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Abstract: Improvements in productivity and efficiency, together with agricultural modernization, are
crucial in the process of future sustainable development. As Western Balkan (WB) countries are in
the process of integration into the European Union (EU), the importance of agricultural efficiency
in an economic and environmental context and the actuality of the problems of the agricultural
sector are very important. In that context, the paper’s main goal is to examine agriculture’s technical
efficiency in the EU and WB. The additional goal is to group analyzed countries by agricultural
performances. A stochastic frontier analysis (SFA) is used to calculate the technical efficiency of
agriculture. Results have shown a significant difference in technical efficiency between WB and
the EU. Furthermore, the cluster analysis has indicated the connection between overall economic
development and agricultural development, partially “deformed” by agri-environmental and climate
conditions. The exogenous factors do not have a crucial influence on the overall technical efficiency
of agriculture in observed countries, indicating that the endogenous factors must be improved. The
paper impacts recommendations for optimizing the use of inputs and improving the educations of
farmers in WB countries to achieve economic and environmental goals.
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1. Introduction

The current Ukrainian crisis brings the issues of energy supply and inflation to the
forefront. An additional problem of this crisis is food supply disruptions and rising prices
of agricultural products. Agriculture is a critical link in the food supply chain, and the
question of the importance of agriculture is being re-examined. Although this is one of
the main reasons for dealing with this topic in general, two other reasons influenced the
selection of this topic. First is the importance of agricultural efficiency in an economic
and environmental context. Agricultural technological progress and technical efficiency
are crucial drivers in promoting improvements in agricultural production, which is the
primary source of expanding economic output [1]. According to Morais et al. (2021) [2],
the estimation of technical efficiency is frequently used to create programs for perfor-
mance improvement. Therefore, efficiency enhancement of agricultural production appears
worldwide as one of the most significant challenges for agricultural holdings. Almost
everywhere, the government tends to help farmers in this process with its agricultural
policy. The best example is the European Union (EU) Common Agricultural Policy (CAP),
from which the increase in production efficiency had decades of significant support. After
decades of supporting the efficiency enhancement of the agricultural sector, the idea of
sustainable agriculture in which the social, economic, and environmental objectives should
be fulfilled is dominant. However, this role can fulfill only farms that effectively transform
inputs into outputs and do not waste the inputs [3]. Similar conclusions are given by
Liu et al. (2020) [4] considering Chinese agriculture. This is because improvements in
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productivity and efficiency, along with agricultural modernization, are considered the
decisive factors for the future sustainable development of China’s agriculture. Additionally,
agricultural production efficiency is the main factor affecting the intensity of agricultural
carbon emissions. Therefore, improving production efficiency can suppress the intensity of
agricultural carbon emissions [5]. Additionally, according to contemporary developments
in CAP, there will be some radical changes in the next period that will influence the whole
production system. CAP for 2023–2027 is “greener” than it was previously. Therefore,
optimal use of inputs, especially chemicals, will be essential. Second, the agriculture of
Western Balkan countries (WB) is particularly interesting. Their agri-food sector has been
commonly analyzed in recent years, probably due to the specific political situation in this
region. Although all of these countries are in the process of European integration, some
consequences of the previous economic system and transition processes still influence
agricultural performances. Because of that, it is crucial for all WB countries to provide the
best possible positions for their agri-food products during pre-accession negotiations for EU
membership and take the necessary steps towards increasing the level of competitiveness
in the common EU market [6].

Two papers are significant for this paper due to their focus on the technical efficiency
of agriculture. In their study, Ðokić et al. (2020) [7] showed that technical efficiency
improved in the period 1999–2016 in WB. However, the average relative technical efficiency
of agriculture in these countries is noticeably worse than in the EU countries. Similar
conclusions are given by Marcikić Horvat et al. (2020) [8]. However, they also indicate that
this difference is a consequence of agriculture’s unfavorable resource structure, primarily
due to high presence of small farms and the slow development of a non-agricultural sector
that cannot accept a surplus of labor from agriculture. These papers examined technical
efficiency in WB, but both use the data envelopment analysis (DEA) method. Therefore, this
research will enable a comparison of the results of DEA and SFA methods for this region.

This paper’s main goal is to examine agriculture’s technical efficiency in the EU and
WB. The additional goal is to group analyzed countries by agricultural performances.
Additionally, this research attempts to contribute to the literature by using the SFA method
instead of the DEA method, which was often used. The paper is structured as follows.
Section two provides a literature review on technical efficiency and agricultural issues in
the EU and WB. Section three describes the SFA method and data. The fourth part shows
results and discussion divided into two subsections: technical efficiency of agriculture and
cluster analysis by agricultural performances. The main conclusions are summarized in the
final section.

2. Literature Review

Although many studies on the topic of analysis of technical efficiency refer to the
agricultural sector, most are limited to case studies of single countries or single sectors.
Moreover, only a few authors have analyzed the technical efficiency of the agricultural
sector in several or all European Union countries. Regarding methodology, most research
uses the DEA method, while papers with the SFA method are scarce. This literature
review will review previous research using these methods, primarily for EU countries,
with a particular emphasis on the Central and Eastern European countries (CEEC) and
their comparison with the old EU countries. The CEEC analysis is important, bearing in
mind that technical efficiency research for the Western Balkans countries is rare and that
CEECs are valuable rappers to these countries. At the end of the literature review, the
few Western Balkans’ technical efficiency research will be reviewed, as will the factors
influencing technical efficiency in these countries.

