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Abstract: This research was mainly focused on the evaluation of path planning approaches as a
prerequisite for the automation of bale collection operations. A comparison between a traditional
bale collection path planning approach using traditional vehicles such as tractors, and loaders with
an optimized path planning approach using a new autonomous articulated concept vehicle with
neighborhood reach capabilities (AVN) was carried out. Furthermore, the effects of carrying capacity
on reduction in the working distance of the bale collection operation was also studied. It was
concluded that the optimized path planning approach using AVN with increased carrying capacity
significantly reduced the working distance for the bale collection operation and can thus improve
agricultural sustainability, particularly within forage handling.

Keywords: agriculture; path planning; neighborhood collection; autonomous vehicle; genetic algo-
rithm; global optimization; bale collection problem; forage handling

1. Introduction

Up until present, the application of scientific and technological developments through
increased mechanization and precision farming have provided several opportunities in agri-
cultural production and within forage handling operations. Some promising engineering
developments in the 20th century with regard to forage handling include forage harvesters,
balers, and the automated wrapping equipment of balers using stretch films 25 µm thick
to reduce the risks of dust, molds, spores, and mycotoxin respiratory allergenic disorders
in livestock and humans. Baler machines have made it possible to trade silage (harvest
and storage of moist grass using fermentation) in portable packages between farms, which
typically weigh 600–800 kg freshly cut per bales and are more popular on smaller farms
with limited labor and financial resources to construct silos [1,2].

Bales made up of hay or silage formed by hay are usually too heavy to be picked up
by humans alone. Thus, they are picked up from fields using conventional utility vehicles
such as tractors or loaders operated by a human. These kinds of operations are labor
intensive and associated with health and accident risks [3]. There is also a potential to
further improve the efficiency and environmental impact since most decisions are made by
humans and thus limited to human capacities in terms of sensing, multitasking, planning,
consequence analysis, etc.

Therefore, in this study, the possibility of using a new autonomous agricultural vehicle
with the neighborhood pick-up capabilities concept (AVN) was investigated. The research
focused on off-board path planning, which is a critical task within the complete automation
process of the bale pick-up operation.

Research in the route or path planning of agricultural field tasks can be broadly
categorized into two groups based on the similarity of operations: coverage path planning
(CCP) and point-to-point path planning (P2P). It has been observed by [4] that agricultural
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operations that required coverage path planning have been slightly more investigated. Most
solutions for the path planning of agricultural field operations are based on optimization
methods utilizing heuristic approaches or metaheuristic approaches depending upon the
size and context of the problem [5]. In situations where vehicle routes must be planned
over large areas with high economical risk, methods such as metaheuristics perform an
extensive search for a solution and should thus be preferred [6].

Route planning for agricultural field operations (AFOs) involving the use of vehicles
is referred to as vehicle route planning (VRP), which is a well-studied problem in the field
of operational planning. Recently, VRP solutions have been applied to the planning and
execution of various agricultural field tasks by researchers for the scheduling of the trans-
portation of livestock [7,8] mission planning for coverage operation such as grass mowing
and seedling [9], biomass operation scheduling [10], farm-to-farm path determination for
scheduling crop harvesting [11], and route planning for fertilizer application [12]. Recently,
a decision tool to support farmers in the operational planning of field operations was
proposed by [13] to assist in field partitioning, route generation, and evaluation.

Significant improvements have been shown for AFOs in research by the automation
of the AFOs. A study [14] on field coverage operations for an autonomous tractor using a
mission planner showed a 50% reduction in non-working distance. Coverage operations
were then further studied for irregular shaped fields with obstacles [15,16]. In another
implementation by [17], the optimal covering route and feasible positions for grain transfer
between the combine harvesters and tractors were generated using VRP and the minimum
cost network flow.

