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Abstract: We estimate the combined effect of climate and landuse-landcover (LU-LC) change on the
streamflow of the Betwa River; a semi-arid catchment in Central India. We have used the observed
and future bias-corrected climatic datasets from 1980–2100. To assess the LU-LC change in the
catchment, we have processed and classified the Landsat satellite images from 1990–2020. We have
used Artificial Neural Network (ANN) based Cellular Automata (CA) model to simulate the future
LU-LC. Further, we coupled the observed and projected LU-LC and climatic variables in the SWAT
(Soil and water assessment tool) model to simulate the streamflow of the Betwa River. In doing so,
we have setup this model for the observed (1980–2000 and 2001–2020) and projected (2023–2060 and
2061–2100) time periods by using the LU-LC of the years 1990, 2018, and 2040, 2070, respectively. We
observed that the combined effect of climate and LU-LC change resulted in the reduction in the mean
monsoon stream flow of the Betwa River by 16% during 2001–2020 as compared to 1982–2000. In
all four CMIP6 climatic scenarios (SSP126, SSP245, SSP370, and SSP585), the mean monsoon stream
flow is expected to decrease by 39–47% and 31–47% during 2023–2060 and 2061–2100, respectively
as compared to the observed time period 1982–2020. Furthermore, average monsoon rainfall in the
catchment will decrease by 30–35% during 2023–2060 and 23–30% during 2061–2100 with respect
to 1982–2020.

Keywords: streamflow; semi-arid; climate change; landuse/landcover change; CMIP6; SWAT model;
agriculture water demand

1. Introduction

Water resource management is becoming more challenging under the climate change
and anthropogenic stresses, especially in arid and semi-arid climatic regions [1]. Semi-arid
region is characterized by the high inter-annual rainfall variability, high mean temperature,
surface, and sub-surface water scarcity [2,3]. Further, the increasing frequency and intensity
of extreme hydro-climatic events, such as heavy rainfall, flood, and droughts, have ad-
versely affected the hydrological cycle. A sustainable water resource management is there-
fore needed to deal with climate change and environmental stress in the Anthropocene.

LU-LC and climate change are the foremost driving factors that regulate the surface
and sub-surface hydrology in a river catchment [4]. Any significant change in the LU-LC
can greatly alter the regional hydrological cycle by modifying the rate of surface runoff,
infiltration, and evapotranspiration [5]. In addition, climate change can affect the rainfall
pattern, soil moisture conditions, temperature variability in the catchment, and eventually,
the different components of the hydrological cycle. Nayak [6] noticed that in Central India,
open forest and vegetation cover has diminished by 0.7% and 0.3% however, agricultural
land has increased by 0.5% during 1981–2006. Furthermore, the mean Indian Summer
Monsoon Rainfall (ISMR) over Central India has declined by 10–20% from 1950–2015 [7,8].
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Several studies have been carried out to quantify the effect of climate and LU-LC
change on the streamflow [5,9–13]. These studies have considered the effect of individual
and the combined effect of climate and LU-LC change on streamflow. Most of these studies
rely on one-time LU-LC patterns to simulate the long-term hydrological processes using the
climate variables [14–18]. Chawla and Mujumdar [10] evaluated the isolated and combined
effect of climate and LU-LC change on the stream flow of the upper Ganga River under the
past, present, and future climate scenarios by using the Variable Infiltration Capacity (VIC)
model. They observed that the climate variables have a larger influence on the streamflow
of the Ganga River as compared to LU-LC. Tian et al. [5] investigated both the climate and
LU-LC change impact on runoff of the Han River basin, China using the SWAT model. They
noticed that the combined effect of LU-LC and climate change is larger than considering
the climate and LU-LC change alone in the model. Hung et al. [12] examined both effects
on stream flow in two nested catchments using Storm Water Management Model and
observed similar results. They reported that the effect of LU-LC is more in the smaller
catchments than in the larger catchments. Sinha et al. [13] evaluated the stream flow of
Payaswani River basin under three different scenarios and observed that the stream flow
has increased by 11% due to LU-LC change in the catchment since 1980. Gosain et al. [19]
have highlighted that the several river basins in India would face seasonal or annual water
scarcity due to climate change.

