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Abstract: In precision agriculture, unmanned aerial vehicles (UAVs) are playing an increasingly
important role in farmland information acquisition and fine management. However, discrete obstacles
in the farmland environment, such as trees and power lines, pose serious threats to the flight safety
of UAVs. Real-time detection of the attributes of obstacles is urgently needed to ensure their flight
safety. In the wake of rapid development of deep learning, object detection algorithms based on
convolutional neural networks (CNN) and transformer architectures have achieved remarkable
results. Detection Transformer (DETR) and Deformable DETR combine CNN and transformer to
achieve end-to-end object detection. The goal of this work is to use Deformable DETR for the task
of farmland obstacle detection from the perspective of UAVs. However, limited by local receptive
fields and local self-attention mechanisms, Deformable DETR lacks the ability to capture long-
range dependencies to some extent. Inspired by non-local neural networks, we introduce the global
modeling capability to the front-end ResNet to further improve the overall performance of Deformable
DETR. We refer to the improved version as Non-local Deformable DETR. We evaluate the performance
of Non-local Deformable DETR for farmland obstacle detection through comparative experiments on
our proposed dataset. The results show that, compared with the original Deformable DETR network,
the mAP value of the Non-local Deformable DETR is increased from 71.3% to 78.0%. Additionally,
Non-local Deformable DETR also presents great performance for detecting small and slender objects.
We hope this work can provide a solution to the flight safety problems encountered by UAVs in
unstructured farmland environments.

Keywords: UAVs; obstacle detection; deformable DETR; non-local deformable DETR

1. Introduction

With the development of agricultural robot technology, UAVs are becoming an im-
portant part of global agriculture aviation [1]. Specifically, UAVs with high-performance
onboard sensors and task-specific action systems have been successfully deployed in farm-
land information collection and fine management [2–5]. However, the advantages and
performance of UAVs have not been fully realized at present yet. One of the main reasons
is that randomly distributed obstacles, such as trees, poles, buildings, people, and power
towers pose a serious threat to its flight safety and operational efficiency [6]. Image sensors
are widely used as the eyes of UAVs [7], so giving them human-like intelligent environ-
mental awareness is an intuitive solution. How to quickly and accurately detect objects of
interest in information-rich images is a technical bottleneck [8].

Previously, researchers have used a monocular camera [9], stereo camera [10], event
camera [11] and other sensors to detect the obstacles based on various image processing
techniques. Recently, deep learning neural networks have been used in the obstacle
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detection [12,13], but they usually rely on the specific dataset and the detection of narrow
and small object remains the challenging problem [8].

Deep learning offers a power tool to process agricultural images [14,15]. Since
AlexNet [16] won the ImageNet competition in 2012, convolutional neural networks (CNNs)
have significantly advanced the computer vision tasks. For example, object detection algo-
rithms, such as YOLO [17], Faster R-CNN [18] and other networks, can quickly obtain the
category and boundary box of targets; instance segmentation, such as Mask R-CNN [19]
and PointRend [20], can obtain category, bounding box and mask information at the same
time. Within local receptive fields, convolutional operations collect spatial and channel-
wise features as powerful image representations in a hierarchical manner. Although it has
advantages in local feature extraction, CNNs have difficulties in capturing global image
information, such as the long-distance relationship, which is often critical to advanced
computer vision tasks [21,22]. An intuitive solution is to expand the receptive field by
stacking convolution layers, but this will make it difficult to optimize the model.

