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Abstract: For grain storage and protection, grain pest species recognition and population density 

estimation are of great significance. With the rapid development of deep learning technology, many 

studies have shown that convolutional neural networks (CNN)-based methods perform extremely 

well in image classification. However, such studies on grain pest classification are still limited in the 

following two aspects. Firstly, there is no high-quality dataset of primary insect pests specified by 

standard ISO 6322-3 and the Chinese Technical Criterion for Grain and Oil-seeds Storage (GB/T 

29890). The images of realistic storage scenes bring great challenges to the identification of grain 

pests as the images have attributes of small objects, varying pest shapes and cluttered backgrounds. 

Secondly, existing studies mostly use channel or spatial attention mechanisms, and as a conse-

quence, useful information in other domains has not been fully utilized. To address such limitations, 

we collect a dataset named GP10, which consists of 1082 primary insect pest images in 10 species. 

Moreover, we involve discrete wavelet transform (DWT) in a convolutional neural network to con-

struct a novel triple-attention network (FcsNet) combined with frequency, channel and spatial at-

tention modules. Next, we compare the network performance and parameters against several state-

of-the-art networks based on different attention mechanisms. We evaluate the proposed network 

on our dataset GP10 and open dataset D0, achieving classification accuracy of 73.79% and 98.16%. 

The proposed network obtains more than 3% accuracy gains on the challenging dataset GP10 with 

parameters and computation operations slightly increased. Visualization with gradient-weighted 

class activation mapping (Grad-CAM) demonstrates that FcsNet has comparative advantages in 

image classification tasks. 

Keywords: grain pest classification; visual attention mechanism; discrete wavelet transform;  

deep learning; computer vision 

 

1. Introduction 

Grains including cereals and legumes provide food for humans and livestock. Insect 

infestation is one of the leading factors affecting the quantity, quality, nutrition and mar-

ket value of stored grains. Insect infestation during storage accounts for about 6–10% of 

postharvest grain losses, which poses serious challenges to food security in many coun-

tries [1]. In the European standards of Storage of Cereals and Pulses, ISO 6322-3 gives 

guidance on controlling attacks by 23 insect and mite pests. In the Chinese Technical Cri-

terion for Grain and Oil-seed Storage (GB/T 29890-2013) [2], ten primary insect pests are 

specified to be identified. The species of ten primary insect pests are araecerus fasciculatus 

(AF, coffee bean weevil), bruchus pisorum (BP, pea weevil), bruchus rufimanus boheman 

(BRB, broadbean weevil), callosobruchus chinensis (CC, azuki bean weevil), plodia inter-

punctella (PI, Indian meal moth), rhizopertha dominica (RD, lesser grain borer), sitophilus 
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oryzae (SO, rice weevil), sitophilus zeamais (SZ, maize weevil), sitotroga cerealella (SC, 

angoumois grain moth) and tenebroides mauritanicus linne (TML, cadelle beetle). Fur-

thermore, the unprocessed grain can be graded into basically clear grain (≤2 insects per 

kg), regular occurrence of insect grain (3–10 insects per kg), and intense occurrence of 

insect grain (>10 insects per kg), according to the population density of these ten primary 

insect pests. Therefore, grain insect identification and population destiny estimation are 

necessary for applying proper control actions.  

The popular methods of insect detection and identification are visual inspection, 

probe sampling, acoustic detection, electronic nose and imaging methods [3]. Among 

them, the conventional methods such as visual inspection, trap methods and probe sam-

pling are time-consuming and labor-intensive. Modern methods such as acoustic detec-

tion and electronic nose are costly and unreliable in noisy and complex environments. 

With the advancement of computer vision, image processing-based methods are proved 

to be more suitable for identification and classification of grain insects.  

Traditional image processing methods utilize color, edge, corner, key point or other 

low-level features to recognize the grain pests [4–7]. For example, the United States De-

partment of Agriculture (USDA) used visual reference images for insect detection and 

grain grading since 1997. Ridgway et al. [8] developed a non-touching method based on 

machine vision to detect saw-toothed grain beetles. Wen et al. [9] proposed a hierarchical 

model that combined both local features and global features to identify orchard insects. 