Most of the studies discussed above use SWAT and VIC models to compute the stream
flow under different environmental conditions. They have considered different future
global and regional climate models as forcing for these hydrological models to project the
future stream flow. To the best of our knowledge, such studies have not been conducted in
a semi-arid river catchment of Central India that evaluate the future climate change impact
on stream flow under CMIP6 shared socio-economic pathways (SSP) scenarios.

We have selected the Upper reach of the Betwa River to simulate the stream flow under
the projected climate and LU-LC change scenarios. This catchment has experienced a de-
crease in the mean monsoon rainfall, an increase in the extreme rainfall events, mean temper-
ature, and LU-LC change [7,20]. The frequency of meteorological dry events has increased
after 2000 and is projected to intensify further during 2023–2060 and 2061–2100 [20].

This study evaluates the combined effect of observed and projected climate and land
use change on the stream flow of the Upper Betwa River under the past, present, and future
climate scenarios. We have used a semi-distributed SWAT hydrological model to simulate
the stream flow. We have used time series Landsat satellite images to predict the LU-LC
in the catchment using ANN based CA model and the bias-corrected GCMs of CMIP6 to
project the stream flow under four different climatic scenarios (SSP126, SSP245, SSP370,
and SSP585).

2. Materials and Methods
2.1. Study Area

The Betwa River originates from Raisen district of Madhya Pradesh and joins the
Yamuna River in Hamirpur district of Uttar Pradesh, India. The upstream of this river is
largely intermittent and becomes perennial in the downstream (85 km) before its confluence
to the Yamuna River [21]. We have selected the upper reach of the Betwa River to conduct
this study. The Upper Betwa flows through a single thread channel having a total length of
127 km and a catchment area of 9322 km2. It flows through semi-arid to dry sub-humid
climatic regions in Central India [21]. It has a very dynamic temperature and rainfall pattern.
The catchment receives maximum temperature (40–45 ◦C) in the summer season (March to
May) and minimum temperature up to 2 ◦C in the winter (November to February). During
the monsoon (June to September), the catchment receives about 92% of its total rainfall. The
topography of the catchment varies from 376–669 m above mean sea level (Figure 1). The
elevation is relatively high in the western part (451–669 m) of the catchment as compared
to the eastern part (376–550 m).
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Figure 1. Topography of the upper Betwa River catchment. Lines in blue and black represent the
streams and isohyets. The isohytes are computed from the long-term rainfall data (in mm) from
1980–2018. Circle in black represents the river gauging site at the catchment outlet (Kurwai).

2.2. Datasets
2.2.1. Hydrometeorological

We used five different climatic parameters (i.e., minimum-maximum temperature,
rainfall, wind speed, solar radiation, and relative humidity) and flow discharge measured
at the Gauge (Kurwai) station. We obtained the daily measurement of temperature, rainfall
in gridded format from the Indian Meteorological Department (IMD) [22,23] and hourly
reanalysed datasets of wind speed, solar radiation, and relative humidity from ERA5 [24]
for the years between 1980–2020. Except temperature (1◦ × 1◦), these measurements are
available at a grid resolution 0.25◦ × 0.25◦. We downloaded the future CMIP6 GCMs ( IPSL-
CM6A-LR, NorESM2-MM, and MIROC 6) products (i.e.,; minimum-maximum temperature
and rainfall) for the years between 1980–2100 [25–28].

We obtained the daily streamflow measurement of the Upper Betwa River (1991–2014)
recorded at Kurwai gauging site from the Water Resource Department, Bhopal. Table 1
shows the detailed descriptions of the hydro-climatic datasets.
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Table 1. Descriptions of the physical and hydro-climatic data used for the hydrological simulation.