The attention mechanism has been widely used to increase the CNN’s global represen-
tation capacity. The visual attention mechanism is the visual characteristic of the human
visual system to actively select the object of attention and focus on it, which can effec-
tively improve image processing capabilities such as image content screening and target
retrieval [23]. In the perspective of artificial intelligence, the attention mechanism is a data
processing method in machine learning, which essentially uses the relevant feature map to
learn the weight distribution, then applies the learned weights on top of the original feature
map, and finally performs weighted summation to quickly extract important features of
sparse data [24–26]. It can be broadly divided into three categories, namely spatial atten-
tion: Non-local Network (NLNet [27]), channel attention: Squeeze-and-Excitation Network
(SENet [28]) and temporal attention: Global-Local Temporal Representation (GLTR [29]).
Non-local block in NLNet is a spatial self-attention variant that can capture long-rang
dependencies within deep neural networks. Hu et al. introduced a squeeze-and-excitation
(SE [28]) block to explicitly model the interdependence between feature channels. GLTR
designed the temporal self-attention model to exploit multi-scale temporal cues in a video
sequence. Additionally, there are some combinatorial variants. Woo et al. proposed an
attention module-Convolutional Block Attention Module (CBAM [30]) that combines spa-
tial and channel attention, in which the features extracted by channel attention are used
as the input of the spatial attention module. Cao et al. proposes Global Context Network
(GCNet [31]) based on non-local block and SE block to globally model the context. It has
been proven that after inserting these modular blocks in the classical convolutional neural
network architectures, the model performance can be greatly improved.

Transformer that exclusively rely on the self-attention mechanism to capture global
dependencies has achieved remarkable success in natural language processing (NLP) [32].
Recently, many pioneering works have demonstrated that transformer architecture and its
variants can also handle downstream computer vision tasks, such as image recognition: Vi-
sion Transformer (ViT [33]), Data-efficient image Transformers (DeiT [34]), Tokens-To-Token
Vision Transformer (T2T [35]), Transformer in Transformer (TNT [36]), Conditional Posi-
tional encoding Vision Transformer (CPVT [37]), Shifted Windows Transformer (Swin Trans-
former [38]), object detection: Detection Transformer (DETR [39]), Deformable DETR [40],
Swin Transformer, image segmentation: SEgmentation Transformer (SETR [41]), Pyramid
Vision Transformer (PVT [42]), Transformer for semantic segmentation (Segmenter [43]),
Swin Transformer, and video object tracking: Swin Transformer Tracker (SwinTrack [44]),
Video Vision Transformer (ViViT [45]), Video Transformer (VidTr [46]) and Transformer
Tracking (TransT [47]).

Convolution operation in CNNs is good at extracting local features, but have difficulty
to capture global representation. The hierarchical self-attention in the transformer is
conducive to building long-rang dependencies, but ignores local features. Currently,
some works use a combination of CNN and Transformer to obtain local features, global
representation and long-rang dependences: Convolutional vision Transformer (CvT [48]),
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Conformer [49] and CNNs meet transformers (CMT [50]). Specifically, DETR is the first
end-to-end baseline network for deploying transformer in object detection. Different from
the R-CNN and YOLO, DETR regards object detection as a direct set prediction problem,
and simplifies the detection pipeline by dropping some hand-crafted components such as
anchor generation and non-maximum suppression. DETR uses ResNet [51] to extract image
features, then outputs 100 prediction results in parallel based on the transformer encoder-
decoder architecture and finally determines the final prediction classes and bounding
boxes through bipartite matching. Although DETR significantly outperforms competitive
baselines, there are still three problems with DETR. First, compared to existing object
detection methods, DETR requires more epochs to converge. Second, insufficient detection
performance of DETR for small objects. Lastly, the computational complexity of DETR is still
sensitive to the resolution of the image or feature map. To address these issues, Deformable
DETR introduces the idea of deformable convolution and multi-scale feature maps to form
the so-called Multi-scale Deformable Attention Module. The experimental results show
that Deformable DETR not only alleviates the problems of slow convergence and high
computational complexity of DETR, but also achieves better performance than DETR.