Bakucs et al. (2011) [9] analyzed the technical efficiency of farms specialized in arable
production and milk production in eight EU countries (Belgium, Estonia, France, Germany,
Hungary, Italy, the Netherlands, and Sweden). Based on the results of the SFA analysis
from this research, it was determined that farms from the dairy cattle sector show better
results compared to farms specialized in arable production. Nowak et al. (2015) [10]
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analyzed the technical efficiency of EU agriculture and its determinants using the DEA
method. They found that the technical efficiency of agriculture varies widely: the difference
between the countries with the highest and the lowest efficiency is 40%. The determinants
of influence on technical efficiency found to be significant are land quality, age of the head
of household, and investment subsidies. More recently, in their study of technical efficiency
and its determinants in European agriculture, Moutinho et al. (2018) [11] applied DEA and
SFA methods and determined that resource productivity and subsidies have a positive and
significant effect on technical efficiency, while domestic consumption and the share of areas
under organic crops have a negative effect on technical efficiency.

Analysis of the technical efficiency of new EU member states and comparative analysis
with old member states was the subject of research of a number of papers. For example,
Bojnec et al. (2014) [12] applied the DEA method to evaluate the technical efficiency of
10 EU member states from the CEEC region from 2001 to 2006, a period that included the
adaptation and reform processes during accession to the EU. All of the studied countries
had a technical efficiency below 1. Bulgaria and Slovakia achieved the highest results, while
the Baltic States showed the lowest results. It was determined that technical efficiency in
the studied countries is conditioned by the transition process, institutional reforms, policy
reforms, as well as technological changes. The size and degree of specialization of the
farms were singled out as significant determinants of the influence on technical efficiency.
An analysis of the fulfillment of one of the main goals of Agenda 2000, increasing the
market orientation of agricultural production, was carried out by Vlontzos and Niavis
(2014) [13]. The authors used the DEA and SFA methods to assess technical efficiency,
and the results of the study indicated that both models show an increase in the technical
efficiency of the agricultural production sector of EU countries. The results also showed
that Eastern European countries, which are more recent EU members, have statistically
significantly lower technical efficiency compared to older members. Hart et al. (2015) [14]
analyzed the impact of trade openness on the technical efficiency of EU agriculture. The
study focused on 28 member states over a period from 1980 to 2007 and relied on the SFA
method. It was determined that former communist states have lower ratings of technical
efficiency compared to southern European states. The results of this study also show
that trade openness has a negative impact on the technical efficiency of EU agriculture;
however, over time trade openness increases efficiency due to the adaptation of production
technology to increased competition. The results also indicate a significant positive impact
of foreign direct investment on technical efficiency. Additionally, Náglová and Rudinskaya
(2021) [15] analyzed technical efficiency in the EU dairy farms using the SFA method and
concluded that new and old member states have almost comparable technical efficiency
levels, while old members have a slightly higher level of technical efficiency. Pawłowski
et al. (2021) [16] analyzed regional differences in the technical efficiency of farms in the
context of overinvestment. The analysis was conducted on the basis of the FADN database
for data on farms from Poland for the period 2004–2015. Using SFA, the authors proved that
there are significant differences in the average technical efficiency of different overinvested
groups, i.e., it was shown that underinvested farms are the least efficient, as well as
that greater efficiency was achieved with relatively and absolutely overinvested farms.
Záhorský and Pokrivčák (2017) [17] analyzed farm output TE in ten CEEC as well as the
total factor productivity development in the period of 2004–2012. They concluded that
none of the observed countries were efficient in terms of farm performance. Lithuania was
the closest to score 1, while the least efficient was Poland.

As agriculture in the EU is highly differentiated, research that focuses on the competi-
tiveness of agriculture and grouping countries of the EU according to similar characteristics
is very valuable [18]. New research on the effects of EU integration on the competitiveness
of the agricultural sector in the new member states showed that a gap still exists between
old and new member states of the EU in the efficiency of utilization of their inputs despite
increased labor productivity in new member states [19].
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Research on the technical efficiency of agriculture in the Western Balkans, and its
comparison with the EU, are very rare in the literature. For example, Marcikić Horvat et al.
(2020) [8] compared the relative technical efficiency of agriculture in the Western Balkan and
EU countries using the DEA method and concluded that the relative technical efficiency in
Western Balkan countries is noticeably worse than in the EU countries. These authors, as
the main source of agricultural inefficiency in the Western Balkan countries, found poor
results in labor productivity. Another research by Todorović et al. (2020) [20] analyzed the
technical efficiency of arable farms in Serbia using the two-stage DEA method. The results
of this research showed that the share of rented land, land-to-labor ratio, and financial
stress variables are the main determinants of the efficiency of arable farms in Serbia, while
subsidies (area payments and input subsidies) have some impact on the technical efficiency
of arable farms. The results also highlighted the importance of a future shift of Serbian
agricultural support towards CAP, which is especially important if we keep in mind that
compared to the EU countries, Serbia’s agricultural performance is significantly lagging
behind [21].