Data Type Parameter Source Time-Step Year Resolution

Historical
climate data

Rainfall IMD Daily 1980–2020 0.25◦ × 0.25◦

Wind speed ERA 5 Hourly 1980–2020 0.25◦ × 0.25◦

Minimum and Maximum
Temperature IMD Daily 1980–2020 1◦ × 1◦

Relative humidity ERA 5 Hourly 1980–2020 0.25◦ × 0.25◦

Solar radiation ERA 5 Hourly 1980–2020 0.25◦ × 0.25◦

Future
climate data

Rainfall
IPSL-CM6A-LR

MIROC 6
NorESM2-MM

Daily 1980–2100

Temperature
IPSL-CM6A-LR

MIROC 6
NorESM2-MM

Daily 1980–2100

Physical data

Soil map FAO - 1 km

Land use map Landsat5 and 8 - 1990–2020 30 m

Elevation SRTM - 90 m

Discharge In-situ river discharge Water Resource Department Daily 1991–2014 Daily

2.2.2. Satellite

We have used cloud-free Landsat-5 and Landsat-8 satellite images for the years 1990,
2000, 2010, 2018, and 2020 of the pre-monsoon (Jan–Mar) months (Table 2). To eliminate
the effect of seasonality, we have taken the median of green, red, and near-infrared (NIR)
bands. We have downloaded the topographic data from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) at 30 m spatial resolution (https://search.
earthdata.nasa.gov/search/ accessed on 22 March 2022 ). We have obtained the soil map of
the study area at 1 km spatial resolution from FAO (http://www.waterbase.org/; accessed
on 13 October 2021).

Table 2. Descriptions of the satellite data used for the image classification.

Satellite Sensor Path/Row Acquisition Year Spatial Resolution

Landsat 5 TM

145/43
145/44
146/43
146/44

1990
2000
2010

30 m

Landsat 8 OLI

145/43
145/44
146/43
146/44

2018
2020 30 m

2.3. Processing
2.3.1. Climate Data

We have resampled all the climatic variables to a common grid of 0.25◦ × 0.25◦ ex-
cept for the IMD rainfall and reanalysis product using bilinear interpolation. Reanalysis
products of wind speed, solar radiation, and relative humidity datasets are available at
hourly time scales. We convert them at a daily scale by using Climate Data Operator (CDO)
platform and prepared the individual file for the input variable for each grid. They will
be used as input for the hydrological model. We aggregate the daily rainfall data at each
grid point to get the monthly, seasonal, and annual values of the study area. We have then
identified the outliers (rare events) in the long-term accumulated and mean monsoon (JJAS)
rainfall data using Iglewicz and Hoaglin’s test [29]. It recognizes the potential outlier in the
time series based on a modified Z score (absolute value of z score greater equal 3.5) [30].

https://search.earthdata.nasa.gov/search/
https://search.earthdata.nasa.gov/search/
 http://www.waterbase.org/
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We observed the year 2019 as an outlier in the time series (1980–2020). We eliminated this
year from the trend analysis. Finally, we applied a non-parametric test (Sen’s slope and
Mann–Kendall) to identify the magnitude and significance of the trend in the dataset at
95% confidence interval [31–33].

To identify the hydrological and meteorological wet, dry, and normal year in the Upper
Betwa River, we have computed the Standardised Precipitation Index (SPI) and Streamflow
Drought Index (SDI) using monsoon rainfall and simulated streamflow. In doing so, we
fitted the gamma distribution to the rainfall and streamflow, and later it is standardized to
identify the various degrees of drought severity [34–37]. Based on the values of SPI and
SDI, rainfall and streamflow can be categorized as wet (1 to 2), dry (−1 to −2), and normal
(−0.99 to 0.99) years.

Our aim is to analyse the impact of future projected climate change on the mean
monsoon streamflow of the Betwa River under different emission scenarios. In doing so,
we have used the future temperature (min-max) and rainfall of CMIP6 GCMs, namely
IPSL-CM6A-LR, NorESM2-MM, and MIROC6. GCMs are unable to accurately reflect
the regional phenomenon due to their coarser-resolution [10]. GCMs are also sensitive
to errors associated with scenarios, forcing datasets as well as computational methods
and parametrization schemes etc. [20,38,39]. These errors are significantly reduced with
bias correction. We applied the cumulative distribution function (CDF) matching by
considering the historical observed data as a reference to perform the bias correction of
future climate data [20]. Further, we have used a multi-model ensemble of these bias-
corrected temperature (min-max) and rainfall datasets of CMIP6 GCMs for the future
projection of mean monsoon streamflow. We have considered high, moderate, and low
emission scenarios of CMIP6 SSPs such as SSP585, SSP370, SSP245, and SSP126.