Thanks to huge volumes of image data, convolutional neural networks (CNN) 

achieve great success in image classification, object detection, image segmentation and 

other visual tasks. CNN-based deep learning models such as ResNet [10] and VGGNet 

[11] have already surpassed human-level accuracy in image classification. Albeit the pro-

gress has been made in common object classifications, grain insect pest classification is 

still a challenging task in the practical application. As ten primary insect pests specified 

in GB/T 29890-2013 occur in three groups: grain weevils, grain borers and grain moths, 

among each group, the insects are difficult to distinguish. On the other hand, the attributes 

of different shapes, small sizes, multi-colors and cluttered backgrounds also pose chal-

lenges on grain insect classification. Motivated by the fact that humans and birds can find 

the insects in grains effectively, we introduce frequency, channel and spatial attention 

mechanisms into the image classification models. 

This paper focuses on the frequency-enhanced attention mechanism, which inte-

grates more clues to improve the accuracy of grain insect classification. The main contri-

butions of this paper can be summarized as follows.  

(1). We collect a challenging dataset of 10 species of stored-grain insects specified by 

the standard GB/T 29890-2013. 

(2). We construct a novel triple-attention network (FcsNet) combined with frequency, 

channel and spatial attention modules. The frequency information of discrete wavelet 

transform (DWT) and discrete cosine transform (DCT) are involved in the convolutional 

neural network. FcsNet can be plugged into classic backbone networks as an efficient add-

on module. 

(3). Extensive experiments and ablation studies are carried out on the proposed da-

taset GP10 and open dataset D0. More insights into the frequency-enhanced attention 

mechanism can be found in the visualization results of the confusion matrix and Grad-

CAM. 

2. Related Works 

In order to process the information received visually more efficiently, people are used 

to paying attention to some of the information while ignoring other visible information. 

Inspired by human vision, a new method for data processing is proposed, called attention 

mechanism. The attention mechanism is essential to add different weights to each part of 

the input information, so that the model could pay attention to areas which are more sig-

nificantly weighted and thus improves the accuracy of model judgment. 
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To solve the problems caused by pests, Cheng et al. [12] established a system that can 

identify agricultural pests in a complex background using a convolutional neural network 

(CNN) and residual network. This system has 98.67% accuracy for classifying the images 

of 10 species of agricultural pests, which is better than the ordinary deep neural network 

AlexNet [13]. Nanni et al. [14] proposed an automatic pest classification model by com-

bining CNN and significance methods, but these methods [12,14] do not introduce an at-

tention mechanism. Xie et al. [15] published a large field crop pest dataset (D0). The da-

taset contains about 4500 images of 40 species of field crop pests. However, the back-

ground of this dataset is single and the pose of pests is similar, which makes it easy to 

extract pest features. Ung et al. [16] followed a residual attention network (RAN), feature 

pyramid network (FPN) and a multi-branch multi-scale attention network (MMAL-Net) 

to improve the accuracy of the final pest classification based on integration technology 

and in accordance with the prediction results of the above three networks. However, they 

used only one attention mechanism. Zhou et al. [17] proposed an efficient small-scale con-

volutional neural network for pest identification, which is composed of a double fusion 

with a squeeze-and-excitation-bottleneck block (DFSEB block) and a max feature expan-

sion block (ME block). Li et al. [18] developed a multi-scale insect detector (MSI_Detector) 

by constructing a feature pyramid to extract stored-grain insect image features with dif-

ferent spatial resolutions and semantic information. Shi et al. [19] proposed a multi-class 

stored-grain insect object detection network based on R-FCN (Region-based fully convo-

lutional network) which achieves both high classification accuracy and speed. 

In the development of attention in computer vision, common attention mechanisms 

can be divided into spatial attention and channel attention. Spatial attention can be viewed 

as an adaptive spatial region selection mechanism, and using it can directly predict the 

most relevant spatial locations [20,21] or select important spatial regions [22]. Hu et al. 