Ðokić et al. (2020) [7] studied the technical efficiency of agriculture and the factors
affecting technical efficiency in Western Balkans countries and new EU members. Using
the DEA method, the authors found that technical efficiency in all the studied countries
improved from 1999 to 2016 and that the factors that have a positive impact on technical
efficiency are land per worker, fertilizer per hectare, and membership in the EU, while
they singled out the share of areas under organic crops as a factor that negatively affects
technical efficiency. Bearing in mind these results of determinants that affect the technical
efficiency of agriculture, it is very important in the countries of the Western Balkans to
influence the growth of productivity given that there is an obvious gap compared to EU
countries [22]. Although the results indicate a positive influence of fertilization on technical
efficiency, we should be careful when it comes to the further growth of the use of fertilizers
given that more attention will be paid to agri-environmental measures [23], as fertilization
contributes to greenhouse gas emissions and pollution [24]. Regarding the membership
of the countries of the Western Balkans in the EU, i.e., the harmonization of domestic
agricultural policies with the CAP, applied agricultural policies in Western Balkan countries
depart from this declared future planning and rather reflect domestic political economy
interests [25]. Although previous research showed that organic production negatively
affects technical efficiency in the Western Balkans and new EU member states, situation on
this issue is not black and white, as organic production is not as efficient as conventional
and organic production systems are still in the development phase [7]. Namely, organic
agriculture is very important in achieving the Sustainable Development Goals, as it seeks to
redesign whole food systems to achieve ecological, economic, and social sustainability [26].

3. Materials and Methods

Econometric literature includes two basic methodological approaches for analyzing
technical efficiency, non-parametric and parametric. The non-parametric approach is based
on mathematical programming methods, of which DEA is one of the most commonly
used methods. The DEA method is a mathematical programming technique based on a
non-parametric approach because it does not require a previously defined assumption
about the functional form of the production function, which significantly simplifies its
application [27]. On the other hand, a crucial disadvantage of this method is reflected in the
omission of the model’s random error, so it is not possible to define the relative influence of
other factors that are not explicitly included in the model.

The parametric approach is based on econometric modeling, in which models of
deterministic and models of stochastic frontier production functions are distinguished. The
key disadvantage of deterministic models is reflected in the fact that the one-sided error
term includes the influence of all those factors that are the cause of deviation from the
optimal efficiency regardless of whether or not they are under the control of the production
entities or are of an exogenous nature. Accordingly, stochastic frontier production functions
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allow the introduction of composite error of the model, which separates the influence of
factors that are under the control of production entities and the influence of all those factors
that are beyond the control of production units [28].

The methodology for estimating the model of the stochastic frontier production func-
tion was first presented in the works of Aigner et al. (1977) [29] and Meeusen and van
den Broeck, (1977) [30]. Separate studies, carried out independently of one another as
the authors knew nothing of each other’s work, both highlight the importance of random
factors that have an impact on the variability of the output. Relying on the Cobb–Douglas
functional form of the model, the stochastic marginal production function in its general
form can be represented as follows:

ln yi = β0 + ∑
n

βn ln xni + εi.

Unlike deterministic models, in which any deviation from the efficiency limit is
interpreted as inefficiency, stochastic models show a composite random error of the model
(εi), which is composed of two components, so that the following applies: εi = vi − ui.
The first component of the composite error of the model (vi) includes all those random
factors that are beyond the control of production entities but are certainly present and have
an impact on the realized output. When evaluating the model of the stochastic marginal
production function, it is assumed that the component vi is normally distributed with the
homoscedastic variance σ2

v .
Nevertheless, the composite random error of the model (εi) is asymmetric because it

holds that ui ≥ 0. The ui component represents a one-sided asymmetric component that
includes the influence of all those factors that are under the control of production entities
and have an impact on the realized output. In other words, the component ui represents a
measure of realized technical inefficiency.

In this regard, with the basic techniques of econometric analysis, it is possible to test
the presence of technical inefficiency. Specifically, as εi = vi − ui is valid, the composite
random error of the model in the case of the presence of technical inefficiency is asymmetric.
If it were not, for the established absence of technical inefficiency (ui = 0), it would be
valid that εi = vi, and the random error of the model would be symmetrical. On the other
hand, when ui > 0, the composite random error of the model εi is negatively asymmetric,
indicating the presence of technical inefficiency. Generally speaking, the technical efficiency
of production entities can be determined by evaluating different stochastic marginal pro-
duction function models, which are divided in the methodological approach based on the
type of available data (comparative or panel data).

According to Schmidt and Sickles (1984) [31], there are three types of problems when
evaluating models based on comparative data. First, the maximum likelihood method
relies on an assumption of the distribution of random error components. Second, when
evaluating the model of comparative data, it is assumed that there is no connection between
the regressor and the component related to inefficiency, which is not in accordance with
the reasoning of achieved efficiency [32]. Third, the estimate of technical inefficiency is
inconsistent, given that the conditional mean or mode of u u(v− u) never tends to the
true value u even though N → ∞ , where N is the number of observation units, u is the
inefficiency, and v is the random error.

In addition, stochastic marginal production function models can be divided based on
whether or not they are used to obtain time-invariant and time-varying technical efficiency
ratings. The latter group of models is of more recent date and is therefore present to
a greater extent in empirical research. The differences between numerous models on
the basis of which it is possible to assess time-varying technical efficiency are mainly of
a methodological nature. In this regard, according to Kumbhakar, Lien, and Hardaker
(2014) [33], the model that takes the following form stands out among the aforementioned
group of models:

yit = α0 + ∑
n

βn ln xnit + µi + vit − ηi − uit
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The model defined in this way overcomes certain limitations faced by other stochastic
marginal production function models. For instance, the error is made up of as many as four
components representing heterogeneity between observation units (µi), random effects
(vit), persistent or time-invariant technical inefficiency (ηi), and time-variant technical
inefficiency (uit). An additional advantage of the model is that error components can be
evaluated simultaneously within it or, if they do not show statistical significance, can be
excluded from it.

