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Abstract: The objectives of this study were to identify and rank the covariables of soil-forming factors
that affect the distribution and spatial variability of pH in an agricultural area and to obtain a predictive
map of soil pH. Samples of topsoil were obtained from different sites and taken to the laboratory, where
they were prepared to determine the pH, organic matter, and percentages of particle size. In addition,
the values of environmental covariables that affect pH were obtained. A database of the coordinates,
laboratory results, and values of the covariables was constructed. Principal component analysis of the
covariables was performed, and an analysis of the pH spatial structure was conducted and interpolated
to obtain a predictive map of pH. Of the soil physical characteristics, the covariables clay and sand
had a greater influence on the spatial behavior of pH with respect to the rest of the covariables of soil-
forming factors, while human activity acted as a catalyst of the acidification process. Soil pH exhibited
autocorrelation and moderate spatial dependence (66.7%) and was thus spatially predictable. The pH
prediction map was accurate (RMSE = 0.158 and MEB = 0.020).

Keywords: active soil acidity; geostatistics; ordinary Kriging model; soil formation

1. Introduction

The variability of edaphic characteristics and properties can be a function of soil-
forming factors [1,2] and the relationship that occurs between the covariables (a variable or
a group of variables that could predict the result under study) of these factors. One of the
most important soil chemical characteristics derived from the relationships between these
factors is pH [3]. pH is the negative logarithm, base 10, of the activity of H+, log (H+) [4,5],
which determines whether soil is acidic (pH below 6.5, higher H+ concentration) or alkaline
(pH above 7.5) [6]. Soil acidity is the greatest limitation to crop production [7]. The process
of soil acidification can occur naturally as a result of its genesis or mode formation [8] or as
the result of anthropic activity [9]. In this sense, acidification is one form of chemical soil
degradation [10]. This situation becomes important in defining the factors that affect this
process in a given region in the context of generating recommendations for the recovery
and management of acid soils [11]. In this respect, diverse studies have established that the
effect of factors on pH can differ depending on the location and scale of the study [12]. For
example, it has been established that clay and organic matter (OM) content, precipitation
and temperature, vegetation, and relief (the slope of the area where the soil is located), as
well as humans, can affect pH [6]. In other words, pH is a function of edaphic or environ-
mental covariables that constitute soil-forming factors. For this reason, the study of pH
spatial behavior can be approached through the model Sc = f (SCORPAN) of McBratney
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et al. [13], where Sc is the soil attribute to be analyzed or modeled and is a function of the
physical and chemical properties of the soil (S), the surrounding climate (C), the activity
of organisms or vegetation (O), the attributes of the relief (R), the parent material (P), the
geological age of the site (A), and the spatial position of the soil (N). However, studies that
establish which sets of edaphic or environmental covariables have a greater influence on
the spatial distribution of soil pH in a given area are scanty. Different studies, at a local
level, have associated the behavior of pH with OM content [14] or the effect of pH on
OM decomposition [15], with fertilizer application [16,17], with vegetation [11], with soil
mineral particles [18], with the slope of the terrain, and with geological material [12–19].
Additionally, pH values, exchangeable acidity, and soil capacity for effective cationic ex-
change have been related to climate covariables (precipitation and temperature), as well
as to the NDVI (normalized difference vegetation index), altitude, and some parameters
of slope, at a regional level, to generate multivariate linear models and to obtain digital
maps of soil attributes; models with coefficients of determination below 0.60 have been
obtained [20]. Nonetheless, an explanation of how the covariables influence pH behavior
and spatial distribution is incipient. In this context, determination of the spatial distribu-
tion and variability of soil characteristics is important for management in a region [21].
The evaluation of spatial distribution is possible using geostatistical techniques. These
techniques permit the determination and interpretation of the behavior of soil variables
over space [22]. The application of geostatistics to analyze the spatial structure of obser-
vations (variation in values as a function of their separation) facilitates spatial–temporal
interpretation of the study variables in a region. There are different geostatistical methods
for spatial estimations. One of the most used methods is the ordinary Kriging (OK) method.
The effectiveness of OK has been demonstrated in the prediction of the spatial behavior of
soil chemical characteristics [20]. However, this type of analysis by itself does not enable
the identification of factors that intervene in the distribution of a variable of interest; it
needs to be complemented. In this respect, principal component analysis (PCA) is another
type of multivariate statistical analysis that has been shown to be useful in identifying
groups of independent variables or covariables and in determining which of these has a
greater influence on the spatial distribution of other edaphic variables [23]. Considering
the above, it is likely that the analysis of pH spatial structure, complemented by PCA of
the covariables of soil-forming factors that affect this edaphic variable, would be useful
in identifying and ranking environmental covariables that affect pH spatial distribution
and variability; this information could be useful for planning the management of soils
with acidic pH in a region. Therefore, the objectives of this study were to establish the
order of importance of the covariables of the soil-forming factors that influence pH spatial
distribution and variability in an agricultural area of the municipality of Tlajomulco de
Zúñiga, Jalisco, and to obtain a predictive map of soil pH.