2.3.2. LU-LC Classification

We created the false-color composite using the red, green, and near-infrared bands
of Landsat 5 and 8 satellite images of the years 1990, 2000, 2010, and 2020. We used
random forest algorithm to classify the image pixels into various LU-LC classes (urban
land, cropland, forest, water, and open land). We have generated the training samples
by identifying the LU-LC classes from high-resolution Google Earth images. We split
the training samples into two subsets; 70% to train the classifier and the remaining (30%)
samples for testing purposes. Table 3, reports Kappa statistics and the overall accuracy of
the image classification.

Table 3. Accuracy assessment report of the observed LULC for years 1990, 2000, 2010, and 2020.

Year Kappa Statistics Overall Accuracy

1990 0.82 0.88
2000 0.88 0.92
2010 0.87 0.91
2020 0.90 0.95

2.4. LU-LC Change Modeling

We used the ANN based CA method to predict the future LU-LC in the study area [40].
We setup the ANN model to perform the transition potential modeling using the various
independent driving factors and dependent LU-LC maps of two different periods as an
input [41]. The driving factors consist of elevation, slope, and distance from road and river.
We used LU-LC of 2000 and 2010 during the transition potential modeling. We customized
the hyper-parameters of the multi-layer perceptron ANN as 3 × 3 neighborhood pixels,
four hidden layers, small learning, and momentum rate. During the transition potential
modeling, we noticed the current validation kappa is 0.87. Further, to predict the LU-LC of
2020, the learning capability gained during the transition potential modeling is transferred
to CA. We validated the predicted LU-LC using the observed LU-LC of 2020. We used
metrics such as % of correctness, kappa histo, and kappa location to assess prediction



Agriculture 2022, 12, 2005 6 of 15

performance. The kappa histo and kappa location are sensitive to the respective differences
in location and in the histogram shape of each LU-LC class of the two compared map [42].
We observed that the % of correctness, kappa histo, and kappa location statistics during
the simulation were 87.4, 0.9, and 0.7, respectively. Once the model is calibrated, we used
the LU-LC of 2010 and 2020 to predict the LU-LC of 2030 and so on by keeping the similar
driving factors and the hyper-parameters.

2.5. Hydrological Model Set Up

We have used SWAT; a semi-distributed hydrological model to simulate the streamflow
of the upper Betwa River at Kurwai gauging site [20]. The SWAT model parameters exhibit
variable sensitivity over simulation years, indicating the need for dynamic updation of the
parameter during the simulation due to changes in climatic conditions and hydrological
characteristics of the catchment [43]. Therefore, we have created two setups of the SWAT
model for the observed time periods, 1980–2000 and 1998–2020, using land use of 1990 and
2018, respectively, in order to simulate streamflow under the combined effect of climate
and LU-LC change. The SWAT model requires the physical (elevation, soil, and LU-LC)
and climate data (temperature, rainfall, solar radiation, wind speed, and relative humidity)
to simulate streamflow at the outlet of a catchment. Initially, the Upper Betwa catchment is
divided into sub-catchments based on the topography. These sub-catchments are further
divided into smaller hydrological response units (HRU), for hydrological analysis of the
entire catchment. The HRUs are created based on the unique combination of soil type,
land use, and slope using the 5% threshold of each factor [44]. When the HRU is created,
all the processed climate data are provided as input to set up the model. We coupled
the appropriate baseline LU-LC with the climate variables for that time period in the
simulation. Figure 2 illustrates the detailed methodology of the model setup. The initial
two years (1980–1982, 1998–2000) of both simulation periods have been considered as a
warm-up period to tune the model. Further, we execute both the model setup to generate
the streamflow using the climate and LU-LC variables of the corresponding time periods.
The simulated streamflow is then calibrated and validated to produce a realistic streamflow
value. We used the in-situ measured streamflow of the Betwa River at Kurwai gauging site
for the model calibration and validation using the SWAT Calibration Uncertainty Program
(SWAT-CUP). This is done using the Sequential Uncertainty Fitting version 2 (SUFI-2)
approach. The details of calibration and validation can be found in Kumar et al. [20].
Eventually, we use this calibrated and validated model to simulate the streamflow of the
Betwa River under different LU-LC and climate scenarios. Further, the calibrated 1998–2020
model setup is used to project the future streamflow under changing land use and different
climatic scenarios of CMIP6.

