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Abstract: Anthracnose is a major disease of walnut, which seriously reduces the yield and quality
of walnut in Yunnan province. Therefore, it is necessary to explore and find a biological control
agent for the prevention and control of anthracnose disease. In this study, an endophytic Bacillus
WB1, with broad-spectrum antibacterial activity was isolated and screened from healthy walnut
roots. The strain WB1 was identified as Bacillus siamensis WB1 based on morphological characteristics,
physiological and biochemical tests, and 16S rRNA gene sequence analysis. Bacillus siamensis WB1
produces siderophores and indole-3-acetic acid and solubilizes inorganic phosphate. The strain
WB1 not only showed a significant inhibition effect on fourteen phytopathogens, but also showed
obvious inhibition on the spore germination of Colletotrichum acutatum. Meanwhile, strain WB1
can code genes for the production of antifungal lipopeptides and generate extracellular hydrolytic
enzymes (protease, β-1, 3-glucanase, cellulase, and amylase). In addition, WB1 activated the systemic
resistance of the host plant by enhancing the activity of defense enzymes, including phenylalanine
ammonia lyase (PAL), peroxidase (POD), and polyphenol oxidase (PPO). The results of greenhouse
assays also revealed that B. siamensis WB1 can effectively reduce the occurrence and severity of walnut
anthracnose disease. These results also indicated that B. siamensis WB1 is a potential biocontrol agent
for walnut anthracnose.

Keywords: walnut; endophytic Bacillus; Colletotrichum acutatum; biological control; antagonistic activity

1. Introduction

Walnuts (Juglans regia L.), an economically important oil-bearing crop cultivated in
China, is susceptible to various pathogens [1,2], in particular to Colletotrichum sp., which
causes anthracnose. Anthracnose is detrimental to the leaves of walnut trees, resulting
in immature fruits. As planting areas and market demands have increased, focus on this
pathogen has intensified [3]. In the Yunnan Province, walnut anthracnose usually occurs
between June and August, with walnut trees undergoing more serious damage, such as leaf
and fruit abscission. Disease prevalence increases under high temperature and humidity,
thereby hindering the prevention and treatment of walnut anthracnose. Currently, the
prevention and control of walnut anthracnose depends on the utilization of broad-spectrum
fungicides [4,5]. However, these fungicides do not easily degrade and therefore contaminate
the environment; in addition, resistance development has been reported [6]. Therefore,
there is an urgent need to develop sustainable and environmentally friendly chemicals and
methods to protect walnut trees from anthracnose and other pathogens.

Bacillus is a genus of ubiquitous microorganisms capable of overcoming drought, heat,
low temperatures, and other extreme conditions through the formation of endospores.
Thus, Bacillus has exhibited adaptability and stability in the environment [7]. The genus
Bacillus is considered to be an outstanding bio-control agent as it synthesizes lipopeptides,
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bacteriocins, polyketides, and other active compounds [8,9]. Various Bacillus species, in-
cluding B. amyloliquefaciens, B. subtilis, B. thuringiensis, B. cereus, and B. velezensis, have
demonstrated great potential in controlling plant diseases [10–12]. In addition, Bacillus
spp. in the rhizosphere can build a symbiotic association with the host and protect it
from salinity, arid, and other harsh environmental stresses [13]. ALKahtani et al. [14] and
Ismail et al. [15] revealed that endophytic bacteria in the rhizosphere also showed varying
activities to produce auxin (indole-3-acetic acid), hydrolytic enzymes (amylase, cellulase,
protease, pectinase, xylanase), and phosphate solubilizing. These bacterial endophytes,
including Bacillus and Brevibacillus strains, are a group of plant growth-promoting rhi-
zobacteria (PGPR), which provide a high potential to stimulate plant growth and increase
nutrient uptake in plant species. As an essential component of plant–microbe symbionts,
endophytic Bacillus spp. plays an important role in growth promotion, stress resistance,
and biosynthesis of host plants [16]. Plant root systems are responsible for exchanging
substances and energy between plants and their surrounding environment [17]. Certain
microorganisms inhabit the root tissues, including endophytic Bacillus spp., producing
antimicrobial metabolites, which can suppress soil-borne phytopathogens, promote plant
growth, and improve crop yields [18]. Zou et al. [19] and Cawoy et al. [20] reported
that two types of antibiotics are produced by Bacillus spp., lipopeptides and bacteriocins.
These antibiotics damage the mycelium structure of pathogenic fungi and exhibit broad-
spectrum resistance to phytopathogenic fungi. Furthermore, the germination and growth
of pathogenic spores are also affected by the active compounds, weakening plant disease
transmission [21]. In addition to antibacterial activity, nutrient competition and plant-
induced systemic resistance are other important methods used by Bacillus to suppress
plant diseases [22]. Plant-induced systemic resistance includes defensive enzyme synthesis,
phytohormone signaling pathway modulation, and phenylpropionic acid and flavonoid
metabolic modulation [22,23]. Gond et al. [24] and Jain et al. [25] showed that endophytic
Bacillus spp. activate the plant immune system by influencing jasmonic acid, salicylic acid,
and ethylene intracellular signaling pathways, thereby improving plant disease resistance.
Furthermore, recent studies have demonstrated that endophytic Bacillus spp. produce
phytohormones, perform nitrogen fixation, and possess phosphate solubilization abili-
ties [26–28]. Xu et al. [29] and Pérez-Montaño et al. [30] showed that endophytic Bacillus
spp., which coexist with the root tissues, promote the absorption of nitrogen and mineral
elements by the host and increase nutrients in the soil via the production of various hy-
drolases. Thus, endophytic Bacillus is a potential microbial resource for biofertilizer and
biopesticide utilization. Although the control efficiency of endophytic Bacillus spp. on
crops has recently been confirmed [31,32], the prevention and control of C. acutatum by root
endophytic Bacillus spp. is still unknown. Therefore, there is an urgent need to investigate
the development and applications of rhizosphere endophytic Bacillus spp. isolated from
walnut roots.