2. Materials and Methods

This study was conducted on agricultural land (33,679.63 ha) in the municipality of
Tlajomulco de Zúñiga, Jalisco, Mexico. This area is 49.3% of the total area of the municipality
(68,247 ha) (Figure 1).

The site’s geology is made up of igneous rock from the Tertiary and alluvium from the
recent Quaternary within the physiographic province of the Neo-Volcanic Belt. The predomi-
nant rocks are tuffs, which occupy 35.1% of the area; the rest are basalts (28.6%), andesites
(6.7%), vitreous rocks (2.7%) and other types of rocks (2.3%). The alluvium is composed of
fine pyroclastic particles (<4 mm in diameter), found in 25.6% of the municipality [24].

This region has a warm climate with summer rains ((A) C(wo)) [25]. The mean annual
temperature is 19.3 ◦C, while the average highs and lows are 28.6 and 10.1 ◦C, respectively.
The mean annual precipitation is 782.7 mm [26].
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Figure 1. Location of the study area in Jalisco, México.

The vegetation is composed of mesquite, scrub vegetation, and pine–oak forest. The
soils are Cambisols, Feozem, Luvisols, and Vertisols. Land use is predominantly agricul-
tural; maize is the main crop (49.4% of the area), although it is mostly planted in rainfed
conditions [27]. This study comprised six stages, which are described below.

2.1. Location of Observation Points and Sample Collection

A grid (2500 × 2500 m) with UTM (Universal Transverse Mercator) projection was
overlaid on the land use polygon of the municipality of Tlajomulco de Zúñiga, Jalisco. The
coordinates of each point were registered so that they could be located later in the field.
The accessibility of each site was the condition for their final selection [21]. A topographic
chart of the municipality was used as the base [28]. At each selected point, the coordinates,
determined using a GPS Garmin® (Garmin Ltd., Ciudad de México, Mexico), were recorded,
and a single soil sample (approximately 2 kg) was extracted from the topsoil (0–30 cm
deep). Moreover, information on land use at each site was obtained. The soil samples were
transported to the laboratory.

2.2. Physical and Chemical Determinations in the Laboratory

The soil from each site was dried in the shade at ambient temperature. Once dried,
1 kg of each sample was ground and sifted (d = 2 mm). One part of the ground and
sifted soil was used to determine the relative proportions of particle sizes (pipette method)
to establish the soil texture class. These data were obtained because Weil & Brady [6]
and Kome et al. [18] indicated that particle size influences pH. Additionally, soil pH was
determined (in water, 1:2, using a Hanna HI-2211® potentiometer). The other part of the soil
sample was pounded with a wooden mallet and sifted through a 0.5 mm sieve to determine
the percentage of OM. This chemical characteristic was determined because it influences the
behavior of pH (Weil & Brady [6]; Zhao et al. [14]). The procedures for each determination
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followed those described in the Norma Oficial Mexicana NOM-021-SEMARNAT-2000 [29].
For the chemical analyses, Merck® patterns and reagents were used.