Random and discrete obstacles in the natural farmland environment pose a direct
threat to the flight safety of UAVs. Usually, the images captured by the UAV’s onboard
camera are filled with a lot of background noise, which increases the difficulty for obstacle
detection. In this paper, we try to deploy the modified Deformable DETR for the task of
agricultural UAV-based farmland obstacle detection. In Deformable DETR, the ResNet-
style CNN architecture models the spatial and local features of input images, while the
transformer builds the long-distance dependencies. However, the global modeling ability
of Deformable DETR is still insufficient for detecting the small farmland objects. The
motivation of this work is to further improve the global modeling capability of Deformable
DETR by introducing the global modeling capability in the front-end CNN. In this work, we
achieve this by introducing a Non-Local module into the CNN feature extraction network
in the Deformable DETR front-end. The main reason is that non-local operation can capture
long-range dependencies by computing the response of a location as a weighted sum
of all location features in the input feature map. Our proposed Non-local Deformable
DETR combines the local feature extraction ability of CNN, the global modeling ability of
non-local and the self-attention mechanism of transformer to improve the object detection
accuracy while maintaining the efficiency of the Deformable DETR model.

2. Materials and Methods
2.1. Dataset

The dataset proposed by our previous work [6] contained 3700 samples served as the
basis for this study. Additionally, it can be classified into six categories: tree, wire poles,
building, power tower, UAVs and person. In this work, we collected more images con-
taining obstacles through various methods (manual photography, UAV photography and
web search) and added them to the raw dataset. In the preprocessing stage, we manually
selected the raw dataset through data cleaning to remove some low-quality samples. In
addition, we also resize the images of different resolutions to the same resolution through
a cropping operation. As shown in Figure 1, our dataset contains six classes of typical
obstacles which are common in the farmland. The percentage values of tree, wire poles,
building, power tower, UAVs and person are 14.48%, 15.44%, 16.81%, 15.99%, 15.40% and
21.87% respectively. There are a total of 6000 images, each with a resolution of 416 × 416.
All 11,578 objects in our dataset were annotated by Labelme [52]. We randomly selected
4800 images as the training set, 600 images as the validation set and 600 images as the test
set, with a ratio of 8:1:1.
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Figure 1. Examples of field obstacle images.

2.2. Model structure
2.2.1. Deformable DETR

Without the need of hand-designed components such as NMS or anchors, DETR
can predict the final set of detections in parallel by combining a common CNN with a
transformer architecture. However, DETR requires long training time to converge and
has relatively poor performance for small object detection. To solve these two issues,
Zhu et al. [40] introduced the idea of deformable convolution and multi-scale features in
convolutional neural networks into DETR and proposed the Deformable DETR. Deformable
DETR uses ResNet-50 [51] as the backbone to extract the multi-scale features. Deformable
transformer (encoder and decoder) extracts and strengthens the feature maps from the
output feature maps of stages C3-C5 in ResNet by using multi-scale deformable attention
module. The core of Deformable DETR is the deformable attention module and multi-scale
deformable attention module

The deformable attention module is a local attention mechanism, which means it only
pays attention to a small set of key sampling points around the reference point, independent
of the spatial size of the feature map [40]. Given an input feature map x ∈ RC×H×W , query
elements with content features zq and 2D reference points pq, the equation of the deformable
attention feature is calculated by:

De f ormAttn
(
zq, pq, x

)
=

M

∑
m=1

Wm

[
K

∑
k=1

Amqk·W ′mx
(

pq + ∆pmqk

)]
, (1)

where m is the attention head, k is the sampled keys, K is the total sampled keys (K � HW),
∆pmqk is the sampling offset and Amqk is the attention weight of the kth sampling point in
the mth attention head.

The deformable attention module and multi-scale form the multi-scale deformable
attention module. Given the input multi-scale feature maps

{
xl
}L

l−1
, where xl ∈ RC×H×W .

Let p̂q ∈ [0, 1]2 be the normalized coordinates of the reference point. The equation of
multi-scale deformable attention feature can be calculated by:

MSDe f ormAttn(zq, p̂q,
{

xl
}L

l=1
) =

M

∑
m=1

Wm

[
L

∑
l=1

K

∑
k=1

Amlqk ·W ′mxl(∅l
(

p̂q
)
+ ∆pmlqk

)]
, (2)

where l is the input feature level, p̂q is the normalized coordinates of the reference point,
∆pmlqk is the sampling offset of the kth sampling point in the lth feature level and the mth

attention head and Amlqk is attention weight of the kth sampling point in the lth feature
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level and the mth attention head. ∅l
(

p̂q
)

rescales the normalized coordinates p̂q to the input
feature map of the lth level.