A very significant improvement in the evaluation of the stochastic marginal production
function model using the Kumbhakar, Lien, and Hardaker (2014) [28] model compared
to other models is that it is possible to evaluate the time-varying technical inefficiency for
a time period t, which is not related to the previously calculated inefficiency for the time
period t-1. In this way, it is possible to monitor the possible improvement of efficiency
for the observation unit i. Additionally, the mentioned model specifically evaluates time-
invariant technical inefficiency in the context of the presence of long-term constraints that
are under the control of production entities.

The evaluation of the stochastic frontier production function model—which analyzes
time-invariant technical inefficiency, time-variant technical inefficiency, and the heterogene-
ity between the observation units separately—can be performed in three steps using the
maximum likelihood method [34].

Given that it is a parametric method, when evaluating the model, it is necessary to
introduce certain assumptions regarding the distribution of the random error components.
The centered model adapted to the assessment has the following form:

yit = α∗0 + ∑
n

βn ln xnit + αi + εit,

where the following applies: α∗0 = α0 − E(ηi) − E(uit), αi = µi − ηi + E(ηi), and
εit = vit − uit + E(uit). Parameters αi and εit have zero mean value and homoscedas-
tic variance, so the entire model can be evaluated in three steps.

In the first step, by applying the standard procedure inherent in the panel regression
analysis of fixed or random individual effects, it is necessary to estimate the unknown
regression coefficients of the model βns. Additionally, the initial evaluation of the model
gives the evaluated values for αi and εit.

In the second step, the time-varying technical inefficiency uit is evaluated. Then,
previously estimated values for εit are used so that εit = vit− uit + E(uit), where vit follows
a normal distribution and uit a semi-normal distribution. For the expected mean value
of the time-varying technical inefficiency uit, the following applies: E(uit) =

√
2/πσu.

The rating of time-varying technical efficiency in the RTE designation is obtained as
follows: RTEit = exp{−ûit}.

In the third step, the time-invariant technical inefficiency ηi is evaluated using a sim-
ilar procedure. The assessment is performed on the basis of the αi values obtained in
the first step, assuming that µi follows a normal and ηi a semi-normal distribution, so
that the expected mean value for ηi is E(ηi) =

√
2/πση . The assessment of persistent

technical efficiency, this time in the designation PTE, is carried out in the following man-
ner: PTEi = exp{−η̂i}. Finally, the overall rating of technical efficiency is obtained by
multiplying time-invariant and time-variant technical efficiency (OTE = RTE× PTE).

Furthermore, it is important to point out that within the second and third step of the
model evaluation, it is possible to introduce the assumption of a non-zero mean value for
persistent and residual technical inefficiency, which means that—based on the observed
model—it is possible to examine the influence of additional explanatory variables on the
achieved technical efficiency.

In technical efficiency analysis, one output and five inputs are included. The vari-
ables are selected based on previous literature (Table A1). All data are collected from the
FAOSTAT database [35]. The value of agricultural production is only output, while the
independent variables are:
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• Land includes arable land and land under permanent crops and pastures.
• Labor includes all working-age persons who belong to one of two categories: paid

employees (whether at work at that moment or just had a job) or self-employed
in agriculture.

• Capital is expressed as a gross fixed capital (GFC) formation that represents the total
value of a producer’s acquisitions, less disposals, of fixed assets during the accounting
period plus certain additions to the value of non-produced assets (such as subsoil
assets or major improvements in the quantity, quality or productivity of land) realized
by the productive activity of institutional units. The most important exclusion from it
is land sales and purchases.

• Mineral fertilizer usually takes the most significant part in the variable costs of farms
and is often used as an indicator of intermediate consumption. Based on FAOSTAT
data, the total mineral fertilizer used was calculated as the sum of nitrogen, potassium,
and phosphorus used in agriculture, expressed in tons at the national level.

• Livestock is calculated using livestock units (LSU), which facilitate aggregating in-
formation for different livestock types. This methodology applies the LSU coeffi-
cients [36]. LSU coefficients are computed by livestock type and by country. The
reference unit used for calculating livestock units (=1 LSU) is the grazing equivalent
of one adult dairy cow producing 3000 kg of milk annually, fed without additional
concentrated foodstuffs.

Significant differences in the values of the observed variables between the observed
states resulted in a logarithmic transformation of the data.

After calculating the technical efficiency, a cluster analysis was performed. Three
more variables were added: labor productivity, land productivity, and agricultural area per
worker, which together describe the production performance of the country. A hierarchical
method was used, and cluster analysis was conducted using the software Statistica 10. The
cluster analysis results are shown on the map to classify the countries of the EU and the
WB according to the performance of agriculture.

4. Results and Discussion

According to the methodological approach, results and discussion are put together
but divided into two sections. The first section is focused on technical efficiency, while the
second section shows the results of cluster analysis with additional variables.

4.1. Technical Efficiency of Agriculture

The assessment of the Cobb–Douglas production function model, with the aim of
determining the technical efficiency of European countries in the agricultural sector, began
with an analysis of the fulfilment of the assumption of the presence of multicollinearity
(Table 1).

Table 1. Testing the presence of multicollinearity.

Variable VIF TOL

lnLivestock 8.94 0.1119
lnFertilizer 8.67 0.1153

lnGFC 6.09 0.1642
lnLand 5.50 0.1818

lnLabour 2.72 0.3678
time 1.03 0.9669

Average 5.49 0.3180
Source: The authors’ calculation.