2.3. Determination of Environmental Covariables of the Soil-Forming Factors

To establish the covariables of the SCORPAN model [13], the covariables of the fol-
lowing factors were used: climate (C), organisms or vegetation (O), relief (R), and parent
material (P); additionally, data on rock type, as well as some soil physical and chemical
characteristics (S), were used. For factor C, Böhner & Antoniç [30] indicated that mean
annual precipitation (PP) in millimeters (mm) and mean annual temperature (TEM) in ◦C
are easily obtained variables; therefore, in our research, digital isohyet and isothermal maps
of the municipality were used [24]. Additionally, Figueroa-Jáuregui et al. [31] mentioned
that the use of vegetation indexes is useful for evaluation of the factor O. In the case of our
study, we obtained the NDVI and the SAVI (soil-adjusted vegetation index) in the study
area. These dimensional indexes were estimated by processing bands 4 (red) and 5 (near
infrared) of a multispectral orthorectified Landsat 8 satellite image from 24 May 2020. The
digital numbers of the different bands were transformed to reflectance levels to estimate
NDVI and SAVI using Equations (1) and (2).

NDVI =
(b5 − b4)
(b5 + b4)

(1)

where: NDVI is the normalized difference vegetation index; b4 is band 4 (red); and b5 is
band 5 (near-infrared).

SAVI =
(b5 − b4)

(b5 + b4 + L)
∗ (1 + L) (2)

where: SAVI is the soil-adjusted vegetation index; b4 and b5 are the same as in Equation (1);
and L is a correction factor of soil luminosity [32] that, in our case, was 0.5. These estimations
were carried out using ArcMap 10.3© software [33].

In the case of R, we used the slope [34], which was obtained from a digital elevation model
(DEM) of the municipality [35] with a resolution of 15 m. Imperfections and vacant pixels were
corrected using the FILL module of ArcMap 10.3©. Later, we obtained a digital map of slope
percentages (SP) using the SLOPE module of the same software. Pike et al. [34] also pointed
out that knowledge of the type of rock and its age is useful as a covariable of A. In our case, we
used a digital map of the geology of the municipality of Tlajomulco, with which we obtained
the distribution of geological material and its age (DAT) in millions of years [30].

To obtain the data of the different covariables for each sampling site of the thematic
digital maps (TEM, PP, NDVI, SAVI, SP, DAT), we used the EXTRACTION module of
ArcMap 10.3©, using the vector of points of the sampling sites.

In the case of S, the covariables that we used were the percentages of sand (SAN), silt
(SILT), and clay (CLA) (as specific physical characteristics of the soils [Sp] under study) and
the percentage of OM as the specific chemical characteristic of the soils (Sch), which were
obtained during the physical and chemical analyses of the soil samples.

Another factor considered was the human influence (HUM) exerted at each sampling site,
measured as the amount of fertilizer in kilograms applied per hectare at each sampling site.

We generated a database of the data on pH (dependent variable) and the eleven covariables
proposed (explanatory variables), together with the coordinates of each sampling point.

2.4. Descriptive Statistics and Multivariate Analysis

Using the database, we first obtained the descriptive statistics of the study variable
and covariables, including the average, median, maximum and minimum values, typical
deviation, asymmetry, and kurtosis.

Ranking of the covariables of the soil-forming factors that affect the behavior and
distribution of the variable pH was achieved via a multivariate analysis using PCA in the
software MINITAB 17 [36]. The principal components (PC) selected were only those that
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had an eigen value of more than one, according to the Kaiser Criterion, and that explained
at least 70% of the accumulated variance [37]. In the same way, we considered the eigen
vectors of each PC that had absolute values above 0.400.

2.5. Analysis of the Spatial Structure and Interpolation of the pH Data

The database was also used for the spatial structural study of pH, using semi-variance.
According to Jaramillo [38], this type of study enables the determination of the existence of
similarities among data at fixed distances (lag), using Equation (3).

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(Xi)
− Z(Xi+h)]

2 (3)

where: γ(h) is the semi-variance for the pH of soils located in space at a given distance (h);
N(h) is the total number of pairs of data at a given distance (h); Z(Xi) is the datum of the
sample at a site Xi; and Z(Xi+h) is the datum of the sample at a distance h from X.

The active distance in the study was 30,000 m, with asynchrony (lag) of 15 at sizes of
2.000 m for each lag. This experimental semi-variogram served as the basis for fitting the
semi-variances to a spherical model and for quantifying pH spatial variability [21]. The
parameters we used to explain this variability and obtain the prediction model were the
nugget effect (Co), sill (Co + C), the structural variance (C), and the range [39]. In addition,
we estimated the degree of spatial dependence [Co/(Co + C)] and the degree of spatial
variation [C/(Co + C)] [38].