[23] captured long-range spatial context information by gather and excite operations, and 

they designed the GENet model, which not only emphasizes on important features, but 

also suppresses noise. Li et al. [24] viewed self-attention in terms of expectation maximi-

zation (EM) and proposed EM attention. Huang et al. [25] treat the self-attention operation 

as graph convolution and proposed cross-attention. Compared with the previous self-at-

tention-based spatial attention [22], it improves the speed and generalization capability. 

Channel attention adaptively recalibrates the weight of each channel, and can be viewed 

as an object selection process, thus determining to what to pay attention. Hu et al. [26] 

proposed a new architecture unit based on ResNet [10], which is called a squeeze-and-

excitation network (SENet) block. They compared the performance of global average pool-

ing (GAP) and global maximum pooling (GMP) as squeeze operators, and finally adopted 

GAP to calculate the channel attention. Gao et al. [27] proposed the global second-order 

pooling (GSoP) block to address the limited ability of the SE block to capture global infor-

mation. To overcome the high model complexity, Wang et al. [28] proposed an efficient 

channel attention (ECA) block. This block introduces one-dimensional convolution to re-

duce the redundancy of fully connected layers and obtain more efficient results. Moreo-

ver, Woo et al. [29] found that the combination of two kinds of attention has better perfor-

mance through ablation experiments, and proposed the convolutional block attention 

module (CBAM). From another perspective, Qin et al. [30] regarded the channel represen-

tation problem in SENet as a compression process using frequency analysis, and proposed 

a new multi-spectral channel attention method (FcaNet) with the performance superior to 

that of SENet. Guo et al. [31] surveyed attention models in deep neural networks and 

encouraged various studies to improve deep learning results by using attention mecha-

nisms. 
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3. Materials and Methods 

3.1. Residual Networks 

He et al. [32] proposed a residual network (ResNet) in 2015. This network solved the 

network degradation problem caused by too many hidden layers in the deep neural net-

work (DNN) (this degradation is not caused by overfitting), abandoned the dropout and 

used Batch Normalization (BN) for training acceleration. In addition, it introduced the 

shortcut connection between the input and output to avoid gradient disappearance and 

explosion in the DNN training. After these problems are solved, the depth of the network 

rose by several orders of magnitude. 

The structure of ResNet can not only speed up the training of neural networks very 

quickly and improve the accuracy of the model, but it is also easy to optimize. Therefore, 

ResNet has become the basis for many research tasks, including classification, detection 

and segmentation. In other words, ResNet is suitable for backbone networks. 

3.2. Channel Attention Module 

The channel attention mechanism was proposed by Hu et al. [26] in 2017. It can real-

locate the feature weight on the channel based on a new “feature recalibration” strategy, 

which has improved effective features and suppressed invalid feature information. More-

over, Woo et al. [29] noted that the global maximum pooling (GMP) also plays a role in 

channel attention, and has modified it, as shown in Figure 1. All above can be summarized 

as follows: 

C = Fcbam (X, θ) = σ�W�δ(W� GAP(X)) + W�δ(W� GMP(X))� (1)

where X represents the input, GAP and GMP represent the global average pooling and 

global maximum pooling operations, respectively, �� represents the weight of the full 

connection layer, and the � and � distribution represents ReLU and Sigmoid functions. 

+

Input  feature

MaxPool

AvgPool

FC1 ReLU FC2

Channel AttentionSigmoid

 

Figure 1. Diagram of channel attention module (CAM). As illustrated, the channel attention module 

utilizes both max-pooling outputs and average-pooling outputs and forward them to the fully con-

nected layer, which finally generates channel attention through the sigmoid function. 

3.3. Spatial Attention Module 

At the same time, Woo et al. [29] noted the importance of spatial attention and pro-

posed a convolutional block attention module (CBAM). They found that spatial attention 

and channel attention are complementary. Unlike channel attention, the spatial attention 

focuses on "where" the information part lies. In the study of spatial attention, they com-

pared the convolution kernels of different sizes and found that a larger convolution kernel 

can produce better accuracy. This shows that a wider receptive field is needed in spatial 

attention. As shown in Figure 2, it can be written as follows: 

� = �(Conv ([GAP (X); GMP (X)])) (2)

where Conv(·) represents a convolution operation. 
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Figure 2. Diagram of spatial attention module (SAM). As illustrated, the spatial attention module 

forwards max pooling outputs and average pooling outputs to the convolution layer and generates 

spatial attention through the sigmoid function. 