Table 1 presents the values of the VIF indicators for the independent variables used
in the model, which indicate the presence of harmful multicollinearity if greater than 10.
In the econometric literature, there is no agreed opinion about the limits of acceptability
for the value of the VIF indicator. In this regard, it is necessary to keep in mind the nature
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of the observed data. With economic indicators, it is to be expected that the independent
variables are mutually correlated, so it makes sense to accept a slightly higher value of the
VIF indicator. On the other hand, many authors point out that a value of 10 for VIF is a limit,
so if VIF is less than 10, it makes sense to continue with the regression analysis [37–39]. In
addition to the VIF indicator, the table also presents the reciprocal values of this indicator
(values of the TOL indicator). The reciprocal value of a VIF indicator of 0.1 is equivalent to
a value of 10 for the VIF [39].

As the VIF indicator values for all independent variables range from 1.03 to 8.94, which
is less than 10, it can be concluded that the data used are not burdened by the presence of
harmful multicollinearity, so data from that aspect can be included in the model.

The first step in the assessment of the model of the stochastic marginal production
function was the assessment of the panel model of fixed and random individual effects
(Table A2). Then, in order to select the appropriate model specification, the Hausman test
was applied, the results of which are presented in Table 2. The corresponding test statistic
is 77.25, which is significantly higher than the critical value of the χ2 distribution for six
degrees of freedom and the significance threshold α = 0.01. Therefore, the null hypothesis,
which assumes a stochastic specification of the model, must be rejected. In other words, the
conclusion is that the panel regression model of fixed individual effects corresponds to the
data used, based on which the assessment of technical efficiency will be made.

Table 2. Hausman test of model specification.

Test Null Hypothesis Test Statistics p-Value

Hausman test Random individual
effects model χ2(6) = 77.25 0.0000

Source: The authors’ calculation.

The values of the parameters λ and ρ also speak in favor of the fixed effects panel
model. Their desirable values signal the justification of the assessment of the stochastic
marginal production function model [40]. The parameter λ (λ = σ_u⁄σ_v), which in the
methodological sense indicates the extent to which the obtained residuals derive from
realized inefficiency, has a value of 8.0850. As its value for the fixed individual effects
model is greater than 1, the conclusion is that the use of the model of the stochastic marginal
production function to evaluate the technical efficiency for the observed observation units
is justified. The same applies to the parameter ρ (ρ = (σ_u2)⁄σ2), which represents a part
of the total variability that can be said to be a consequence of technical inefficiency. In
other words, 98.48% of the total variability of the fixed effects model can be explained as a
consequence of technical inefficiency.

Additionally, one of the basic assumptions related to the justification of the application
of the stochastic marginal production function is the verification of the distribution of the
ui component related to technical inefficiency. The obtained results indicate the negative
asymmetry of the ui component, which is statistically significantly different from the
normal distribution. This is a desirable scenario in the assessment of technical efficiency.
The measure of asymmetry of the component ui is −1.0762, and the statistical significance
is confirmed by the χ2 test, whose test statistic is 67.26 and is significantly higher than the
critical value of the χ2 distribution for 2 degrees of freedom and the significance threshold
α = 0.01.

The Levin–Lin–Chu test was used to check the presence of a unit root in order to
determine the stationarity of the variables [41]. The test has the null hypothesis that all the
panels contain a unit root. The obtained results presented in Table 3 indicate that the null
hypothesis must be rejected for all variables, which is desirable scenario.
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Table 3. Levin-Lin-Chu unit root test.

Variables Null Hypothesis Test Statistics p-Value

lnVA Presence of unit root −96,160 0.0000
lnLabour Presence of unit root −73,080 0.0000
lnLand Presence of unit root −115,310 0.0000
lnGFC Presence of unit root −93,710 0.0000

lnFertilizer Presence of unit root −160,470 0.0000
lnLivestock Presence of unit root −83,910 0.0000

Source: The authors’ calculation.

Modified Wald test results for groupwise heteroskedasticity in a fixed effect regression
model are presented in Table 4. Here, the overall statistic χ2(31) = 1394.86 has a p = 0.0000.
This leads to strongly rejecting the null hypothesis for any confidence level. Therfore, a
phenomenon of heteroskedascitcity is present.

Table 4. Modified Wald test for groupwise heteroskedasticity in fixed effect regression model.

Test Null Hypothesis Test Statistics p-Value

Modified Wald test H0 : σ2
i = σ2 χ2(31) = 1394.86 0.0000

Source: The authors’ calculation.

The problem of heteroskedasticity is overcome by estimating a panel regression model
with fixed effects and robust standard error (Table A3).

Regarding the variables that define the production function, it is important to point
out that all independent variables show a statistically significant influence on the realized
value of agricultural production, except labor and fertilizer. Additionally, productivity
growth was identified, which for the studied period from 2008 to 2019 is 1.06%.

As already mentioned, in order to obtain a rating of technical efficiency with desirable
properties, the Kumbhakar, Lien, and Hardaker (2014) [28] model was used, which is linked
to a separate rating of individual effects and persistent and residual technical (in)efficiency.
In Table 5, the overall rating of technical efficiency is presented together with the previously
mentioned components.

Table 5. Evaluation of technical efficiency.

TE Number of
Observations Mean Standard

Deviation Minimum

Residual 372 0.8459 0.0524 0.6634
Persistent 372 0.5597 0.2220 0.1013

Total 372 0.4734 0.1900 0.0818
Source: The authors’ calculation.