With the interpolator OK, we generated a predictive thematic map of pH (pHp). Ac-
cording to Elbasiouny et al. [40], OK is useful for environmental and agricultural variables.
The data were processed using ArcMap 10.3© [33], specifically with the extension Geo-
statistical Analyst. In the prediction maps, the results were grouped into four classes for
pHp. In the same extension, cross validation was performed to verify the accuracy of the
predicted values derived from the prediction model (pHp), with which the coefficient of
determination (R2), the mean error of the prediction (MEp), the root mean square error of
the prediction (RMSEp), the mean standard error of the prediction (MSEp), the average
standard error of the prediction (ASEp), and the root mean square standardized error of the
prediction (RMSSEp).

2.6. Verification of the pH Map

The accuracy of the pHp prediction map was verified by digitally selecting 20 points in
the prediction map. Simple random sampling was performed using the tool Create Random
Points of the software ArcMap 10.3© to assure that the location of points was different from
those used in the initial database. The UTM coordinates of each of the selected points were
recorded. Later, each of the points was located in the field, where a simple sample of topsoil
(0.30 cm deep) was collected. These samples were taken to the laboratory where they were
prepared for their analysis, and pH was, again, determined. The results were compared
with the values of the variable corresponding to each point of the prediction maps in an
error matrix. The statistical indexes used to evaluate accuracy were the RMSE (root mean
square error) and the MEB (mean error of the bias) using Equations (4) and (5) [41].

RMSE =

√
∑n

1 (y − ŷ)2

n
(4)

where: RMSE is the root mean square error of the corresponding variable; y is the value of
the variable estimated via the predictive model of the thematic pHp map; ŷ is the value of
the variable (pH), which was obtained from the soil samples at the points of verification;
and n is the total number of samples.

MEB =
∑n

1 (y − ŷ)
n

(5)
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where: MEB is the mean error of the bias of the corresponding variable, and the remaining terms
are the same as in Equation (4). The statistical program used at this stage was Minitab 17 [36].

3. Results

There were 101 sampled sites. The main crop was maize, and vegetables were grown
at only one site. Soil management was mechanized, and the growers fertilized using urea
(150 to 350 kg ha−1).

The values of the covariables behaved differently within the study area. The texture
classes identified were clay, clay loam, and sandy loam, with the occasional presence of
gravel. Clay and loam textures were found in the lower parts, while sandy loams were
found in the middle parts. Soil pH varied from 4.0 to 7.15 (Table 1), while the average value
of OM was 2.16%. The average values of NDVI and SAVI (0.230 and 0.166, respectively)
reflect the scarce plant cover; this was due to agriculture, since soil sampling was performed
during the season of soil preparation.

Table 1. Descriptive statistics of the environmental variables of the soil-forming factors.

Var N † −
X Σ

−
X ± σ Min. Median Max. Asy Kur

pH 101 5.34 0.75 4.59–6.09 4.00 5.24 7.15 0.56 −0.51
OM 101 2.16 0.81 1.35–2.97 0.14 2.22 3.93 −0.31 0.14
CLA 101 66.67 10.37 56.30–77.04 40.00 69.50 82.00 −0.55 −0.61
SILT 101 16.40 5.12 11.28–21.52 7.00 16.00 32.00 0.35 −0.16
SAN 101 16.93 8.02 8.91–24.95 6.00 13.50 38.00 1.05 0.21

NDVI 101 0.22 0.082 0.14–0.30 0.04 0.22 0.68 2.04 11.07
SAVI 101 0.16 0.056 0.10–0.21 0.03 0.16 0.45 1.61 8.29

SP 101 11.66 10.17 1.49–21.83 0.17 5.55 80.59 2.51 6.16
TEM 101 19.50 0.78 18.74–20.28 14.90 19.70 20.30 −3.76 18.69
PP 101 839.40 33.32 806.08–872.72 742.00 830.00 919.00 0.38 −1.01

DAT 101 3.55 1.92 1.63–5.19 0.01 3.75 5.00 −1.16 −0.30
HUM 101 254.44 55.71 198.73–310.15 150.00 250.00 350.00 −0.20 −0.71

† N: number of samples,
−
X: average, σ: standard deviation, Asy: asymmetry, Kur: kurtosis, OM: organic matter

(%), SAN: sand (%), SILT: silt (%), CLA: clay (%), NDVI: normalized vegetation index, SAVI: soil-adjusted
vegetation index, SP: slope percentage (%), TEM: temperature (◦C), PP: precipitation (mm), DAT: age of dated
geological material (millions of years), HUM: human influence (kg ha−1).