The application and comparability of metaheuristics for AFOs have been widely stud-
ied and is still ongoing. Recently, a hybrid genetic algorithm (GA) was tested by [18] for a
capacitive vehicle route problem (CVRP) by utilizing Gillett and Miller, Downhill, and near-
est neighbor heuristics to generate the initial population and refine solutions of GA. Experi-
mental results showed that the hybrid approach generated good solutions for CVRP with
low computational cost. In another research by [19] with regard to capacitated coverage
path planning problem for arable field, two popular metaheuristics—simulated annealing
optimization (SAO) and ant colony optimization (ACO) techniques—were evaluated and
it was found that SAO performed better than ACO. Aside from AFOs, a multi-objective
optimal solution to priority-based waste collection and transportation was proposed by [20]
using particle swarm optimization, local search, and simulated annealing (SAO). The op-
timized solution resulted in a 42.3% reduction in the negative effects of greenhouse gas
emissions compared to traditional waste management.

So far, few studies have investigated the bale management in fields. There exists
few published studies on the sequence optimization of the bale collection operation using
wagons or loaders. The intended bale field operation was described as a bale collection
problem (BCP) and was solved as a traveling salesman problem using GA by [21]. While in
another study on BCP in [22], a heuristic-based approach based on K-mean clustering and
nearest neighbor techniques to optimize the bale collection route were tested in simulation.
Comparative results from both studies showed significant improvement in the final gener-
ated route. However, no other research studies were found on the route optimization of
bale collection and no single study was found on the bale collection on fields, especially
with the prerequisite of neighborhood pick-up possibilities.

1.1. Objective

The objective of the research presented in this paper was to optimize the bale
collection operation by means of travelled distance using notion of an autonomous
articulated vehicle with neighborhood collection capability (AVN) and compare that
with traditional collection methods.
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1.2. Scope

The research focused on the development of a global route plan for bale collection
operations in simulation for notion of using AVN. For a global route plan, a static and
known environment was considered since bale positions and fields are static entities. Bale
positions were assumed to been known from a previous baling operation.

The following additional general assumptions were made:

- Only bale collection operation was studied;
- A notion of new type of agricultural vehicle (AVN) was considered for the application;
- The AVN was considered to be a nonholonomic point like robot for the path generation;
- Kinetic constraints of the vehicle were excluded;
- Feasibility is measured only by total travelled distance.

2. Research Methodology

To investigate the effects of different bale collection strategies, a simulation approach
was chosen. Path planning is typically performed in computer environments, which further
makes feasibility evaluation easy compared to real life experimental strategies (i.e., to
measure the feasibility on path suggestions on an actual field).

Two different approaches were studied and verified through the testing of situations
with outcome pre-knowledge. The first approach imitates the bale collection strategy of
farmers by always choosing the closest bales from the current position. The other approach
instead uses a GA to optimize the collection order and position within a radius from
which the AVN can reach. To investigate the differences in travelled distance (i.e., chosen
feasibility) between a traditional and proposed collection approach, two different fields
of the same size and with the same number of bales with a pre-determined distribution
was studied. One was a simple rectangular field (field 1) and the other was a L-shaped
field with more geometrical constraints (field 2). This enables investigations of possible
dependencies on field complexity. With the fields selected, some simulation parameters
could be set (e.g., grid size, inflation length, number of possible pick-up positions etc.) by
conducting verifying tests to find a trade-off between the computational time and accuracy.
Then, the experiments were designed by choosing which parameters to vary and thus
which simulations to run. To enable comparison, the results from these simulations were
then compiled into tables and some paths were also visualized, enabling the analysis of
collection order as well as verification on the feasibility.

The traditional approach was generated by considering how humans would operate
in a typical agricultural environment for bale collection operation. Generally, a human
operator would pick-up the next visible bales closest to the present location. Such a heuristic
approach could be programmed by using the nearest neighbor algorithm. Through this
approach, two different cases were studied: one with a traditional pick-up vehicle which
always has to go to the nearest bales and another with the AVN.

In addition, an optimization approach based on commonly used GA was further
developed, thus enabling a comparison to the traditional approach. Here, two different
strategies for initial population generation were used to show the effects on convergence.

Verification of the simulations were conducted by running a test simulation on config-
urations where the results were pre-known. In addition, the results from all simulations
were analyzed manually to make sure that the paths were consistent.

2.1. Model Description

In this study, a notion of an AVN (see Figure 1) with a regular forwarder crane of 10 m
long was used for the modeling. For comparison, traditional agricultural vehicles (e.g.,
tractors or loaders) were also modeled. These traditional vehicles are typically equipped
with front loaders requiring additional traveling for the loading of each bale (i.e., they
cannot load bales onto themselves). This effect is excluded in the traditional vehicle models
in this study, leading to underestimation of the travelled distance.
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Figure 1. Autonomous off-road vehicle platform—Autonomous articulated vehicle with neighbor-
hood reach capability (AVN).