In our study, endophytic Bacillus strains isolated from the healthy roots of walnut trees
(Juglans sigillata L.) were identified and characterized by morphological, biochemical, and
molecular tests. Broad-spectrum disease resistance to phytopathogenic fungi and antibiotic
biosynthetic genes, and their plant growth-promoting traits, were also investigated. The
main objective of our study was to investigate the potential role of the endophytic Bacillus
in the biological control of walnut anthracnose.

2. Materials and Methods
2.1. Isolation of Root Endophytic Strains

Two-year-old, healthy walnut seedlings of “iron walnut” (Juglans sigillata L.) were
collected from Dali City, Yunnan Province, China (25◦37′ N 100◦13′ E) and used as test
samples in the field. Root tips were excised from walnut root tissues and surface-sterilized
with 10% sodium hypochlorite and 75% ethanol, as described by Sobolev et al. [33]. The
samples were weighed, approximately 0.5 g, and added to 10.0 mL phosphate-buffered
saline solution (PBS: NaCl, 8.0 g; KCl, 0.2 g; Na2HPO4, 1.42 g; and KH2PO4, 0.27 g, dissolved
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in 1 L sterile H2O, pH 7.4). The supernatant (100 µL) was inoculated onto Luria-Bertani
(LB) medium (1.0% tryptone, 0.5% NaCl, 2.0% Agar powder, and 0.3% yeast extract, 1 L
sterile H2O) and incubated for two days at 25 ± 2 ◦C. In addition, as controls, 100 µL of the
final rinse water was spread onto LB plates to evaluate the effect of surface sterilization.
Single bacterial colonies were selected for purification, and the purified strains were stored
in LB broth with glycerol (25%) at −80 ◦C.

2.2. Identification and Characterization of Root Endophytic Strains

Key morphological and biochemical characteristics of the isolated colonies were de-
termined according to the methods described by Vos, P. et al. [34]. Potential root endo-
phytic strains were identified further using 16S rRNA gene sequencing. Total genomic
DNA of the strains was extracted using a DNA extraction kit (Tsingke, Beijing, China)
following the manufacturer’s instructions. The 16S rRNA gene was amplified using the
forward primer 27-F (5’-AGAGTTTGATCCTGGCTCAG-3’) and the reverse primer 1492-R
(5’-GGTTACCTTGTTACGACTT-3’) [35]. Polymerase chain reaction (PCR) was performed
in the final reaction mixture (25 µL) containing 1.00 µL deoxynucleotides, 1.0 µL of each
primer, 0.3 µL of Taq DNA polymerase (5 U/µL), 2.5 µL of Taq buffer (10×), 2.0 µL of
20 ng genomic DNA, and 22.0 µL of deionized water. The PCR thermocycling condi-
tions were as follows: initial denaturation at 98 ◦C for 2.0 min, followed by 35 cycles
of 10 s at 98 ◦C, 15 s at 55 ◦C for primer annealing, extension at 55 ◦C for 15 s, and a
final elongation step of 5.0 min at 72 ◦C [36]. The amplified products were purified and
sequenced by Tsingke Biotechnology (Beijing, China). Target gene sequences were submit-
ted to the NCBI GenBank database “http://www.ncbi.nlm.nih.gov/BLAST (accessed on
3 August 2022)”; the accession number was OP132790. Similar nucleotide sequences were
selected from the EzBioCloud database “https://www.ezbiocloud.net/tools/ani (accessed
on 5 August 2022)”. A phylogenetic tree of the 16S rRNA gene sequence was constructed
by the neighbor-joining method using MEGA-X software [37].