3.4. Frequency Attention Module 

In addition to the channel and spatial attention modules, Qin et al. [30] also proposed 

a frequency domain channel attention network (FcaNet). Based on SENet, they regarded 

the channel representation problem as a compression process using frequency analysis, 

and analyzed GAP in the frequency domain. They mathematically proved that GAP is a 

special case of characteristics in the frequency domain and proposed a new multi-spectral 

channel attention method based on such discovery. 

GAP is used to calculate the mean value of all spatial elements in each channel. How-

ever, different channels may have the same mean value, but have different semantics, 

which leads to poor diversity of features obtained through GAP. The discrete cosine trans-

form (DCT) is a kind of Fourier transform and is often used to compress signals and im-

ages, and the two-dimensional DCT contains more frequency components, including the 

lowest frequency component GAP. 

Specifically, it first divides the input images into several groups and then conducts 

two-dimensional DCT processing for each group. Finally, similar to SENet processing, the 

final weight is obtained by using the full connection layer, ReLU and Sigmoid functions. 

This can be written as follows: 

� = �fca (�, �) = �����(��[(DCT (Group (�)))])� (3)

where DCT represents 2D discrete cosine transform while Group represents dividing the 

input into several groups. 

Li et al. [33] found that the down-sampling (max-pooling, average-pooling and 

strided-convolution) in deep learning often amplifies random noise and destroys the basic 

results of the target. They used Discrete Wavelet Transform (DWT) to replace the down-

sampling operation in the network to improve the robustness of model classification. 

DWT can decompose the one-dimensional signal s = ����
�∈ℤ

 into low-frequency 

components s� = {s��}�∈ℤ and high-frequency components d� = {d��}�∈ℤ, which can be 

written as follows: 

 �
��� = ∑ ��������

��� = ∑ ℎ�������
 (4)

where l = {��}�∈ℤ and h = {ℎ�}�∈ℤ are respectively low-pass and high-pass filters of the 

orthogonal wavelet. 

If expressed by vectors and matrices, the formula (4) can be written as: 

s� = Ls, d� = Hs (5)

where L and H are, respectively: 

L = �

⋯ ⋯ ⋯
⋯ ��� �� �� ⋯

⋯ ��� �� �� ⋯

⋯ ⋯

� (6)
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H = �

⋯ ⋯ ⋯
⋯ ℎ�� ℎ� ℎ� ⋯

⋯ ℎ�� ℎ� ℎ� ⋯

⋯ ⋯

� (7)

For a 2D signal X, DWT usually performs one-dimensional DWT on each row and 

column, namely: 

X�� = LXL� (8)

X�� = HXL� (9)

X�� = LXH� (10)

X�� = HXH� (11)

DWT decomposes an image X into high-frequency components X�� , X��  and X�� 

and low-frequency component X��. X�� is the low-resolution version of the image it keeps 

the most energy and  basic structure of the image. While X��, X�� and X�� represent the 

image details that include edges and noise. Therefore, the DWT coefficients can be inte-

grated into the convolution neural network to extract useful features for object classifica-

tion. 

3.5. Proposed Method 

In this work, we believe that channel attention, spatial attention and frequency do-

main attention focus on the target area in the image from different dimensions. We spec-

ulate that if these three attention modules are combined, the network’s overall perfor-

mance will be improved by mutual complementation. Based on the three attention mod-

ules and DWT down-sampling operation, we proposed a novel triple-attention network 

(FcsNet). Figure 3 shows the schematic diagram of the network we proposed. 

SAM
  CAM

××F

  FAM

+×
conv

DWT

F' F'' F''' 

Previous
conv blocks

Next 
conv blocks

Conv2D BN

 

Figure 3. FcsNet integrated with a ResBlock in ResNet. This figure shows the exact position of our 

module when integrated within a ResBlock. We apply FcsNet on the convolution outputs in each 

block. Therein, the condition for DWT operation is Stride equal to 2. 