The problem formulation for the bale collection operation with a crane makes it
somewhat unique. The AVN can collect bales at a radius R, which makes the situation a close
enough traveling salesman problem (CETSP) [23]. The CETSP is a NP hard, combinatorial
problem, and some recent solutions for CETSP have been proposed based on the discrete
gravitation search algorithm and self-organizing maps [24,25]. However, the vehicle can
have different carrying capacities, thus leading to a close enough traveling salesman
problem with a capacity constraint. In this study, the collection sequence and collection
positions minimizing the total travelled distance was searched for and thus the CETSP is
defined as

minL(Σ, BP, CP) (1)

where Σ is the bale pick up sequence; CP is the desired collection position at radius R
(specified by AVN reach radius) around the bale positions (BP); minL is a function that
calculates the minimum length tour at collection positions around each bale.

Agricultural Field Models

The agricultural fields were modeled in two steps. To represent “go” and “no go”
areas (obstacles), binary occupancy maps (BOM) [26] were used and to find non-collision
paths within the “go” areas, probability roadmaps (PRM) [27] were used.

In this research, to investigate the possible effects of field complexity, two different
fields were studied. Field 1 (see Figure 2) is a rectangular field without any obstacle areas
imitating a quite typical environment for bale collection operations. Field 2 (see Figure 3)
on the other hand, is a representation of an irregular more complex agricultural field with
obstacle or intrusion areas. For both fields, bales were positioned by calculating the distance,
going in straight lines from one end to the other until the whole field was covered, and the
harvesting vehicle had collected enough material to form a bale based on the average yield,
etc. given in Table 1.

Figure 2a shows the BOM of field 1 where black dots indicates bales occupancy
and Figure 2b shows the inflated BOM of field 1. To reduce the calculation intensity for
simulations, only 10 discrete points on each bale collection radius were used, which are
represented as black dots surrounding the inflated bales in Figure 2b.
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Table 1. Bale distribution parameters.

Bale Distribution Parameters

Average grass yield ~7000 kg/ha

Average weight of bales ~700 kg

Harvester width ~3.0 m

Distance req to make one bale by harvester ~330 m
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Figure 3a shows the BOM of field 2 where black dots indicates bales occupancy and
Figure 3b shows the inflated BOM of field 2 including the discretized collection points at
AVN’s reach radius.

The distance traveled to release a bale can then be calculated through

d × HW × Y̌grass = W̃HB (2)

where d is the distance required to make one bale by harvester; HW is the harvester width;
W̃HB is the average weight of one bale; and Y̌grass is the average grass yield in a typical
season. ‘×’ represents multiplication operator. Based on the parameters in Table 1 and
Equation (2), bales were released after a travelled distance of around 330 m (some minor
adjustments were made if the release position coincided with the boundary of the field).

Binary Occupancy Maps for Field 1 and Field 2

A typical agricultural environment for the bale collection operation was modeled in
2D using binary occupancy maps. Bales are represented as occupied circle areas and once
a bale is picked up, it is removed from the BOM. To take the collection vehicle size into
consideration, the occupied areas were further inflated in the BOM. In Table 2, all BOM
settings for both fields (simple and complex) are summarized.

Table 2. Binary occupancy map (BOM) setting for both fields.

Binary Occupancy Map Based Settings for Both Fields

Total field area 3 hectares

Grid cell size 1 m

Grid resolution
(cells/meter2) 1 m

Inflation 1.3 m

Probabilistic Roadmaps

To further reduce the calculation intensity for the GA-simulations, static PRM was
used (stationary nodes and connection lines) to generate the collision free paths. The same
number of nodes and connection distance was used for both fields and the chosen PRM
parameters are given in Table 3.

Table 3. Selected PRM settings for the simulation.