Figure 2. Detailed flowchart of SWAT model setup used in this study.
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3. Results
3.1. Sensitivity and Performance Analysis

We applied SUFI-2 method for the calibration, validation, and sensitivity analysis of
both the SWAT model setup in SWAT-CUP [20]. Initially, we calibrate the model for the time
period 1991–1994 and 2001–2007 using nineteen different sensitive parameters. We then
validate the simulations for the time period 1995–1998 and 2008–2014, keeping the same
sensitive parameters. The model output is susceptible to these parameters. We optimized
the parameters till the performance of all the model setups was found satisfactory. During
calibration, we performed global sensitivity analysis and kept the minimum and maximum
range of the sensitive parameters similar for both the model setup. In global sensitivity
analysis, the t-test is applied to recognize the relative most sensitive parameters. The larger
absolute value of t-stat of each parameter in Student’s t distribution and the smaller p-value
(less than 0.05) indicate the most sensitive parameters [45]. Figure 3 illustrates that the
alpha base flow, hydraulic conductivity of the channel, and soil bulk density are the most
sensitive parameters in the model setup for 1980–2000. We observed Manning’s coefficient,
hydraulic conductivity, and alpha base flow are the most sensitive parameters in the model
setup for 1998–2020.

The performance of model during the calibration and validation is satisfactory. We
evaluated the model performance using R2, NSE, PBIAS, and RSR. During both calibration
periods (1991–1994 and 2001–2007), R2, NSE, PBIAS, and RSR were 0.7, 0.69, 21.9, 0.56
and 0.63, 0.63, 5.3, 0.61 respectively. Further, during both validation periods (1995–1998
and 2008–2014), R2, NSE, PBIAS, and RSR were 0.67, 0.66, 13.6, 0.59 and 0.74, 0.73, 20.1,
0.52 respectively.

Figure 3. The p and t-stat value of each sensitive parameter of the SWAT model during the simulation
(a,c) 1980–2000 and (b,d) 1998–2020.

3.2. Observed and Projected LULC

Figure 4 depicts the LU-LC map of the study area from 1990–2070. During this period,
agricultural land (76%) predominates in the UBRC, followed by forest (14%), urban (3%),
open land (4%), and water body (2%). Figure 5 shows that from 1990–2020, the total area
under agricultural land, built-up, and water bodies has increased by 3%, 2%, and 1%,
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respectively, in the catchment. However, at the same time, forest and open land have
diminished by 4% and 2%. The change in LU-LC in the catchment is the result of different
drivers, such as an increase in gross domestic product, population growth, rainfall, and
temperature change in land use space, as well as interactions with socio-economic factors.
Specifically, increase in agricultural land and urban area could be related to the rapid
increase of population in the region. As per census data of India, the population in the
catchment has increased by 60% from 1991 to 2011 (https://censusindia.gov.in/census.
website/; accessed on 8 September 2021). In addition, increase in the area of water bodies
can be attributed to the construction of dam in the catchment during 2011–2013.

We have predicted the future (2040 and 2070) LU-LC of the catchment (Figure 5e,f)
using ANN based CA model and evaluated the change in percentage, keeping 1990 as a
reference for each landuse class. The simulated LU-LC suggests a similar trend in each
landuse class as the observed time period (1990–2020).

Figure 4. Observed and predicted LULC of Upper Betwa Catchment for the year (a) 1990, (b) 2000,
(c) 2010, (d) 2020, (e) 2040, and (f) 2070.