To compare the network structures of ResNet and FcsNet (ours), we list their details 

in Table 1, where DWT¹ represents the wavelet transform substituting max-pooling oper-

ation and DWT² represents the wavelet transform substituting convolution operation with 

stride 2. CAM, SAM and FAM represent channel, spatial and frequency attention mod-

ules, respectively. 
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Table 1. Network structure of ResNet-50 and Fcs-ResNet-50(ours). The shapes and operations with 

specific parameter settings of a residual block are shown in brackets, with the numbers of blocks 

stacked. The right side shows different down-sampling performed by conv3_1, conv4_1, and 

conv5_1 with a stride of 2. 

Layer Name Output Size ResNet-50 Fcs_ResNet-50 

conv1 112×112 conv, 7×7, 64, stride 2 

conv2_x 56×56 

max pool, 3×3, stride 2 DWT¹ 

�
conv, 1 × 1,64
conv, 3 × 3,64
conv, 1 × 1,256

� × 3 

Conv2D 

BN 

�

conv, 1 × 1,64
conv, 3 × 3,64
conv, 1 × 1,256
CAM + SAM + FAM

� × 3 

DWT² 

Conv1×1 

BN 

conv3_x 28×28 �
conv, 1 × 1,128
conv, 3 × 3,128
conv, 1 × 1,512

� × 4 �

conv, 1 × 1,128
conv, 3 × 3,128
conv, 1 × 1,512
CAM + SAM + FAM

� × 4 

conv4_x 14×14 �
conv, 1 × 1,256
conv, 3 × 3,256
conv, 1 × 1,1024

� × 6 �

conv, 1 × 1,256
conv, 3 × 3,256
conv, 1 × 1,1024
CAM + SAM + FAM

� × 6 

conv5_x 7×7 �
conv, 1 × 1,512
conv, 3 × 3,512
conv, 1 × 1,2048

� × 3 �

conv, 1 × 1,512
conv, 3 × 3,512
conv, 1 × 1,2048
CAM + SAM + FAM

� × 3 

 1×1 global average pool, 10-d fc, softmax 

4. Experiments and Results 

In this section, firstly we explained our experiment. Secondly, in order to better com-

pare our dataset (GP10) and D0 dataset [15], we rebuilt all evaluated networks 

[10,26,29,30] in the PyTorch framework, and used standard evaluation indicators to com-

pare with the performance of previous methods. Finally, we studied the effectiveness of 

our method in the classification of grain pest images. 

4.1. Datasets 

We evaluated our proposed method on two datasets. We collected the first dataset 

(GP10), including 1082 pictures of 10 species of stored grain pests, namely, araecerus fas-

ciculatus (AF, coffee bean weevil), bruchus pisorum (BP, pea weevil), bruchus rufimanus 

boheman (BRB, broad bean weevil), callosobruchus chinensis (CC, azuki bean weevil), 

plodia interpunctella (PI, Indian meal moth), rhizopertha dominica (RD, lesser grain 

borer), sitophilus oryzae (SO, rice weevil), sitophilus zeamais (SZ, maize weevil), sitotroga 

cerealella (SC, angoumois grain moth) and tenebroides mauritanicus linne (TML, cadelle 

beetle). Figure 4 shows some sample images of our dataset. 
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Figure 4. Sample images collected in GP10. 

While collecting these samples, we relied on common image specimen search en-

gines, including iNaturalist and Bugwood Images, etc. iNaturalist is a global community 

containing biodiversity data, whose goal is to promote biodiversity discipline and conser-

vation. Bugwood Images is a funded project launched by the Center for Invasive Species 

and Ecosystem Health of the University of Georgia in 1994. It provides an accessible high-

quality image archive and focuses on species related to economy, including insects, plants, 

agriculture and integrated pest management, etc. 

We used the English name and corresponding synonyms of each subcategory as 

query keywords to search and download samples of the corresponding category. Sec-

ondly, we searched and learned the structural characteristics of each type of stored grain 

pests on professional insect science websites to screen and verify each type of sample. 