2.3. Plant Growth Promoting Assay

The ability of endophytic strains to solubilize phosphate was evaluated using Pikovskaya
medium (PVK) [38]. The colonies were incubated on PVK for five days at 28 ◦C. A halo
zone around the bacterial colony indicated phosphate solubilization. Siderophore production
assays were performed as described by Alexander et al. [39]. Isolated strains were inoculated
on chrome azurol S (CAS) agar media and incubated for five days at 28 ◦C. Siderophore
production was indicated by an orange halo zone around the colonies. Indole acetic acid (IAA)
production was evaluated by incubating the isolated strains in LB media supplemented with
L-tryptophan (200 mg/L) at 28 ◦C on a rotary shaker (180 rpm) for three days. The media was
subjected to centrifugation at 8000 rpm for 10 min. One milliliter of the supernatant and 2 mL
of Salkowski’s reagent (49 mL 35% perchloric acid and 1 mL 0.5 M FeCl3 · 6H2O) were mixed
together and incubated in the dark for 30 min [40]. IAA production was indicated by the
appearance of a stable pink color in the media. All experiments were performed in triplicate.

2.4. Hydrolytic Enzymes Test

The ability of the isolated strain to produce hydrolytic enzymes was evaluated,
wherein four extracellular hydrolases, including protease, β-glucanase, cellulase, and
amylase, were tested using the hydrolysis circle method [41]. Firstly, the colony was inocu-
lated on agar plates containing skimmed-milk powder, β-1,3-glucan [42], carboxymethy
cellulose (CMC) [43], and soluble starch [44], respectively. All the plates were then culti-
vated at 28 ◦C for 96 h, and the diameters of the hydrolysis zones around bacterial colonies
were observed.

2.5. Pathogenic Fungi and Culture Conditions

Colletotrichum acutatum swfu013 (ITS: OP811213, 18S rRNA: OP836298, phylogenetic
tree of ITS was provided in Supplementary Material), previously isolated from walnut
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leaves, was stored in our laboratory (College of Life Sciences, Southwest Forestry University,
Kunming, China). Other phytopathogenic fungi, including Ascochyta sp., Epicoccum nigrum
Kink, Fusicoccum sp. (isolated from the walnut fruits); Pestalotiopsis microspore (Speg) Batista
& Peres, Phyllosticta juglandis (DC.) Sacc., Phomopsis (Sacc.) Bubak (isolated from the walnut
leaves); Fusarium oxysporum, Fusarium. graminearum, Fusarium oxysporum f. sp. Vasinfectum
(isolated from the walnut root); Cytospora chrysosperma (isolated from the Pinus armandii
branch); Venturia nashicola (isolated from the pear leaves); Alternaria brassicicola (isolated
from the cabbage leaves); and Pyricularia grisea (isolated from the paddy leaves). All the
phytopathogenic fungi were cultured on potato dextrose agar (PDA) medium (20% potato,
2.0% glucose, 2.0 % and 1.0 L sterile H2O) and stored at 4 ◦C in our laboratory.

2.6. Antifungal Activity of Root Endophytic Strains
2.6.1. Assessment of the Broad-Spectrum Antagonistic Activity of the Isolated Strains

Fourteen common phytopathogens were selected using the dual-culture method
to determine the broad-spectrum antagonistic activities of root endophytic strains [45].
Pathogens were incubated for seven days at 25 ◦C on PDA medium. The mycelial discs
(5.0 mm diameter) of each pathogenic fungus were placed in the center of the PDA plates
(9.0 cm diameter) for 48 h, and four bacterial colonies were inoculated equidistant (2.5 cm)
from the mycelium discs. Mycelial discs without any bacterial colonies served as blank
controls. All plates were replicated three times and cultured for an additional seven days
at 25 ◦C. Inhibition rates of mycelial growth for each phytopathogen were calculated
according to the following equation [46]:

Percentage inhibition = [(C − T)/C × 100)]

where C = mycelium diameter of fungus in control and T = mycelium diameter of fungus
in treatment.

2.6.2. Antagonistic Activity of the Isolated Strains against C. acutatum In Vitro

The inhibitory effects of the isolated strain on C. acutatum, mycelial growth, and
conidial germination were evaluated. The isolated Bacillus strains were cultured in LB
media by shaking at 150 rpm for 72 h at 25 ◦C. The culture was subjected to centrifugation
(10,000 rpm for 10 min at 4 ◦C), and the supernatant was filtered through a 0.22 µm syringe-
driven filter. Mycelial discs (5.0 mm diameter) of C. acutatum were placed in the center of the
PDA plates and incubated for 48 h. Four wells (5.0 mm diameter) were punched equidistant
(2.5 cm) from the mycelium discs using a sterile puncher. Culture filtrate (20 µL) was added
to each well, and the plate was cultured for seven days at 25 ◦C. The inhibition rates of
mycelial growth were calculated. Mycelial discs containing sterile LB media were used as
the controls. Furthermore, C. acutatum conidia were dispersed in 0.2% glucose solution
to obtain a conidial spore suspension of 107 conidia/mL. Conidial germination inhibition
was evaluated further by mixing the culture filtrate with 200 µL conidial suspension with
equal volumes of cell-free supernatants and incubated for 6 h at 25 ◦C. Sterile LB media
was used as the control instead of the culture filtrate. Microscopic evaluation was used to
determine the conidia germination (Zeiss Primo Star). The germination rate was calculated
by the equation: germination rate (%) = number of germinated conidia/total number of
conidia × 100. The treated conidia were stained with trypan blue (0.04%, Sigma, USA) for
2 min. The cell mortality rate was determined using the following equation:

Cell mortality rate (%) = number of mortality of conidia/total number of conidia ×
100. Treatment was repeated three times, and 100 conidia were counted per repetition [47].