It was found that the overall rating of technical efficiency is 47.34%. The reason for such
a low rating of overall technical efficiency may be a significant difference in the indicators
used between the studied countries. Additionally, it is noticeable that the residual (time-
variant) technical efficiency significantly exceeds the persistent (time-invariant) technical
efficiency. The rating of residual technical efficiency is 84.59%, while the rating of persistent
technical efficiency is 55.97%.

In other words, it is noticeable that persistent technical inefficiency is significantly
dominant in relation to residual technical inefficiency. Therefore, the overall assessment of
technical efficiency is to the greatest extent profiled by factors that are under the control of
agricultural producers—that is, factors that are related to long-term aspects of business. The
econometric literature recognizes the mentioned group of factors as indicators that mostly
relate to the characteristics of agricultural producers and the characteristics of agricultural
holdings. On the other hand, based on the results of the analysis, it can be concluded
that exogenous factors, such as administrative measures of agricultural policy or climatic



Agriculture 2022, 12, 1992 10 of 18

conditions, do not have a decisive influence on the overall technical efficiency of the studied
countries related to the agricultural sector.

Based on the above-mentioned data, Figure 1, presented below, provides a graphical
representation of the total, residual, and persistent technical efficiency for observed Eu-
ropean countries from 2008 to 2019. Lower level of total efficiency in some years can be
connected with unfavorable weather conditions in Europe.
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Figure 2, presented below, provides insight into the distribution of the overall technical
efficiency rating for the studied period. A high variability in the obtained grades can be
noted, which is supported by a relatively high interquartile difference coefficient of 31.95%.
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In Table A4 overall technical efficiency of agriculture by country is presented. Results
are similar to those of other studies [7,8] in the context of differences between the EU and
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WB countries (average 0.52 compared to 0.3), but the level of TE in the WB is higher in case
of the DEA method than the SFA. The same conclusion is presented in Odeck (2007) [42].
However, these estimates suggest that inefficiency exists in the agricultural sector of the
WB and that there is considerable space for improvement in input uses that can enhance
the competitiveness of the agri-food sector. Agricultural policy measures should encourage
more intensive agricultural production, which could create a better foundation for progress
in the food industry [43]. This could be an alarm for policymakers in the WB. However, in
the long run, it is essential to consider the environmental goals of agriculture. In order to
achieve sustainable development goals of national economies, the higher education system
could contribute significantly [44]. Universities, especially agricultural faculties, can play a
unique role in achieving these goals.

4.2. Cluster Analysis

As mentioned before, cluster analysis is performed in the second step, and character-
istics of the clusters are shown in the Table A5. Figure 3 shows the results of the cluster
analysis of the overall development level of agriculture from the aspect of production per-
formance. Five clusters were obtained by including factors such as the technical efficiency
of agriculture, resource structure, and land and labor productivity. Cluster 1 represents
the highest level and Cluster 5 the lowest level of production performance. Considering
the factors involved, the results are relatively expected. Only two countries belong to
Cluster 1—Belgium and Denmark, which, in addition to The Netherlands, are known to
have a developed agricultural sector in all aspects, which is reflected in the high level
of production performance. Finland is one of two highly developed countries located in
Cluster 3.

Cluster 1 and Cluster 2 represent the most developed part of European agriculture,
including the most developed countries of Western Europe. For the relatively diverse
cluster 3 (extending from Scandinavia through the former socialist countries to Italy), the
level of production performance of agriculture can be stated. It is interesting to note that of
the former socialist countries, this cluster mainly includes those countries that have retained
large farms, such as the Czech Republic, Slovakia, and Estonia. On the other hand, Cluster 4
includes those countries from the CEEC whose agricultural sector is characterized by small
farms—Poland, Slovenia, Croatia, Bulgaria, and two less developed “old” EU members—
Greece and Portugal—where small farms also dominate. Finally, in Cluster 5, in addition
to Romania (characterized by small farms), there are Western Balkan countries that have
not yet gained full membership in the EU. The research results confirm the already-known
connection between overall economic development and agricultural development. This
correlation is partially “deformed” by agri-environmental and climate conditions, which
significantly affect the level of production performance. This is the case with Sweden and
Finland, two highly developed countries located in Cluster 3 (similar results are provided
by Reiff et al. (2016) [45].

Figure A1 shows the absolute amount of funds that EU members and potential candi-
date countries receive from common funds intended for agriculture and rural development.
Although it is clear that the largest countries with the most significant agricultural sector
also withdraw the largest part of the funds, the presentation can be interesting for the
following reasons. First, it is a striking fact that even small countries from Western Europe
with small agricultural sectors, such as Ireland and Portugal, withdraw significant funds—
more than some members from Central and Eastern Europe with similar agricultural sector
capacities. The lowest level of support goes to potential EU member countries, which on
one hand is understandable. On the other hand, it makes it difficult for these countries to
adapt (primarily in terms of competitiveness) their national agricultural sectors to business
conditions in the future common European market.
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5. Conclusions

It is possible to summarize a few key conclusions. First, the overall technical efficiency
is relatively low (47.34%), probably due to a significant difference in the indicators used
between the studied countries. Second, the persistent technical inefficiency is more sig-
nificant than the residual technical inefficiency, indicating that the overall assessment of
technical efficiency is, to the greatest extent, profiled by factors that are under the control of
agricultural producers. Third, the exogenous factors, such as administrative measures of
agricultural policy or climatic conditions, do not have a crucial influence on the overall tech-
nical efficiency of agriculture in observed countries. Fourth, there is a significant difference
between the EU and WB countries (an average of 0.52 compared to 0.3). Additionally, com-
pared to other studies, it can be concluded that the level of technical efficiency in the WB is
higher in the case of the DEA method than in SFA. Finally, the cluster analysis confirms the
connection between overall economic development and agricultural development, which
is partially “deformed” by agri-environmental and climate conditions (as in the case of the
Scandinavian countries).