Moreover, the soils were found on slopes of 11% on average (Figure 2). Nevertheless,
the median (5.55%) indicates that half of the soils were found on flat land or gentle slopes
(0–6%), while the other half were located on slopes, some of which were steep. The average
temperature was 19.5 ◦C, while the average annual precipitation was 839.40 mm.
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The asymmetry and kurtosis of most of the studied covariables are found within the
interval of −3 to 3, although NDVI, SAVI, SP, and TEM had kurtosis above 3.

3.1. Multivariate Analysis of Environmental Covariables

The eigen values of the first five principal components are above one (Table 2), with an
accumulated variance of 0.742; this means that, together, these components explain 74.2%
of the variability of the pH.

Table 2. Eigen values of the principal components.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Eigen value 2.377 2.057 1.369 1.264 1.094 0.901 0.720 0.672 0.496 0.047 0.000
Proportion 0.216 0.187 0.124 0.115 0.099 0.082 0.065 0.061 0.045 0.004 0.000

Accumulated 0.216 0.403 0.528 0.643 0.742 0.824 0.889 0.951 0.996 1.000 1.000

These principal components (PC) have some eigen vectors with high absolute values
(>0.400), which confirms the greater influence of the component (Table 3).

Table 3. Eigen values of selected principal components.

Variable PC1 PC2 PC3 PC4 PC5

OM 0.184 0.164 0.053 0.171 0.718
CLA −0.624 −0.111 −0.094 −0.061 0.024
SILT 0.395 −0.129 0.247 0.183 0.112
SAN 0.555 −0.061 −0.037 −0.038 −0.102

NDVI −0.071 −0.643 −0.209 0.167 0.075
SAVI −0.091 −0.656 −0.163 0.105 0.113

SP 0.085 0.019 0.201 0.403 −0.589
TEM 0.168 0.178 −0.589 −0.171 0.107
PP −0.249 0.009 0.455 0.300 0.234

DAT 0.028 −0.197 0.188 −0.656 −0.109
HUM −0.029 0.158 −0.479 0.425 −0.132

PC1 is a function of the covariables clay (−0.624) and sand (0.555) (Table 3), indicating
that high PC1 values correspond to sites with low clay content and high sand content.
In contrast, low values of this component reflect high clay content and low quantities of
sand. PC2 depends on NDVI (−0.643) and SAVI (−0.656), and when the two variables
refer to plant cover, high values of this component reveal sites with little plant cover, while
low values indicate sites with thick plant cover. In contrast, PC3 is related to temperature
(−0.589), precipitation (0.455), and human influence (−0.479). High values of this compo-
nent reflect sites with low temperatures and high precipitation, where the grower applies
low quantities of fertilizer to the soil, while low values of this component indicate sites
with high temperatures and low precipitation, where growers apply large quantities of
fertilizer. PC4 depends on the age of the geological material (−0.656) and slope (0.403).
High values of this component indicate sites with relatively recent geological material and
steep slopes. In contrast, low values indicate older geological material and gentle slopes.
Finally, PC5 is a function of OM (0.717), where high values of this component correspond
to sites with higher OM content, and low values reveal soils with low percentages of OM.

Considering the above, the principal components that represent the factors, according
to the SCORPAN model, are the following: PC1 is factor S (Sp), PC2 is factor O, PC3 is factor
C and human influence, PC4 includes the factors A and R, and PC5 is, again, factor S but
with Sch. This leads to the deduction that the spatial distribution of pH in the agricultural
soils of Tlajomulco de Zúñiga would depend, first, on the covariables clay and sand, and
second, on the covariable soil plant cover. In third place are the covariables precipitation
and temperature and the covariable human influence. In fourth place are the covariables
geological material and slope. Finally, in fifth place is the covariable OM.
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3.2. Analysis of the Spatial Structure of pH

The semi-variances (γ(h)) of pH (Figure 3) were fit to a spherical model (R2 = 0.6879),
with a range equal to 2834.53 m, longer than the sampling distance (2500 m).
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Figure 3. Semi-variogram of active acidity (pH). Figure 3. Semi-variogram of active acidity (pH).