2.7. Detection of Antibiotic Genes from the Endophytic Strains

The biosynthetic genes of the antimicrobial compounds were amplified using the
primers listed in Table 1. Seven genes related to antimicrobial effects, namely surfactin
(SFB), bacillomycin (BMYB), fengycin (FEND), iturin (ITUB), bacillaene (BAE), bacillibactin
(BAC), and bacilysin (BLY), were evaluated in our study. PCR was performed in a final
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volume of 25.0 µL containing 1.0 µL deoxynucleotides, 2.0 µL of each primer, 9.5 µL of
double distilled water (DD H2O), and 12.5 µL 1× Rapid Taq Master Mix (Tsingke, Beijing,
China). The PCR amplification procedure was performed using a thermocycler (Applied
Biosystems, USA) using the following conditions: initial denaturation at 98 ◦C for 2 min,
35 cycles of 10 s at 98 ◦C, relevant annealing temperature for the relevant primer (Table 1),
extension at 72 ◦C for 10 s, and final elongation for 5 min at 72 ◦C. The amplicons were
resolved by gel electrophoresis using a 1% agarose gel stained with ethidium bromide.

Table 1. PCR detection of 7 antibiotic biosynthesis genes from isolated strain. Reproduced or adapted
from [48], with permission from Elsevier, 2019.

Product Genes Melting Temp Primer
Sequence(5’→3’)

Size
(pb)

Surfactin SFB 50.0
TTCACACAATTAGAGCT 338
ATATGATGATTGCTCCAG

Bacillomycin BMYB 55.3
CGAAACGACGGTATGAAT 371
TCTGCCGTTCCTTATCTC

Iturin ITUB 55.1
ATCACCGATTCGATTTCA 708
GCTCGCTCCATATTATTTC

Fengycin FEND 57.6
TCAGCCGGTCTGTTGAAG 231
TCCTGCAGAAGGAGAAGT

Bacillaene BAE 57.6
CTCCGAAAGACGCAGAAT 599
ACCGACTTTATCCGCTCC

Bacillibactin BAC 57.6
ATCTTTATGGCGGCAGTC 595
ATACGGCTTACAGGCGAG

Bacilysin BLY 58.0
CGAATGTCATATCCACTTTGC 429
AACCGCATCAGCATAAGGA

2.8. Determination of Defense Enzyme Activity with the Walnut Leaf

Three-year-old walnut trees (Juglans sigillata L.) were regularly sprayed with the
isolated bacterial suspension (OD600: 0.3; approximately 1 × 108 CFU/mL) three times
daily, for two days. Leaves treated with sterile distilled water were used as the control.
The experiment was performed in triplicate, with three walnut trees per replicate. Leaf
tissues were collected at one, two, three, four, and five days post inoculation with the
isolated strain and stored at −70 ◦C for further enzyme assays. The activities of the three
defense-related enzymes were measured. Phenylalanine ammonia lyase (PAL), peroxidase
(POD), and polyphenol oxidase (PPO) activities were evaluated using the method described
by Zhou et al. [49]. All enzyme activities were represented as units (U) per gram of fresh
weight of samples (FW).

2.9. The Evaluation of the Biocontrol Efficacy of the Isolated Strains under Greenhouse Conditions

Assays were performed in a greenhouse at the Southwest Forestry University, Kunming,
Yunnan, China, from June to August 2021. Three-year-old walnut seedlings (Juglans sigillata
L.) with no physical injury or disease were collected, and uniformly sized walnut leaves were
cleaned by sterile distilled water and air-dried. A 100 mL Bacillus suspension (1 × 108 CFU/mL)
was used for each treatment. The leaf samples were sprayed, until runoff, three times daily for
two days. After treatment with the endophytic strain, the walnut leaves were injured using
an aseptic needle to form four symmetrical holes. Then, 20 µL of a conidial suspension of
C. acutatum was inoculated into the wounds, with sterile distilled water being the control. The
inoculated leaves were maintained at 25 ◦C, 70–80% humidity, under natural light conditions
in a greenhouse. Three independent replicates were performed, and 10 leaves were used for
each replicate [50]. Disease percentage (%) for each treatment was calculated. The severity
of anthracnose was evaluated using the disease severity index (DSI) and control effect (CE).
The DSI was calculated based on the percentage of diseased leaves and evaluated on a scale
of zero to nine, as described by Xie et al. [51] and Jiang et al. [52]: zero, no disease symptoms;
one, <5% of leaves with disease spots; three, 6–10% of leaves with disease spots; five, 11–25%
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of leaves with disease spots; seven, 26–50% of leaves with disease spots; nine, >50% of leaves
with disease spots. The DSI, biological CE, and disease percentage of the samples were
calculated using the following formulae:

Disease severity index (DSI) = [∑(number of leaves at each scale rating × the
scale rating)/(total number of leaves × highest scale rating)] × 100

Control effect (CE%) = [(Control disease index − treatment disease index)/control
disease index] × 100%

Disease percentage (DP%) = (Total number of diseased leaves)/(Total
number of treatment leaves) × 100

2.10. Statistical Analysis

The report data were analyzed using the statistical package SPSS 22.0 (IBM USA).
The contribution and significance of the samples were tested using one-way analysis of
variance (ANOVA) followed by Duncan’s multiple range test (p > 0.05). Each treatment
was performed in triplicate.