The contribution of the results of the article indicates that the WB countries have
a significant lag behind the EU countries, especially its “old” members, which have ex-
perienced a multidecade policy of supporting the efficiency enhancement of agriculture.
Therefore, policymakers in WB countries should strive for a policy of efficiency improving
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agriculture. In the pre-accession period, this would be a rational strategy because the
convergence of efficiency levels would facilitate the position of WB countries’ agriculture
in the future common European market. There is room to improve technical efficiency.
This is particularly important because of the optimization of the use of inputs to achieve
agricultural policy’s economic and environmental goals. In addition, improving the edu-
cation of farmers would most likely significantly contribute to realizing these goals given
that the results showed the importance of endogenous factors. In short, policymakers
should consider greater integration of economic and business knowledge into the existing
education system, especially in rural areas. That is, in order to improve the efficiency of
farmers, a certain synergy between educational and agricultural policies may be necessary.

It is necessary to consider the limitations of evaluating the technical efficiency of
agricultural activity as a whole. Therefore, in order to determine the factors influencing
technical inefficiency, especially in countries with a low rating of technical efficiency, it is
necessary to consider technical efficiency at the sector level. In this way, it is possible to
clearly identify sectors characterized by low productivity, which can benefit agricultural
policymakers. Additionally, technical efficiency as a relative indicator depends on the units
of observation in the sample. In other words, the technical efficiency must be seen as a
relative estimation in relation to the observation units that achieve the optimal estimation
of technical efficiency.

The focus of future research will be the possibilities of the education system’s con-
tribution to the goals of agricultural policy as well as the discovery of critical factors that
determine the level of technical efficiency in European countries. It can be expected that
this type of research volume will increase significantly due to the political crisis, which
endangered the European food chain. In this context, the methodology used in the article
can be useful, as it is fully applicable to other countries and/or regions. In other words, the
article represents a solid basis for research on a similar topic but with a different scope.
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Appendix A

Table A1. Literature review of most frequent usage of variables.

Authors/Year Method Country/Region Output Variables Input Variables

Latruffe at al. (2011) [46] DEA Hungary and France Total output
Milk produced
COP output
Other output

Utilized land, labor,
capital, and intermediate
consumption

Bojnec et al. (2014) [12] DEA Ten EU countries Gross value added in $ Labor, number of
agricultural tractors,
agricultural area, total
fertilizers, and
number of animal
livestock units
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Table A1. Cont.

Authors/Year Method Country/Region Output Variables Input Variables

Vlontzos and Niavis (2014) [13] DEA and SFA EU countries total agricultural output Agricultural land, labor
and fixed capital
consumption

Baráth and Fertő (2015) [47] SFA Hungary total output Labor, utilized agricultural
area, total fixed assets in
value, and total specific
costs in value

Hart et al. (2015) [14] SFA 28 EU countries agricultural GDP Land, capital, fertilizer,
labor, time, dummy
variable country

Nowak et al. (2015) [10] DEA 27 EU countries total output Labor, capital, and land

Záhorský, T. and Pokrivčák, J.
(2017) [17]

DEA 10 CEEC countries crop output
animal output

Labor, utilized agricultural
area, buildings, and fixed
equipment, materials and
total livestock units

Moutinho et al. (2018) [11] DEA
SFA

27 EU countries net added value Inputs, labor force,
utilized agricultural area,
and energy consumed in
the technical

Todorović et al. (2020) [20] DEA Serbia total output Total labor, utilized
agricultural area, seed and
plant costs, fertilizers, crop
protection, farming
overheads, depreciation,
external costs, total assets,
total liabilities

Ðokić et al. (2020) [7] DEA Western Balkans and the
New Member States

total output Agricultural land, labor,
and capital

Náglová and Rudinskaya (2021) [15] SFA 25 EU countries total factor productivity Land, labor, capital, and
material

Source: The authors’ presentation.

Appendix B

Table A2. Panel regression model of fixed and random individual effects.

Parameter Variable
Fixed Effects Model Random Effects Model

Coefficient Std. Error Coefficient Std. Error

β0 Constant −15.3896 a 3.8088 −23.3721 a 2.8338
β1 lnLabour 0.0727 b 0.0362 0.1260 a 0.0301
β2 lnLand 0.1262 a 0.0483 0.1600 a 0.0404
β3 lnGFC 0.0864 a 0.0199 0.0979 a 0.0193
β4 lnFertilizer 0.0430 c 0.0232 0.0579 b 0.0227
β5 lnLivestock 0.4766 a 0.0806 0.6688 a 0.0450
β6 time 0.0106 a 0.0015 0.0128 a 0.0013

σu 0.5328 0.2681
σv 0.0659 0.0659

λ = σu/σv 8.0850 4.0683
ρ = σ2

u/σ2 0.9849 0.9430
Number of observations 372 372

Number of countries 31 31
a statistical significance at level α = 0.01
b statistical significance at level α = 0.05
c statistical significance at level α = 0.1

Source: The authors’ calculation.
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Table A3. Panel regression model of fixed individual effects with robust standard error.