The nugget (0.3406) was lower than the sill (0.5106) but higher than the structural
variance (0.1700), while pH spatial dependence (Co/(Co + C) = 66.7%) was moderate,
according to the classification proposed by Cambardella [42], and the spatial variation
(C/(Co + C)) was 33.3%. This was made evident through cross-validation, since the error
(MEp = 0.013 and MSEp = 0.011) was small; the prediction map can thus be considered
accurate. Moreover, when the uncertainty of the predictions was analyzed, it was found
that the variability of the predictions was underestimated, since the RMSEp of the pHp
(0.7781) was higher than the ASEp (0.7429), as manifested with an RMSSEp of more than
one (1.0624).

3.3. Spatial Distribution of pH

A pH class of 4.5–5.0 (strongly acid soil) is found mainly in the eastern portion of
the farming area of Tlajomulco (Figure 4), occupying 14.2% of this area, while neutral
soils (pH 6.5–7.1) are located in the western portion, covering 6.7% of the study area).
Moderately acid soils occupy the rest of the area, and pH tends to decrease from west to
east in the municipality.
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3.4. Verification of the pH Map

The accuracy of the pH map was verified via cross-validation. Occasionally, it under-
estimated or overestimated the field value (Table 4).

Table 4. Accuracy of the pH map of the municipality of Tlajomulco de Zúñiga, Jalisco.

N
UTM

† pHp pHm RMSE MEB
X Y

1 664,920 2,271,661 5.1 5.0 0.01 0.10
2 676,133 2,266,878 4.8 4.9 0.01 −0.10
3 650,569 2,263,984 5.8 5.6 0.04 0.20
4 673,606 2,256,021 5.4 5.3 0.01 0.10
5 663,437 2,265,538 5.2 5.1 0.01 0.10
6 658,798 2,264,621 5.2 5.3 0.01 −0.10
7 672,989 2,271,684 4.1 4.0 0.01 0.10
8 662,276 2,262,246 5.2 5.2 0.00 0.00
9 661,783 2,275,120 5.1 5.4 0.09 −0.30

10 668,505 2,273,387 5.0 5.0 0.00 0.00
11 672,275 2,271,658 5.1 5.2 0.01 −0.10
12 651,688 2,270,674 6.1 6.2 0.01 −0.10
13 668,691 2,254,534 5.3 5.2 0.01 0.10
14 649,245 2,266,025 5.8 5.8 0.00 0.00
15 668,604 2,260,668 5.3 5.2 0.01 0.10
16 649,088 2,264,952 5.9 5.8 0.01 0.10
17 656,660 2,263,242 5.5 5.4 0.01 0.10
18 650,581 2,269,980 5.7 5.7 0.00 0.00
19 674,992 2,264,123 4.8 4.8 0.00 0.00
20 676,930 2,265,449 4.9 4.4 0.01 0.10

0.158 0.020
† pHp: predicted pH; pHm: field pH; RMSE: root mean square error of pH; MEB: mean error of the pH bias.

The RMSE value indicated that the map had good performance, since its result was
close to zero (RMSE = 0.158). Nevertheless, the map had errors, as indicated by the bias of
the predicted values relative to the observed values at each point. Thus, the MEB of the pH
prediction map of our study showed a very low positive value (MEB = 0.020).