3. Results
3.1. Isolation and Selection of Bacillus from the Walnut Root

Based on the characteristics of the colonies three days post inoculation with LB media,
two larger colonies were selected from the medium according to the morphological charac-
teristics of the bacillus. No colonies were observed in the control plates, and the different
colonies were named WB1 and WB2.

3.2. Characterization and Identification of the Selected Endophytic Bacillus Strains

The two endophytic bacteria were evaluated for their antagonistic ability using the
dual-culture method. The strain WB1 was selected for further studies based on its excellent
biocontrol activities against the fourteen phytopathogens. The strain WB1 was cultured in
LB media, and its morphological characteristics were reported. The colonies of WB1 were
ivory-white with irregular and wrinkled edges. Physiological and biochemical results are
shown in Table 2. The strain WB1 was shown to be an endospore-forming, Gram-positive
bacterium. The strain showed negative results with the methyl red test, phenylalanine
ammonia lyase, and the catalase test and showed positive results with the hydrolysis
of amylum, gelatin, and pectin and the Voges-Proskauer test, oxidase, NH3 production,
nitrite reduction, urease, and nitrate reduction. Based on morphological, physiological, and
biochemical tests, the strain WB1 was confirmed to belong to the Bacillus genus.

Table 2. Physiological and biochemical characteristic of endophytic bacteria WB1.

Properties Activity Properties Activity

Catalase test + Phenylalanine
ammonia lyase −

Hydrolysis of
amylum + NH3 production +

Methyl red test − Nitrite reduction +
Voges-Proskauer test + Urease +
Hydrolysis of gelatin + Nitrate reduction +

Oxidase + Hydrolysis of Pectin +
Gram’ s reaction + Spore forming +

“+” indicates that the biochemical characteristic is “positive”. “−” indicates that biochemical characteristic is
“negative”.

Plant growth-promoting and hydrolytic enzyme synthesis are important characteristics
of Bacillus. Our study showed that WB1 grew on solid medium containing Ca3(PO4)2
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(Table 3) and CAS. Clear dissolution halos were observed around the bacterial colony,
which indicated that WB1 could solubilize phosphate (Table 3; Figure 1c) and produce
siderophore, respectively (Table 3; Figure 1b). The Salkowski assay also showed that WB1
had the ability to produce IAA (Table 3; Figure 1a). Hydrolase determination showed that
WB1 could degrade skimmed-milk powder, β-glucan, carboxymethyl cellulose, and soluble
starch, and clear hydrolysis halos were observed around the bacterial colony in different
solid media (Figure 2), confirming the ability of WB1 to produce protease, β-1,3-glucanase,
cellulase, and amylase.

Table 3. Characterization of hydrolytic enzymes test and plant growth promoting traits in vitro.

Isolate Growth Promoting Traits Hydrolytic Enzymes Production

WB1
P Solubilization IAA Production Siderophores Production Protease Glucanase Amylase Cellulase

+ + + + + + +

“+” indicates that the growth promoting traits or hydrolytic enzymes production is “positive”.
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The 16S rRNA gene sequence (1412 bp) of WB1 was submitted to the GenBank database
with the accession number OP132790. The phylogenetic tree (Figure 3) showed that WB1
was clustered on the same clade (branch) as Bacillus siamensis (AGVF01000043), and the
sequence similarity of the 16S rRNA gene was 99.72%. Thus, WB1 was identified as
Bacillus siamensis.
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3.3. Antifungal Activity of the Isolated Strains
3.3.1. Antifungal Spectrum of B. Siamensis WB1

The inhibition rates and inhibitory zone radius of WB1 on fourteen phytopathogens
were calculated, and the results are listed in Table 4. According to these results, B. siamensis
WB1 inhibited mycelial growth in all the phytopathogens; however, the bacteriostatic effect
was different for each pathogen (Table 4; Figure 4). The mycelial growth inhibition rates
of WB1 on the selected pathogens ranged from 31.44 ± 5.58% to 60.26 ± 2.90%, with the
highest inhibition rate observed for Cytospora chrysosperma (60.26 ± 2.90%). The weakest
bacteriostatic effect was observed for Epicoccum nigrum Kink (31.44 ± 5.58 %). Thus, WB1
is a broad-spectrum antagonistic strain with the ability to inhibit the mycelial growth of
several common pathogens.

Table 4. Antifungal activity of the WB1 against 14 phytopathogens in a dual plate assay.