Parameter Variable
Fixed Effects Model

Coefficient Robust Std. Error

β0 Constant −15.3896 b 60.643
β1 lnLabour 0.0727 00.568
β2 lnLand 0.1262 c 00.635
β3 lnGFC 0.0864 a 00.175
β4 lnFertilizer 0.0430 00.382
β5 lnLivestock 0.4766 a 01.463
β6 time 0.0106 a 00.023

σu 0.5328
σv 0.0659

λ = σu/σv 8.0850
ρ = σ2

u/σ2 0.9849
Number of observations 372

Number of countries 31
a statistical significance at level α = 0.01
b statistical significance at level α = 0.05
c statistical significance at level α = 0.1

Source: The authors’ calculation.

Table A4. Overall technical efficiency of agriculture by country.

Country OTE Country OTE Country OTE

Albania 0.3133 France 0.7318 N.
Macedonia 0.3795

Austria 0.4417 Germany 0.7572 Poland 0.6622
Belgium 0.6346 Greece 0.6760 Portugal 0.4626
Bosnia and
Herzegovina 0.2514 Hungary 0.6817 Romania 0.4987

Bulgaria 0.5496 Ireland 0.3101 Serbia 0.5443
Croatia 0.4043 Italy 0.7914 Slovakia 0.3619
Czechia 0.4649 Latvia 0.3125 Slovenia 0.2415
Denmark 0.5612 Lithuania 0.3943 Spain 0.7713
Estonia 0.2842 Montenegro 0.1414 Sweden 0.3864
Finland 0.3537 Netherland 0.6964

Source: The authors’ calculation.

Table A5. Characteristics of the clusters.

OTE

Agricultural
Land per
Worker

(ha/Worker)

Labor
Productivity
($/Worker)

Land
Productivity

($/ha)

Cluster 1 0.60 32 148,860 5090
Cluster 2 0.65 31 76,973 3556
Cluster 3 0.46 25 37,127 1609
Cluster 4 0.47 14 17,901 1481
Cluster 5 0.35 10 8635 1116

Source: The authors’ calculation.



Agriculture 2022, 12, 1992 16 of 18Agriculture 2022, 12, x FOR PEER REVIEW 17 of 19 
 

 

 
Figure A1. Agricultural support by country in the EU and WB. Source: The authors’ presenta-
tion based on [48,49]. 

References 
1. Zhao, Z.; Peng, P.; Zhang, F.; Wang, J.; Li, H. The Impact of the Urbanization Process on Agricultural Technical Efficiency in 

Northeast China. Sustainability 2022, 14, 12144. https://doi.org/10.3390/su14191214. 
2. Morais, G.A.S.; Silva, F.F.; Freitas, C.O.D.; Braga, M.J. Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil. Sus-

tainability 2021, 13, 1132. https://doi.org/10.3390/su1303113. 
3. Lazíková, J.; Lazíková, Z.; Takáč, I.; Rumanovská, Ľ.; Bandlerová, A. Technical Efficiency in the Agricultural Business—The 

Case of Slovakia. Sustainability 2019, 11, 5589. https://doi.org/10.3390/su11205589. 
4. Liu, J.; Dong, C.; Liu, S.; Rahman, S.; Sriboonchitta, S. Sources of Total-Factor Productivity and Efficiency Changes in China’s 

Agriculture. Agriculture 2020, 10, 279. https://doi.org/10.3390/agriculture10070279. 
5. Zhu, Y.; Huo, C. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 

15, 4464. https://doi.org/10.3390/en1512446. 
6. Matkovski, B.; Zekić, S.; Đokić, D.; Jurjević, Ž.; Đurić, I. Export Competitiveness of Agri-Food Sector during the EU Integration 

Process: Evidence from the Western Balkans. Foods 2022, 11, 10. https://doi.org/10.3390/foods11010010. 
7. Đokić, D.; Zekić, S.; Jurjević, Z.; Matkovski, B. Drivers of technical efficiency in agriculture in the Western Balkans and New EU 

Memeber States. Custos Agronegocio Online 2020, 16, 2–15. 
8. Marcikić Horvat, A.; Matkovski, B.; Zekić, S.; Radovanov, B. Technical efficiency of agriculture in Western Balkan countries 

undergoing the process of EU integration. Agric. Econ. 2020, 66, 65–73. https://doi.org/10.17221/224/2019-AGRICECON. 
9. Bakucs, Z.; Ferto, I.; Latruffe, L.; Desjeux, Y.; Soboh, R.; Dolman, M. Comparative Analysis of Technical Efficiency in European 

Agriculture. In Proceedings of the 2011 International Congress, Zurich, Switzerland, 30 August–2 September 2011. 
10. Nowak, A.; Kijek, T.; Domańska, K. Technical efficiency and its determinants in the European Union. Agric. Econ. 2015, 61, 275–

283. https://doi.org/10.17221/200/2014-AGRICECON. 

Figure A1. Agricultural support by country in the EU and WB. Source: The authors’ presentation
based on [48,49].

References
1. Zhao, Z.; Peng, P.; Zhang, F.; Wang, J.; Li, H. The Impact of the Urbanization Process on Agricultural Technical Efficiency in

Northeast China. Sustainability 2022, 14, 12144. [CrossRef]
2. Morais, G.A.S.; Silva, F.F.; Freitas, C.O.D.; Braga, M.J. Irrigation, Technical Efficiency, and Farm Size: The Case of Brazil.

Sustainability 2021, 13, 1132. [CrossRef]
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