4. Discussion
4.1. Behavior of the Environmental Covariables

The values of the covariables each behave differently, reflecting their nature. The
distribution of the texture classes of the soils in the study area correspond to existing
reports for closed basins after sedimentation processes: the finest particles occupy the
lowest areas, while the medium-sized particles are found in the middle part of the basin [43].
According to the interval of active acidity, the soils can be classified as extremely acid to
neutral [6]; this is characteristic of the soils of the volcanic regions of Mexico and other
parts of the world [44]. The percentages of OM are medium-to-low [29], corresponding
to crop soils [43], such as those found in soils under traditional tillage [45]. When there is
little or no vegetation, the NDVI and SAVI values are low [46]. Additionally, Ruiz-Corral
et al. [47] reported that soils with gentle slopes occupy 62% of the agricultural area of the
municipality of Tlajomulco. This is an important fact in terms of the conditions in which
the soils are found, since slope influences soil’s physical and chemical properties [48], while
temperature and precipitation correspond to regions with warm climates and dry springs
and summers in the central part of the state of Jalisco [47] where Tlajomulco is found.
Nevertheless, normal behavior of the data was demonstrated by asymmetry and kurtosis,
found within the range of −3 to 3, which allows the assumption that 95% of the data of
the variables fit a normal distribution. However, some variables had kurtosis above three,
reflecting the values of variables at a distance greater than the normal distribution; this
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behavior is known as leptokurtic distribution, characterized by values that concentrate
around the mean [49].

4.2. Effect of the Covariables on pH

Mineral particles that form part of the soil’s solid phase play an important role in pH
behavior, since the reactions that occur between the solid phase components control pH.
The clay fraction has a higher capacity to accept or donate protons than the acids or bases in
the soil solution [18]. For example, when soil pH decreases, gradual hydrolysis occurs and
the minerals release H+ ions, resulting in greater acidification [11]. Additionally, vegetation
abundance and type also influence pH behavior [50]. This situation becomes evident in
areas with annual crops during soil preparation, a stage at which there is little or no plant
cover. Likewise, climatic elements such as precipitation and temperature changes also affect
pH. On the one hand, water makes it possible for different reactions to occur among the
components of the soil solid phase, and on the other, temperature accelerates or decelerates
these reactions. For instance, in dry climates, these reactions cause a slow accumulation of
cations, while in tropical climates, the reactions are accelerated and favor the percolation
of cations [6]. Moreover, humans cause changes in the pH through fertilization of their
crops [16]. When nitrogen fertilizers are added, microorganisms can oxidate NH4

+ to
NO3

−, and thus, produce acidity [4]. The behavior of pH as a function of the covariables
parent material and slope in our study coincides with the reports of Zhang et al. [12] and
Ibarra-Castillo et al. [51]; they indicate that, depending on the mineralogical composition
of the parent material, the results of their alteration will first be primary minerals, and
later, during neogenesis, secondary minerals (crystalline or amorphous of clay size) [52,53],
which modify pH, as mentioned previously. Slope, as a passive factor, influences the
processes of parent material alteration, as well as the distribution and redistribution of
the mineral particles in the soil during its formation, and these, in turn, affect pH [54].
Finally, OM affects pH, as Getachew et al. [11] indicate, since OM contains carboxyl and
phenolic groups that can donate protons [4]; additionally, during the decomposition of
these compounds, H+ ions, which are responsible for acidity, are released [11]. The above
leads us to assume that the pH of the Tlajomulco soils is the result of constant interactions
among the covariables of the soil-forming factors where soil acidification (the soil-forming
process) would occur naturally and gradually. However, human activity, through the
agricultural use of these soils, can accelerate the process by eliminating plant cover and
applying nitrogen fertilizers for crop production, causing a decrease in pH. Nevertheless,
when soil microbiology and mineralogy are unknown, it is not possible to specify the
physical, chemical, or microbiological processes (pedogenetic processes) that occur in these
soils. This information would be useful for soil management plans or for the recovery of
soil with acidity problems [11,18].

4.3. Spatial Structure of pH

The spherical model obtained in this analysis is consistent with that reported in other
studies that indicate that this model has a better fit with edaphic data (such as pH) in the
definition of their spatial distribution [55]. Regarding the range, the result of our study is
similar to that reported by Henríquez et al. [56], who obtained a range of 2480 m for pH.
When the intervals or ranges are larger than the sampling distances, a spatial relationship
among the samples is revealed that suggests strong autocorrelation, possibly due to some
factor that has a greater influence than the sampling distance [57]. We are thus dealing
with a characteristic that has less variability and maintains its autocorrelation at greater
distances [56]. This coincides with the results of our research, in which the characteristics
specific to soil, such as the content of clay and sand, and environmental factors, such as
climate, plant cover, topography, and the distribution of geological material and its age,
influence the distribution of pH. In this sense, when a nugget smaller than the sill is found,
the structure and spatial dependence are manifested [58]. Additionally, moderate spatial
dependence correlates with some environmental and soil characteristic [59]. In this way, the
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results of the analysis of pH spatial structure indicate that pH is spatially predictable and
has a low level of uncertainty when interpolated [38,56]. This was confirmed in our study
via cross-validation. According to ESRI [33], when the value of MSE is close to zero, the level
of uncertainty is low, while a value of RMSSE greater than one indicates underestimation
of the prediction variability. This situation was found in our results (MSE = 0.011 and
RMSSE = 1.0624), indicating that the predictive pH map could underestimate pH values,
but would be accurate because of the low error.