Thirdly, we cut each type of picture according to size requirement for convenient model 

training later. 

The second dataset is D0 (4500 pictures in all), including 40 different pests. Some are 

shown in Figure 5. 

 

Figure 5. Example images in D0. 
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4.2. Experiment Settings 

Our dataset is divided into three subsets: training set images (876 pcs), verification 

set images (103 pcs) and test set images (103 pcs), subject to the ratio of 8:1:1. See Table 2 

for detailed classification. In order to obtain sufficient target features, we first expanded 

the training set to 2628 images by flipping horizontally and adding Gaussian noise. To 

make the experiment more normal and impartial, we first used python script to divide the 

three subsets at random, with no duplicate images present in these three subsets. The 

same set of division data was used in the subsequent experiments. Similarly, the same 

settings were used on dataset D0. 

We processed the input images in advance. Firstly, we applied random clipping to 

the training set and adjusted its size to 224×224. Then, we used the method of randomly 

changing brightness, contrast and saturation to enhance the generalization of the model 

and solve the problem of overfitting. In the verification set, firstly, we adjusted the mini-

mum edge of the image to 256, with the aspect ratio of the original image maintained. 

Then, we used the center clipping method to cut the image size to 224×224. Finally, we 

applied the center clipping method with the same size as the training window in the test 

phase. For more convenient training, we converted the data into Tensor format and stand-

ardized the data accordingly. 

In the phase of training, we used the multi-class cross entropy as the cost function. 

Then, we used the Adam optimizer with a learning rate of 10�� to optimize the network 

parameters. Next, we set the small batch to 32 and conducted 200 epochs of training. Fi-

nally, we saved the optimal training parameters and tested their predictions. 

Table 2. Composition of the D0 dataset. 

Species Abbreviations Number of Samples Train Val Test 

Araecetus fasciculatus AF 115 93 11 11 

Bruchus pisorum BP 110 88 11 11 

Bruchus rufimanus Boheman BRB 97 79 9 9 

Callosobruchus chinensis CC 83 67 8 8 

Plodia interpunctella PI 129 105 12 12 

Rhizopertha dominica RD 69 57 6 6 

Sitophilus oryzae SO 176 142 17 17 

Sitophilus zeamais SZ 83 67 8 8 

Sitotroga cerealella SC 115 93 11 11 

Tenebroides mauritanicus Linne TML 105 85 10 10 

Total  1082 876 103 103 

4.3. Evaluation Metrics 

Because of the imbalanced class distribution of our dataset, we employed several 

comprehensive metrics for the classification task, including parameters (params), floating 

point operations (FLOPs), accuracy (acc), average precision (MPre), average recall (MRec), 

average F1-score (MF1), receiver operating characteristic (ROC) curve and area under the 

roc curve (AUC). 

FLOPs are mainly used to describe the computation of a model, which is similar to 

the time complexity of an algorithm. 

For the convolution kernel, we compute FLOPs as follows: 

FLOPs_c = 2��(�in�� + 1)�out (12)

where H, W and �in  are the respective height, width and number of channels of the input 

feature map, K is the kernel width (assumed to be symmetric), and �out  is the number of 

output channels. 

For fully connected layers, we compute FLOPs as follows: 
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FLOPs_fc = (2� − 1)� (13)

where � is the input dimension and � is the output dimension. 

Params is mainly used to describe the size of a model, which is similar to the spatial 

complexity of an algorithm. 

The parameter number of the convolution layer is calculated as follows: 

params_c = �� × (�� × ��) (14)

where �� is the number of output channels, �� is the number of input channels, and K is 

the kernel width (assumed to be symmetric). If the convolution kernel has a bias term, it 

will be added by one, and if not, it will not be added. 

The number of parameters of the full connection layer is calculated as follows: 

params_fc = (� + 1) × � = � × � + � (15)

where � is the length of the input vector and � is the length of the output vector. 