Compared to DETR, Deformable DETR replaces the multi-head attention module in
the transformer encoder with the multi-scale deformable attention module and replaces the
cross-attention module in transformer decoder with multi-scale deformable cross-attention
module. The self-attention module in the transformer decoder remains unchanged.

2.2.2. ResNet

Both DETR and Deformable DETR use ResNet to extract original feature maps. ResNet
is a popular backbone in many state-of-the-art deep learning algorithms. The basic idea of
ResNet is to introduce a “shortcut connection” that can skip one or more layers to solve the
model degradation problem. As shown in Figure 2, the residual block uses the shortcut
connection to perform identity mapping, which connects the input x with the F(x) obtained
through the stacked weight layers, without adding additional parameters or increasing the
computational complexity.
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When x and F are of the same dimension, the output is given by:

y = F(x, {Wi}) + x (3)

where x, y are the input and output vector of residual block and F(x, {Wi}) is the residual
mapping to be learned. When the dimensions of x and F are different, the input x needs to
match the dimensions by:

y = F(x, {Wi}) + Wsx, (4)

where Ws is the linear mapping function.

2.2.3. Non-Local Neural Networks

Traditional convolution operations lack the ability of global modeling due to the lim-
itation of local receptive fields. Long-range dependencies are usually achieved through
hierarchical convolution and pooling. Inspired by the self-attention mechanism in NLP,
non-local neural networks introduce self-attention to CNN to capture long-distance de-
pendencies in the feature extraction process. A generic non-local operation in deep neural
networks is defined as:

yi =
1

C(x) ∑∀j f
(
xi, xj

)
g
(
xj
)

(5)

where x is the input feature, y is the corresponding output feature, i is the index of output
position, j is the index of all possible positions in feature, f is the function (Embedded
Gaussian) that calculates the relationship between i and all j, g is the function that computes
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the representation of the input signal at position j and C(x) is a factor that normalizes
the response.

Non-local operations can be implemented in the form of non-local blocks, which
means it can be easily plugged into conventional convolutional layers within standard
networks. Based on Equation (5), the non-local block is defined as:

zi = Wzyi + xi (6)

where “+xi”denotes residual shortcut connection and Wzyi represents linear transformation.
An example of non-local block is shown in Figure 3. Wv, Wk, Wq and Wz are weight

matrixes to be learned and “⊕” denotes element-wise sum after shortcut connection, while
“⊗” denotes matrix multiplication.
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2.2.4. Non-Local Deformable DETR

In Deformable DETR, convolution operations in ResNet architecture capture multi-
scale local features and the encoder-decoder in the transformer architecture conducts local
self-attention. Therefore, Deformable DETR lacks the ability to learn global represen-
tations over long distances. Based on the non-local structure, we introduce the global
modeling capability to the front-end ResNet to further improve the overall performance of
Deformable DETR.

As shown in Figure 4, non-local blocks are inserted into all the residual blocks in Stage
4 and 5 in ResNet-50. Specifically, in each optimized residual block, the non-local block is
added after the 3× 3 convolution layer to establish long-distance dependency and improve
the feature extraction ability of the model.
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2.3. The Overview of Data Flow

In this paper, we improved the Deformable DETR by Non-local block to enhance the
detection accuracy of farmland obstacles; an overview of the data flow is shown in Figure 6.
First, the raw dataset was cleaned and cropped into the pre-processed dataset, and then it
was divided into training set, validation set and test set with a ratio of 8:1:1. Secondly, we
used the training set and validation set to train the proposed Non-local Deformable DETR.
Finally, the test set was used to evaluate the model’s predicting performance.
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2.4. Evaluation Metrics

In this study, AP and mAP were used to evaluate the performance of the model with
Equations (7) and (8):

AP =
∫ 1

0
P(R)dr, (7)

mAP =
1
n

n

∑
i=1

(AP)i, (8)

where AP indicates the average precision of a single category, mAP indicates the average
of multiple category’s AP, P represents the accuracy rate which can be calculated by
Equation (9), R is the recall rate that can be obtained by Equation (10) and P(R) denotes the
mapping function of P and R:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)

where TP (True positive) indicates the number of positive samples that are correctly pre-
dicted as positive, FP (False Positive) represents the number of samples that the model
predicts as positive, but which are actually negative, FN (False Negative) means the number
of misclassified samples that are actually positive but are classified as negative and TN
(True Negative) stands for the number of negative samples that are correctly classified
as negative.