4.4. Spatial Distribution of pH

The distribution of pH classes on the map could be related to the way the soil was
formed and to the human use of this resource. In general, the locations of the pH classes on
the map are related to the environmental covariables that are analyzed in our study. Soils
with a pH between 4.5 and 5.0 have clay textures (with pumice gravel) and are used for
agriculture, with applications of up to 350 kg of urea. These are sites where the geological
material is volcanic pyroclastic, 2.5 to 5.0 million years old [24], on flat land (Figure 2),
and with a low content of OM. In contrast, soils with a pH between 6.5 and 7.1 have a
clay loam texture and are used for agriculture with applications of 150 kg urea; they are
a geological material of stable alluvion composed of fine particles of volcanic origin and
are found on gentle slopes. According to Acevedo-Sandoval et al. [8], soil acidification can
occur during pedogenesis as the result of the interrelationship of different factors and soil-
forming processes, considering human influence as the catalyst of these processes. In this
sense, the alteration of OM is slower in soils with a pH below 5.0 [15]. This phenomenon in
our study is likely associated with agricultural use of these soils, since the maize monocrop
is fertilized with urea (up to 350 kg ha−1) during every crop cycle. This behavior was
reported by Cruz-Macías et al. [17], who associated the decrease in pH with the application
of ammonium fertilizers. Likewise, Zang et al. [60] indicated that the addition of nitrogen
fertilizers decelerates OM alteration due to the decrease in microbial activity. It is probable
that a study of soil genesis that includes soil microbiology and mineralogy, to establish the
processes resulting from the interactions among soil-forming factors, would help explain
pH behavior with greater precision and contribute to proposing management and recovery
plans for acid soils with longer-lasting effects.

4.5. Precision of the pH Map

RMSE values equal to zero indicate a perfect fit of the data given by the simulation
or prediction model to the observed data [61]. Additionally, the statistical test MEB can
express overestimation or underestimation of the simulation or predictive models. These
cases are denoted by their sign, whether positive or negative [41]. The above means that
the pH thematic map underestimated the field values. Under these criteria, in our study,
the thematic map of pH prediction is accurate, as estimated by the analysis of the spatial
structure of the data and verified via cross-validation. Therefore, the map could serve as a
basis for locating soils with acidity problems in decision-making for the management of
these soils; however, more research is required that evaluates the pH map of the Tlajomulco
de Zúñiga soils, for management purposes.

5. Conclusions

The methodology used in this research allowed us to stablish the environmental
covariables of the soil-forming factors that affect the distribution and spatial variability
of pH, which were defined and ranked. In addition, a map of this edaphic variable
was obtained. The environmental covariables that represented the soil-forming factors
explained 74.2% of pH spatial variability in the soils of Tlajomulco. In order of importance,
from most to least important, the covariables that were grouped as a function of soil-
forming factors were as follows: the physical characteristics of the soil, the vegetation,
the climate, the age of the parent material together with the factor relief, and finally, the
chemical characteristics of the soil (Sp > O > C > A-R > Sch). Moreover, human activity
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influences soil pH through the application of nitrogen fertilizers. The analysis of the
spatial structure of pH demonstrated that this variable had moderate spatial dependence
(66.7%) and was thus spatially predictable. The predictive thematic map of soil pH was
accurate (RMSE = 0.158 and MEB = 0.020) in placing the pH classes in the municipality of
Tlajomulco de Zúñiga, Jalisco. This methodology could serve as the basis for formulating
proposals for the management and recovery of soils with acidity problems. However, more
research is needed; it is also necessary to include soil microbiological and mineralogical
variables in these types of studies to understand processes that could occur when applying
amendments to improve soil quality so that the effect is longer-lasting.
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