Plant Pathgens Inhibition Rate (%) Inhibition Zone Radius (mm)

Ascochyta sp. 51.48 ± 0.85 bc 7.83 ± 1.07 bcd

Epicoccum nigrum Kink 31.44 ± 5.58 c 10.88 ± 0.86 a

Fusicoccum sp. 56.63 ± 3.86 ab 9.17 ± 0.52 b

Pestalotiopsis microspore (Speg) Batista & Peres 52.15 ± 4.75 bc 3.75 ± 0.30 h

Phyllosticta juglandis (DC.) Sacc. 33.45 ± 5.74 c 8.78 ± 1.50 bc

Phomopsis (Sacc.) Bubak 48.98 ± 2.92 b 5.63 ± 1.69 efg

Cytospora chrysosperma 60.26 ± 2.90 a 12.27 ± 1.12 a

F. oxysporum 53.33 ± 1.83 bc 6.80 ± 1.21 def
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Table 4. Cont.

Plant Pathgens Inhibition Rate (%) Inhibition Zone Radius (mm)

F. graminearum 37.16 ± 5.98 c 10.93 ± 0.6 a

Venturia nashicola 51.93 ± 3.62 bc 6.63 ± 1.03 def

Alternaria brassicicola 54.26 ± 1.62 abc 7.20 ± 0.63 cde

Pyricularia grisea 51.59 ± 0.55 bc 5.35 ± 0.74 fgh

F. oxysporum f. sp. vasinfectum 49.44 ± 2.52 bc 4.45 ± 0.72 gh

Colletotrichum acutatum 46.25 ± 3.21 bc 8.5 ± 1.1 bc

Data are mean ± SD. Different letters (a–h) represent significant differences between groups (Duncan’s multiple
range test, p < 0.05), while the same means insignificant.
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Figure 4. Antagonistic of B. Siamensis WB1 against 14 phytopathogens: (a) Pyricularia grisea,
(b) F. Graminearum, (c) Epicoccum nigrum Kink, (d) Phomopsis (Sacc.) Bubak, (e) Phyllosticta juglandis
(DC.) Sacc., (f) F. oxysporum, (g) Cytospora chrysosperma, (h) Ascochyta sp., (i) Fusicoccum sp.,
(j) F. oxysporum, f. sp. vasinfectum, (k) Venturia nashicola, (l) Colletotrichum acutatum,
(m) Pestalotiopsis microspore (Speg) Batista & Peres, (n) Alternaria brassicicola).

3.3.2. Antagonistic Activity of B. Siamensis WB1 against C. acutatum In Vitro

The mycelial growth of C. acutatum was significantly suppressed by WB1 super-
natant (Figure 5a1). The inhibitory zones and inhibition rates were 8.43 ± 0.18 mm
and 36.25 ± 0.83%, respectively. The effects of the culture supernatant on the conidia
of C. acutatum were also observed. The conidial germination of C. acutatum was inhibited
by the cell-free supernatants of WB1 (Figure 5a2), with parts of the dead cells stained with
trypan blue (Figure 5a3). Spore germination rates 6 h post-treatment were 67.0% and 31.67%
for WB1 and the control, respectively, (Table 5). Cell wall staining with trypan blue further
showed that the mortality rate in the treated supernatant of WB1 reached 73.33%, but the
control had a mortality rate of 3.33% (Table 5).
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Table 5. Inhibitory effect of WB1 fermentation filtrate on the conidia germination of the C. acutatum.

Treatment Germination Rate (%) Mortality Rate (%)

Control 67.0 ± 1.73 a 3.33 ± 1.53 a

WB1 31.67 ± 3.21 b 73.33 ± 2.89 b

Data are mean ± SD. Different letters (a,b) represent significant differences between groups (Duncan’s multiple
range test, p < 0.05), while the same means insignificant.

3.4. Detection of Antibiotic Genes from the Endophytic Strain WB1

Seven antimicrobial compound synthetic genes were selected and amplified by PCR
with specific primers. The PCR amplicons are shown in Figure 6 Our study showed that
B. siamensis WB1 could synthesize surfactin, bacillomycin, fengycin, bacillaene, bacillibactin,
and bacilysin, which are considered crucial antimicrobial compounds and play an important
role in the broad-spectrum antagonistic activity of WB1.
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3.5. Determination of Defense Enzyme Activity in the Walnut Leaf

The effect of B. siamensis WB1 on walnut trees was evaluated by determining the
three different types of resistance-related enzyme activities in walnut leaves. The results
indicated that defense-related enzymes in walnut leaves were differentially affected by
WB1 (Figure 7). The PAL and PPO activities increased and reached a maximum on the
second day of treatment, both of which were significantly (p < 0.05) higher than those of
the controls. Although PAL and PPO activity declined constantly from day two to day
five, PAL and PPO induced by WB1 had significantly enhanced activity compared to the
control (Figure 7a,b). Furthermore, POD had the highest activity one day after spraying
with the B. siamensis WB1 suspension (Figure 7c). Thus, POD in walnut leaves was more
sensitive and responded quickly to WB1. Compared to the controls (samples treated with
sterile distilled water), POD activity was significantly improved after one day of treatment
and stabilized from day three to day five. Although POD activity declined from day
three to day five, there was no difference between the experiment and the control. In our
study, defense-related enzyme activities, including PAL, POD, and PPO, were induced by
root endophytic strains of WB1, which improved resistance in treated walnut leaves and
reduced anthracnose damage.
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3.6. Evaluation of the Biocontrol Efficacy of the Isolated Strains under Greenhouse Conditions