3. Results and Discussion
3.1. Implementaion Details

The configuration of the computer used for algorithm development is as follows:
the central processing unit (CPU) is Intel Core i9-12900K; the graphics processing unit
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(GPU) is an NVIDIA GeForce RTX 3090Ti with 24 GB on-board memory; the physical
memory is DDR5 5200 (16 G); the running operation system is Ubuntu 20.04 LTS; the
PyTorch deep learning framework and is used to build, train and validate the Non-local
Deformable DETR.

Considering the model training effect and experimental conditions, this paper adopts
the transfer learning training strategy. The backbone network is initialized with ResNet-50
weights pretrained on ImageNet. Training epochs and iterations are set to 50 and 1200,
respectively. In order to avoid the instability of the model caused by large learning rate at
the beginning of training, a warmup strategy is adopted to adjust the learning rate. In the
initial 500 iterations, the learning rate is gradually adjusted from 2.4 × 10−4 to 2.5 × 10−3.
The momentum factor is 0.9 and the weight decay coefficient is 1 × 10−4.

3.2. Results and Analysis

Focusing on three metrics (AP value, parameters and inference time), we conducted
two kinds of comparative experiments based on our farmland obstacle dataset to evaluate
Non-local Deformable DETR. Firstly, we reproduced Deformable DETR and its two vari-
ants, Deformable DETR-Iterative Bounding Box Refinement and Deformable DETR-Two
Stage [40]. Secondly, we repeated some other classic object detection algorithms, such as
Faster R-CNN, Mask R-CNN and Swin Transformer. The overall comparison results are
shown in Figure 7. Non-local Deformable DETR achieves the best mAP with moderate
inference time.
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As shown in Tables 1 and 2, the overall AP value and the AP value of each category of
the two variants are higher than the vanilla Deformable DETR. In terms of the mAP value,
Deformable DETR-Iterative Bounding Box Refinement and Deformable DETR-Two Stage
are 5.4% and 5.1% higher than the vanilla Deformable DETR, respectively. In particular, the
APS value is increased by 8.8% and 18.5%, respectively. Meanwhile, parameters increased
slightly, by 0.68 million and 0.99 million, and the inference time increased by 3.8 ms and
14.3 ms, respectively. Compared to Deformable DETR-Iterative Bounding Box Refinement,
Deformable DETR-Two Stage achieves a slight performance gain at the cost of introducing
larger latency (10.5 ms). This work takes the Deformable DETR-Iterative Bounding Box
Refinement as the baseline, and forms Non-local Deformable DETR by inserting non-local
blocks on it. As shown in Table 1, Non-local Deformable DETR secures the best mAP
(78.0%), with an inference time of 32.0 ms, which is slightly lower than DETR-Iterative
Bounding Box Refinement (32.6 ms). Although the detection speed of Non-local Deformable
DETR is only one-third that of Faster R-CNN, it achieves an mAP gain of 6.2%. For UAVs-
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based farmland obstacle detection task, we need a better trade-off between detection
accuracy and speed. Therefore, we believe that the current detection speed of Non-Local
Deformable DETR is acceptable, although it needs to be further improved.

Table 1. Performance comparison between different models.