Figure 5. Area of observed and predicted LULC of Upper Betwa Catchment.

https://censusindia.gov.in/census.website/
https://censusindia.gov.in/census.website/
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3.3. Hydro-Climatic Variability

The cumulative rainfall during the Indian summer monsoon shows a declining trend
of 2 mm from 1980–2020 (Figure 6). We characterize the monsoon rainfall and streamflow
of the Betwa River catchment using the SPI and SDI to identify the meteorological and
hydrological wet, dry, and normal years [35–37]. Figure 7 illustrates the observed SPI
and SDI for the time period 1980–2020 and 1982–2020, respectively. We observed that,
according to SPI, before 2000, one dry and four wet events occurred. After the year 2000,
four dry and three wet events have occurred in the catchment. According to SDI, before
2000, two dry and three wet events occurred, and post-2000, three dry and four wet years
have occurred. The correlation between SPI and SDI is 0.87. It is also evident from Figure 7
that the propagation from meteorological to hydrological normal, dry, and wet events exists
with some deviation. Based on this, it can be inferred that the contribution of sub-surface
flow to the streamflow is limited as, during 1987–1989, the rainfall was below the long-term
average rainfall though it was not the meteorological dry year. Whereas 1988 and 1989 were
hydrological dry years.

Figure 8 shows that according to SPI from 2001–2020, the dry events have increased
by 15% whereas wet and normal events have decreased by 4% and 11% respectively with
respect to 1980–2000. At the same time, according to SDI, dry and wet events in the
catchment have increased by 4%, whereas normal events have decreased by 9%.

Figure 6. Observed trend in total accumulated monsoon rainfall during 1980–2020.

Figure 7. Meteorological (SPI) and hydrological (SDI) drought for the monsoon season during
1980–2020.
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Figure 8. Distribution of meteorological and hydrological drought during the monsoon season of
1980–2020.

3.4. Streamflow under LU-LC and Climate Change

We assessed the monthly variation of simulated streamflow at the outlet (Kurwai) of
the river during the observed time period (1982–2020). Figure 9a illustrates the streamflow
hydrograph of UBRC, which indicates that the rising limb begins in June that starts to
fall after September. Figure 9b shows the spatial contribution of ISMR in the catchment.
We observed that the entire UBRC receives more than 90% rainfall during the ISMR. The
streamflow of the UBRC is relatively low in pre- and post-monsoon periods. It could be
due to the limited contribution of sub-surface flow to the streamflow. Figure 10 illustrates
the inter-annual monsoon rainfall and streamflow variability. We found that the low and
high flow is largely in accordance with the rainfall.

We observed that the mean streamflow has decreased by 16% during 2001–2020 com-
pared to 1982–2000. The maximum and minimum streamflow during 1982–2000 is 1079 and
139 m3s−1, which has decreased during 2001–2020 to 673 and 127 m3s−1 respectively. Dur-
ing the second simulation (2001–2020), we have only updated the LU-LC and climatic
variables, by keeping the reaming parameters (i.e., topography, soil types, and sensitive
parameters) unchanged.

Now we use the calibrated SWAT model to simulate the streamflow of the Betwa River
during the mid (2023–2060) and far (2061–2100) future time periods using the multi-model
ensemble of CMIP6 GCM’s rainfall and temperature. We have considered the predicted
baseline LU-LC of 2040 and 2070 in the simulation. We assumed that the other parameters
(i.e., soil parameters, slope, and elevation) are not likely to change in the catchment during
the simulation periods. The simulation result suggests that the mean monsoon streamflow
is likely to decrease in all four future climate scenarios. It is projected to decrease by
about 39–47% (2023–2060) and 31–41% (2061–2100) in the catchment with respect to the
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streamflow values observed during 1982–2020. From the same baseline period, the mean
monsoon rainfall is expected to decrease by 30–35% during 2023–2060 and 23–30% during
2061–2100 (Figure 11).

Figure 9. (a) Shows the long-term (1982–2020) mean annual cycle of rainfall (black line) and stream-
flow (blue line). Figure (b) shows the spatial distribution of ISMR contribution (%) in the catchment.

Figure 10. Observed accumulated monsoon rainfall and corresponding simulated mean stream flow
variability during 1980–2020.

Figure 11. Heat map illustrates the projected change in mean monsoon streamflow and rainfall of
Upper Betwa River during (a) 2023–2060 and (b) 2061–2100 with respect to 1982–2020.