Acc is the proportion of the true positive value to the total predicted value among all 

classes as follows: 

Acc =
TP

�
 (16)

where N is the number of samples and TP is true positive. Pre is the proportion of positive 

values in the total number of categories. To treat the classes as being equally important, 

we computed the precision for each category, then took an average of them to obtain MPre 

as follows: 

Pre� =
TP�

TP� + FP�
 (17)

MPre =
∑  �

��� Pre�

�
 (18)

where C is the number of classes. FP� and TP� stand for the false positive and the true 

positive of the � − �ℎ class, respectively. Similarly, we computed Rec and MRec as fol-

lows: 

Rec� =
TP�

TP� + FN�
 (19)

MRec =
∑  �

��� Rec�

�
 (20)

where FN� stands for the false negative of the � − �ℎ class. The F1 combines the MPre 

and MRec as a trade-off as follows: 

MF1 = 2
MPre ⋅ MRec

MPre + MRec
 (21)

In addition, the ROC (receiver operating characteristic) curve is used to compare the 

classification performance of the models. The vertical axis of the ROC curve represents 

the true-positive rate (TPR), and the horizontal axis represents the false-positive ratio 

(FPR). The higher the TPR and the lower the FPR, the better the performance of the model. 

In other words, the closer the ROC curve is to the upper left corner, the higher the model 

prediction results. TPR and FPR are defined as follows: 

TPR =
TP

TP + FN
 (22)

FPR =
FP

TN + FP
 (23)
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where TP, FP, FN and TN refer to true positive, false positive, false negative and true 

negative, respectively. The ROC curve is difficult to distinguish the performance gap be-

tween models, so we choose AUC (area under the roc curve) as the evaluation metric. The 

AUC is between [0,1], and the closer its value to 1, the better the classification performance 

of the model. The AUC definition is as follows: 

����� = ∫ ����(���) (24)

4.4. Experimental Results 

4.4.1. Verification on private dataset 

In accordance with the evaluation criteria in Section 4.3, we first compare the perfor-

mance and efficiency of the proposed model with existing attention mechanisms on the 

dataset GP10 and D0, then report the results in Table 3. We observed that our method 

performs best on Acc, MPre, MRec and MF1. FcsNet achieves 11.65%, 9.71%, 5.83% and 

3.89% accuracy gain  than ResNet, SENet, CBAM and FcaNet, respectively. This means 

that our method is effective. This method can combine the attention of frequency domain, 

channel and space, and use DWT for down-sampling to improve the accuracy signifi-

cantly. 

Table 3. The performance comparison of different networks on GP10 and D0 datasets. 

Architecture backbone Params FLOPs 
GP10 D0 

Acc MPre MRec MF1 Acc MPre MRec MF1 

ResNet ResNet-50 23.53M 4.12G 62.14 64.74 61.17 61.71 96.08 96.50 95.61 95.82 

SENet ResNet-50 26.04M 4.13G 64.08 69.30 64.62 63.93 97.00 97.49 96.79 97.00 

CBAM ResNet-50 26.05M 4.14G 67.96 71.37 67.16 67.45 97.47 97.76 97.28 97.40 

FcaNet ResNet-50 26.04M 4.13G 69.90 69.88 68.77 68.06 97.63 98.19 97.62 97.81 

FcsNet(ours) ResNet-50 28.56M 5.18G 73.79 74.38 72.79 71.99 98.16 98.49 98.33 98.34 

Furthermore, we analyzed the complexity of this method from two aspects such as 

learnable parameters (Params) and floating point operations per second (FLOPs) . For pa-

rameters, our method increased by 9.6% and 9.7%, respectively, compared with CBAM 

and FcaNet. For the FLOPs , our method increased by 25.4% and 25.1%, respectively, com-

pared with CBAM and FcaNet. 

Our method (FcsNet) achieved a confusion matrix as shown in Figure 6. It can be 

found that obvious errors are caused by several similar categories which belong to the 

same genus and have many common features. For example, BP and BRB belong to the 

same genus of bruchus, SO and SZ belong to the same genus of sitophilus. 
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Figure 6. Confusion matrix of the proposed method. The vertical axis is the true label, and the hor-

izontal axis represents the predicted label. The values in the diagonal area in the figure are the pro-

portion of correct predictions, and the other values are the proportions of wrong predictions. The 

darker the color, the larger the proportion. 