Model

Bounding Box
Parameters
(Million)

Inference
Time
(ms)

mAP
(%)

AP50
(%)

AP75
(%)

APS
(%)

APM
(%)

APL
(%)

Faster R-CNN 71.8 91.6 83.8 46.6 73.4 79.8 41.15 10.7

Mask R-CNN 64.5 85.8 77.6 27.8 67.9 76.7 43.77 20.3
Swin Transformer 73.5 92.1 85.1 45.5 74.8 82.2 68.71 35.5
Deformable DETR 71.3 92.5 81.0 35.0 73.3 80.6 39.82 28.8

Deformable DETR-Iterative
Bounding Box Refinement 76.7 93.3 84.2 43.8 77.7 86.4 40.50 32.6

Deformable DETR-Two Stage 76.4 93.4 83.7 53.5 77.7 84.6 40.81 43.1
Non-local Deformable DETR 78.0 94.5 85.5 48.2 79.0 85.2 42.86 32.0

Note: APs, APM and APL correspond, respectively, to the AP value based on pixel area sizes less than 322, between
322 and 962 and larger than 962.

Table 2. Performance comparison of different models in each category.

Model

AP (Bounding Box)

UAVs
(%)

Building
(%)

Power-Tower
(%)

Person
(%)

Tree
(%)

Wire Pole
(%)

Faster R-CNN 85.5 66.3 78.2 69.9 76.5 54.4

Mask R-CNN 81.0 63.1 64.6 65.5 72.6 40.1
Swin Transformer 85.5 69.5 77.8 74.8 76.9 56.4
Deformable DETR 86.0 68.7 79.1 70.9 72.6 50.7

Deformable DETR-Iterative
Bounding Box Refinement 90.6 75.9 82.2 76.7 79.5 55.6

Deformable DETR-Two Stage 89.7 73.0 80.9 77.5 76.9 60.5
Non-local Deformable DETR 90.2 75.8 83.1 78.2 78.5 62.2

Table 2 presents the detection results of different algorithms for six classes of farmland
obstacles. For power-tower and person detection, our proposed Non-local Deformable
DETR achieves the highest AP. For UAVs and buildings detection, Non-local Deformable
DETR does not secure the best results (0.04% and 0.01% lower than Deformable DETR-
Iterative Bounding Box Refinement respectively), but also performs well. Specifically, in
farmland, wire poles and UAVs pose a serious danger to each other. Given the slender
shape of wire pole, its detection is more challenging. Fortunately, our model obtains the
best outcomes again by outperforms vanilla Deformable DETR by 11.5% in AP. We attribute
the benefits to the enhanced global modeling capability for CNN feature extraction by
non-local operations.

Figure 8 shows some samples containing the detected objects. It can be seen that Non-
local Deformable DETR can accurately detect different objects with a suitable bounding
box. Specially, the detection results of the small power pole in the lower right image are
also good. However, as shown in Figure 9, there are also some falsely detected objects. In
Figure 9a, our model cannot detect the second person because it is blurred. In Figure 9b,
our model wrongly detected the UAV as building, because the number of such kind of UAV
in the training set is less, and the feature of the image is closed to the building. In Figure 9c,
our model cannot detect the person due to the backlight environment.
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4. Conclusions

Focusing on the task of UAV-based unstructured farmland obstacle detection, this
work proposed the Non-local Deformable DETR to enhancing the performance of the
original Deformable DETR. Specially, we introduced the non-local blocks into the front-end
ResNet to improve the model’s global representation capacity when extracting feature
maps. Combing the local self-attention mechanism in deformable transformer, our Non-
local Deformable DETR can not only capture local features, but also model long-distance
dependencies. Based on our farmland obstacle dataset, we conducted a series of experi-
ments to investigate the performance of our improved model. Compared with Deformable
DETR and other high-performance object detection algorithms (Faster R-CNN, Mask R-
CNN and Swin Transformer), Non-local Deformable DETR achieved the best mAP (78.0%)
with moderate inference time (32.0 ms). Additionally, Non-local Deformable DETR also
demonstrated advantages detecting small and slender objects, such as wire poles. Taking
detection accuracy and speed into account, the proposed Non-local Deformable DETR has
great potential to be deployed in UAVs-based farmland obstacle detection tasks. In the
future, we will continue to optimize the model to accelerate the detection speed.
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