According to the results of the greenhouse experiment, the disease percentage and DSI
of walnut anthracnose treated with WB1 were 14.46% and 47.22%, respectively, and they
were significantly lower than those of the control plants (Table 6). However, walnut leaf
treatments exhibited fewer disease symptoms (Figure 8a,b), and control plants exhibited
typical disease symptoms (Figure 8c,d). Therefore, WB1 exhibited good biocontrol efficacy
on walnut anthracnose and could be used as a biocontrol agent for controlling walnut
anthracnose in the future.
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Table 6. Control effect of the WB1 on walnut anthracnose in the greenhouse.

Treatment Disease Percentage
(%)

Disease Severity
Index Control Effect (%)

Control 58.33 ± 2.06 a 96.29 ± 3.21 a -
WB1 14.46 ± 4.44 b 47.22 ± 7.35 b 51.32 ± 8.72

Data are mean ± SD. Different letters (a,b) represent significant differences between groups (Duncan’s multiple
range test, p < 0.05), while the same means insignificant.
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4. Discussion

Walnuts are important economic trees, with walnut cultivation being the main source
of income for many families in the poor, remote, mountainous areas of the Yunnan Province.
Walnut anthracnose is one of the most devastating diseases, causing severe damage to
walnut fruit production and quality, with significant economic losses incurred yearly. Con-
sequently, it is important to develop an environmentally friendly method to protect walnut
trees from diseases [53]. The genus Bacillus, which plays an important role in biocontrol,
particularly the endophytic Bacillus spp. with their wide sterilization spectrum, is con-
sidered an excellent biocontrol agent providing defense against phytopathogens [54,55].
Endophytic Bacillus spp. colonization different plant tissues and, due to long-term system-
atic evolution, endophytic Bacillus has firmly formed a coevolutionary relationship with
different hosts [56]. Based on their coexistence with hosts, endophytic Bacillus performs
beneficial functions in plants without causing adverse effects [57,58]. Vaikuntapu et al. [59]
and Babu et al. [60] revealed that rhizosphere endophytic Bacillus has beneficial effects
on the host via their growth promotion and phytopathogen inhibition. Although several
studies have confirmed that the rhizosphere endophytic Bacillus spp. have potential for
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biological prevention and control, there are only limited reports on endophytic Bacillus spp.
With biocontrol functions in the walnut rhizosphere. Therefore, our study reported the
identification and characterization of endophytic Bacillus isolated from walnut roots for the
control of C. acutatum.

In our study, two endophytic Bacillus strains (WB1 and WB2) were isolated from
walnut roots using a tissue isolation method. Strain WB1 was selected because of its
broad-spectrum antagonistic activity. It exhibited strong inhibitory effects on mycelial
growth and the spore germination of C. acutatum. A broad antifungal spectrum is an
important factor affecting the bacteriostatic efficacy and industrial application of biocontrol
agents. Previous investigations have demonstrated that Bacillus produces more than one
antimicrobial substance to inhibit the growth of multiple phytopathogens. Duan et al. [61]
showed that B. vallismortis HSB-2 exhibited broad antifungal activity against nine plant
fungal pathogens, including Fusarium spp., Alternaria alternata, C. acutatum, Phoma sp.,
Aspergillus flavus, Rhizoctonia solani, Penicillium spp., Albifimbria verrucaria, and Valsa mali.
Endophytic B. velezensis HC-8 controlled powdery mildew disease and suppressed the
mycelial growth of Bipolaris maydis, F. oxysporum f. sp. lycoperisci, and F. graminearum [62].
Jiao et al. [45] also confirmed the production of fengycin, bacillomycin, and other metabo-
lites, which resulted in the endophytic B.amyloliquefaciens YN201732 having outstanding
antagonistic effects on 12 pathogenic fungi.

Based on morphological and biochemical tests and sequence analysis of the 16S r RNA
gene, strain WB1 was identified as B. siamensis. B. siamensis is considered an important
biocontrol agent capable of promoting plant growth and controlling phytopathogens [63].
As an important source of biocontrol microorganisms, B. siamensis has been widely used in
plant disease control. The endophytic B. siamensisi screened from tomato seed has the ability
to produce surfactin and bacillomycin, which showed significant antifungal activity and
increased the tomato fruit yield [64]. B. siamensis H30-3 demonstrated antifungal activities,
in vitro, against Alternaria brassicicola and C. higginsianum, thereby preventing black spot
and anthracnose disease in Chinese cabbage [65]. In addition to lipopeptide substances, the
volatile organic compounds produced by the B. siamensis strain also exhibited significant
antifungal activity against Botrytis cinerea and could control blueberry postharvest gray
mold [66]. Endophytic B. siamensis CNE6, which was isolated from chickpea nodules,
demonstrated multiple plant growth-promoting properties and significant antagonistic
activity against phytopathogenic fungi [67]. Simultaneously, an assay evaluating the plant
growth-promoting traits was performed in our study. B. siamensis WB1 had the ability
to produce siderophores and IAA and could promote phosphate solubilization. As an
important phytohormone, IAA can promote tissue growth by accelerating cell division
and elongation [68]. Depending on the ability of siderophore production and phosphate
solubilization, the soluble mineral content in the soil was improved and soil nutrients were
enriched by B. siamensis [69]. Thus, our study confirmed that B. siamensis WB1 has inherent
plant growth-promoting potential.