Figure 7 shows the prediction probability of SO and SZ. Because of the similar mor-

phology of SO and SZ, there are two prediction probabilities much bigger than the other 

categories. This means these two categories are often misclassified. If the top-2 error rate 

is considered, the accuracy will be greatly improved on the proposed dataset GP10. This 

also confirms that the above-mentioned categories of the same genus have common fea-

turesand pose  challenges to our research.  
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Figure 7. Comparison of SO and SZ prediction results, where (a) and (c) are bar charts of the pre-

diction probability of SO and SZ(in percentage) . The horizontal axis is the class name and the ver-

tical axis is the probability. Examples of images for SO and SZ are shown in (b) and (d), respectively. 

In order to eliminate the influence of sample imbalance, we draw the ROC curve of 

each model to intuitively represent the prediction ability of each model. We also calcu-

lated the AUC to make it clear which model performed better. This is shown in Figure 8. 

By comparison, it is easy to find that, although our model is slightly inferior to FcaNet 

and CBAM in the beginning, the performance of our model is slightly higher than other 

models in general. 
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Figure 8. ROC comparison of different models. The horizontal axis is the false positive rate, the 

vertical axis is the true positive rate, and the lower right corner is the color and AUC value corre-

sponding to the model. 

4.4.2. Verification on Open Dataset 

In the field of pest images, the open dataset D0 of Xie et al. [15] is often used as a 

standard dataset to verify proposed methods for classification. In order to further verify 

the performance of the proposed method, we used this dataset as supplementary proof. 

We observe that FcsNet is superior to other architectures in every comparison, which in-

dicates that the benefits of FcsNet are not limited to our dataset (GP10). See Table 3 for 

details. 

Through comparison, it is not difficult to find that the accuracy on the dataset GP10 

is not as high as that on D0. Based on analysis, we concluded the following two reasons. 

Firstly, the images on dataset D0 have a similar background and the pest postures change 

slightly. In Figure 5, we give images of some categories. Secondly, our dataset (GP10) has 

a complex background and a high degree of similarity exists in appearance between dif-

ferent categories. Therefore, classification on the GP10 dataset is more challenging. 

4.5. Visualization with Grad-CAM 

This section shows the visualization of our proposed model. Previously, it was be-

lieved that the deep learning network was a black box and lacked some explanatory 

power, for example, in classification network models (such as VGGNet [11], ResNet [10] 

and MobileNet [34]), and it was unclear why the network predicted like this and where 

the concerns were for each category. Zhou et al. [35] proposed a kind of category activity 

mapping technology, which can draw a thermodynamic chart to show to which areas the 

network pays attention, and also where the network structure needs to be changed and 
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retraining carried out. Moreover, Selvaraju et al. [36] upgraded and improved it based on 

category activity mapping to make the existing most advanced deep model interpretable 

without changing its architecture, thus avoiding the tradeoff between interpretability and 

accuracy. 

Figure 9 shows the Grad-CAM [36] generated by ResNet, SENet, CBAM, FcaNet and 

FcsNet based on the input images of our test set. As can be seen, FcsNet includes the focus 

of other models in the focus input image, and it seems to focus more on the whole area of 

the grain pests. This also confirms the effectiveness of our proposed method. 

 

Figure 9. The Grad-CAM visualization results. We compared the visualization results from ResNet, 

SENet, CBAM, FcaNet and FcsNet, and calculated the gradient CAM visualization of the final con-

volution output. 

5. Conclusions 

In this paper, we propose a stored grain pest identification method based on a triple-

attention module (FCS), namely, frequency domain attention (FAM), channel attention 

(CAM) and spatial attention (SAM). We combine the three domains and use wavelet trans-

form for down-sampling to achieve considerable improvement in performance while 

maintaining a low overhead, and verified on our dataset (GP10) and D0, with the accuracy 

rates being 73.79% and 98.16%, respectively. FcsNet has good performance and can pro-

vide a new idea and method for the rapid detection and identification of pests. In the 

future, our work will focus on using multi-domain attention mechanisms to solve pest 

detection and segmentation tasks. 
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