irrigated
with treated wastewater [37]. The highest amount of salt in the upper depth might be
attributed to the arid climate of this region, which is characterized by high temperatures and
low precipitation. This is in accordance with the findings of Liu et al. [38]. In soils irrigated
with GW, the high K+ cation values in the upper soil layers indicated that this element
did not move rapidly through the profile of the soil as a consequence of the equilibrium
reached between the element in solution and that adsorbed on soil colloids [39]. The lower
K+ concentration in the bottom soil layers was probably a consequence of plant uptake or
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movement of K+ from the soil solution to plant tissues [35]. On the other hand, there was
highly significant accumulation of Mg2+ in the deepest layer (80–10cm) in soils irrigated
with GW and lower Mg2+ content in the top soil layers (0–20 cm). This can be explained
by the antagonistic activity of K+, which reduces the adsorption of Mg2+ on exchangeable
complexes and enhances the leaching of Mg2+ to the deepest soil layers [40]. The negative
correlation between the concentrations of K+ and Mg2+ in GW irrigated soils confirms this
hypothesis (Figure 4). Regarding the behavior of Ca2+, regardless of the water irrigation
type, the abundance of this element in the upper soil was principally associated with its
negative effect on Na+ movement from top soil to lower depths (60–100 cm). In particular,
the richness of organic matter in TWW promoted CaCO3 dissociation to liberate more
calcium and consequently reduce the soil sodicity [41]. These results are in qualitative
agreement with the results of Belaid et al. [42], who found that irrigation with TWW clearly
increased the leaching of Na+ cation.

5. Conclusions

To the best our knowledge, the effect of TWW application period compared to GW
in sandy soil has been little explored. This research showed that although TWW appli-
cation increased the salinity, it improved other physicochemical attributes, particularly
structural stability, sodicity, and richness of nutrients in the soil (e.g., Ca2+, Mg2+, and
K+). Consequently, TWW promoted the leaching of salt cations outside the root zone.
Additionally, in the present study, the TWW application period only had an impact on
soil pH, whereas GW had an impact on all parameters with the exception of soil pH. Al-
though the soil quality did improve after 38 years of GW treatment, the improvement in
soil properties through long-term application of TWW was more significant. This report
underlines the positive effect of TWW even after long-term application, thus showing the
importance of soil texture for farmers applying TWW. However, these findings only relate
to sandy field, and the validity of our conclusions need to be verified for other types of soils
irrigated with TWW.
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