In vitro antifungal tests demonstrated that B. siamensis WB1 has significant antago-
nistic activity against fourteen phytopathogens, indicating broad-spectrum antagonistic
potential. The culture supernatant of WB1 also inhibited mycelial growth and spore germi-
nation in C. acutatum. According to previous studies, the antibacterial activity of Bacillus
spp. was attributed to the synthesis of hydrolytic enzymes, production of bacteriostatic
compounds, and induction of systemic resistance [70–72]. In our study, WB1 produced
protease, β-1,3-glucanase, cellulase, and amylase. Seven defense-related genes were cloned
and amplified from WB1 to aid in determining the antifungal mechanisms of WB1. Produc-
ing antifungal substances is considered to be the most efficient way of defense by Bacillus
against phytopathogen invasion. Surfactin, fengycin, and iturin were the main antibi-
otics of the lipopeptide produced by Bacillus spp. [73], which exhibited broad-spectrum
antimicrobial activity against pathogens [74,75]. Similarly, the isolated WB1 encoded for
lipopeptides and showed mycelial inhibition of multiple phytopathogens. Cell walls play
an important role in the cell morphology and defensive capabilities of the host. Cellulose,
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chitin, and β-1, 3-glucan were the key components of cell walls with fungal hyphae [76].
Our study revealed that cell wall-degrading enzymes were generated by WB1. Thus, the
mycelia of phytopathogens were destroyed by hydrolytic enzymes, which is one of the
crucial antifungal mechanisms of WB1 [77]. Furthermore, defense-related enzymes in
walnut leaves were enhanced by B. siamensis WB1 treatment. Enzymatic activities, includ-
ing the PAL, PPO, and POD of walnut, were elevated significantly one day after being
sprayed with a bacterial suspension of WB1. Defensive enzymes are associated with the
systemic-induced resistance of plants. Jiao et al. [61] found that B. velezensis HC-8 can
improve the antifungal ability of honeysuckle to resist powdery mildew by enhancing
the activities of PAL, PPO, and POD. B. siamensis also had the ability to induce systemic
resistance via regulation of the metabolic and signaling pathways, including phytohormone
signaling, phenylpropionic acid, flavonoid metabolism, and the peroxisome pathway [78].
It was confirmed that B. siamensis could control plant diseases, including tobacco brown
spot disease [51], cucumber Fusarium wilt [79], and mango anthracnose [77], due to the
defense-related enzymes of plants being strengthened by B. siamensis. Our study indicated
that B. siamensis WB1 triggered systemic resistance activation, which plays an important
role in biological control.

The severity of walnut anthracnose was alleviated after treatment with B. siamensis
WB1 in the greenhouse studies. Compared to the previous studies, B. siamensis showed
excellent potential for controlling brown spot disease in tobacco [51], sugarcane smut [80],
strawberry anthracnose [81], and other plant diseases. The B. siamensis-AMU03 was able
to protect potato from black scurf due to the production of surfactin, fengycin, and iturin;
the lipopeptide compounds inhibit Rhizoctonia solani and Fusarium oxysporum growth
significantly [82]. Thus, the damage caused by C. acutatum to walnuts was mitigated
by B. siamensis WB1, owing to the ability of B. siamensis WB1 to produce bacteriostatic
compounds, synthesize hydrolytic enzymes, and stimulate systemic resistance in the host.

5. Conclusions

In conclusion, the endophytic B. siamensis WB1 isolated from walnut roots was re-
garded as a biocontrol agent with outstanding broad-spectrum antagonistic activity and
walnut anthracnose control activities. Our study indicated that the isolated strain B. siamen-
sis WB1 showed plant growth-promoting traits, including phosphate solubilization, IAA
production, and siderophore production. Due to the production of antifungal lipopeptides
and extracellular hydrolytic enzymes, WB1 showed significant antibacterial activity against
fourteen phytopathogens, with an obvious negative effect on the spore germination of
C. acutatum. In addition, WB1 activated systemic resistance by enhancing the activity of
defense-related enzymes in host plants, which is a vital factor in walnut anthracnose control.
Consequently, based on the multiple beneficial traits of the isolated strain, B. siamensis WB1
is a remarkable endophytic Bacillus with great potential for application as a biocontrol agent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture12122102/s1, Figure S1. The phylogenetic tree of the
ITS gene sequence of the Colletotrichum acutatum swfu013.
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