4. Discussion

We evaluated the combined effect of climate and LU-LC change on the streamflow of
the Upper Betwa River. We initially analysed the long-term climate of the catchment. It
suggests that the catchment has experienced more dry events than wet during 2001–2020
(Figure 12). It could be due to the increase in mean temperature (0.01 ◦C) and decrease
in rainfall (2 mm) in the catchment during 1980–2020. Figure 12 shows the accumulated
rainfall in the monsoon season from 1980–2020 with the respective dry and wet events
based on rainfall variability. We observed that before the year 2000, the driest (SPI = −1.2)
year was 1981, and the wettest (SPI = 1.9) year was 1999. After 2000, the driest (SPI = −1.8)
year was 2003, and wettest in 2019 (SPI = 2.7). This observation is in accordance with the
monsoon rainfall variability in India during this period [46–48]. An increase in dry events
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might be associated with the decrease in rainfall (10–20%) from 1950–2015 and the increase
in temperature (0.076 ◦C per decade) from 1981–2006 in the Central India [6–8].

LU-LC maps suggest that agricultural land is the dominant class in the study area
in the past thirty years (1990–2020). The prediction of LU-LC shows that the agricultural
and urban area is likely to increase in the future time period. Palmate [49], Singh et al. [50]
also found a similar trend of LU-LC change in the Betwa River Catchment. The change in
LU-LC can adversely alter the regional hydrology of a catchment by modifying the surface
runoff, evapotranspiration, and infiltration processes Tan et al. [51].

We setup the SWAT model to simulate the streamflow of the Betwa River catchment
under the observed and projected LU-LC and climate change scenario. The annual average
flow during 1982–2000 was 312 m3s−1, which has decreased to 281 m3s−1 during 2001–2020.
We have analysed the seasonal variability of streamflow based on the SPI and SDI cate-
gorization. We observed that during the dry years, the mean monsoon streamflow of the
Betwa River is 371 m3s−1, and 688 m3s−1 during the wet years. To cope with the effects of
LU-LC and climate change on streamflow, sustainable water resource management plan
is needed.

Under the current and projected circumstances, we expect agricultural water de-
mand to increase in the catchment. Since agriculture in the catchment is primarily rain-
fed [50] therefore, any deviation in the rainfall will eventually affect the yield of crops.
Mall et al. [52] also found that the monsoon rainfall has a high correlation (0.8) with Kharif
crop production anomalies. Therefore, Rabi crops in the winter season may be affected
due to lower rainfall in this season and minimum surface water availability. Innovative
irrigation facilities such as drip and micro irrigation can fulfill the agricultural water de-
mand in dry environments [53]. Groundwater recharge activities such as farm ponds and
percolation ponds should increase in the entire Upper Betwa River catchment for proper
groundwater supply during non-monsoon periods to support agriculture and livelihood.

Future irrigation and other development projects have not taken into account in this
analysis. The simulated hydrology of the Upper Betwa River could potentially alter as a
result of these upcoming developments. We have also not changed the soil parameters in
future simulations. This may account for the lack of response of soil moisture to climatic
changes. In addition, hydrological model simulation is largely influenced by the model
structure, model parameters, and input datasets [54]. We have used gridded climate
datasets as an input having grid resolution of 0.25◦ for this study as per the availability
of the datasets. So, further analysis can be improved by considering the fine resolution
climatic datasets.

Figure 12. Accumulated rainfall of the monsoon season during 1980–2020 is represented by bar plot,
respective wet and dry event based on SPI is shown with star and triangle symbol.
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5. Conclusions

This study is a step towards quantifying the combined effect of LU-LC and climate
change on the streamflow of the Betwa River basin under the observed and different future
climate change scenarios. The outcome of this study can be used by policymakers for
sustainable water resource management, agricultural planning, and other purposes. Based
on the finding of this study following conclusions can be drawn;

• A transition from wetter to drier hydro-climatic conditions is evident in the upper
Betwa River catchment, which affects the streamflow of the catchment.

• The combined effect of climate and LU-LC change has resulted in the mean monsoon
streamflow of Betwa River to decrease by 16% during 2001–2020 as compared to
1982–2000.

• The mean monsoon streamflow is likely to decrease in all four future climate scenarios.
It is projected to decrease by about 39–47% (2023-2060) and 31–41% (2061–2100) in the
catchment with respect to the streamflow values observed during 1982–2020.

• Water scarcity in the catchment is likely to aggravate due to landuse modification and
climate change under four different CMIP6 future climate scenarios.
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