PRM Graph Parameters

Number of nodes
1000

(Fixed position nodes +
random nodes)

Fixed position nodes

Storage position, start position, end
position and potential pickup points

for each bale and/or each
bales position

Random nodes
Nodes besides fixed nodes are
randomly generated once and

remained fixed afterward for all cases

Connection distance 50

The quality of the PRM depends on the number of nodes and connection distance and
also impacts the calculation intensity. For this study, 1000 nodes and 50 m in connection
distance was evaluated as a suitable trade-off.

The “bale storage position, pick-up positions (also bale positions for traditional pick-
up vehicle), start- and end position of the vehicle” were pre-defined nodes and then another
1000 randomly generated nodes were added. PRMs for both fields were kept fixed, despite
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the changes in map (e.g., when bales are picked up) to speed up the computation. However,
PRM connection lines did not cross the bale areas even after being removed.

Figure 4 shows the PRM for field 1 (a) and field 2 (b).
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2.2. Bales Collection Path Approaches

Two approaches to generate the bale collection paths were studied. The idea was to
imitate the bale collection approach of a farmer and compare it to a bale collection approach
based on optimization.

2.2.1. Nearest Neighbor Approach

One way of imitating how farmers collect bales, which was used for this study, is
through the nearest neighbor approach. It was here assumed that a farmer will choose
the nearest bales from its current position and then continue collecting one by one based
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on proximity. In the case of a traditional collection vehicle, the bale center is used as the
collection position. On the other hand, for the AVN, the nearest bale is first derived and
then the collection point around the bale that is closest to the Euclidian vector from the
previous collection position to the current nearest bale center is derived. A straight-line
path is used if no obstacles are intersected, otherwise a collision free path based on PRM
is derived. This approach uses the MATLAB© built-in nearest neighbor search algorithm
based on Euclidean distance between the set of points in free space. In case when there are
obstacles in the space, it may result in false positive in comparison to the farmers’ visual
judgment in a real situation.

2.2.2. Optimization Approach

Optimization of the total distance travelled (fitness function) was carried out by use of
a GA, which has good performance on finding the global optimum, has possibilities for
parallelization, and can be applied to various types of problems. However, GA can become
very calculation intensive and therefore, a lot of emphasis has been spent on simplifications,
making each iteration as fast as possible.

Since the notion of an agricultural vehicle (see Figure 1) with neighborhood collection
capability is used for this study, bales were collected not only in a certain order, but also from
a point on a circle with a certain radius (corresponding to the crane length) surrounding
the bales. Thus, a traveling solution is defined by a collection order and a set of points
on the collection circumference (i.e., collection angles). Since the collection order is a
permutation while collection angles are a set of constrained real numbers between 0 and 2π
(not a permutation), it was decided to use two GAs. Hence, the first GA (GA1) was used to
optimize the collection order represented as chromosome in the population of permutations
of the bales’ identities. For each collection order proposed by the first GA, a second GA
(GA2) was then used to optimize the collection positions for each bale. To speed up the
calculations, a discrete number of collection positions were defined from which GA2 had
to choose. In this way, the number of possible combinations were significantly decreased,
and integer representation was used for the chromosomes, which also contributes to
computational efficiency. For both GAs, the built in “ga”-solver in MATLAB© was used.
However, since GA1 is based on permutation chromosomes, custom functions for the
initial population, crossovers, and mutations were developed (for GA2, default settings
for these properties were used). To enable a comparison of the initial conditions, two
different cases of population initialization were tested (i.e., randomized initialization and
nearest neighbor initialization). Crossovers were conducted by flipping a random sized
part of the chromosomes while the mutations were carried out by swapping two elements
in the chromosome. After evaluating the performance by means of computational time and
accuracy, the following settings were used for both GAs:

• Population size = 50
• Crossover fraction = 50%
• Function tolerance = 1 × 10−5

• Elite count = 10
• Maximum nr. of stalling generations = 50
• Maximum nr. of generations = 100

For GA1, vectorization (i.e., working with the complete population for each iteration in-
stead of sequentially working which each chromosome in sequence) and no parallelization
was used, while the opposite was used for GA2, thus enabling GA2 to evaluate different
sets of collection angles in parallel, which is possible since there exist no dependencies
between those solutions.

At the lowest computational level (i.e., for a suggested collection order and set of
collection angles), the total travelled distance can be calculated. Here, between two subse-
quent collection points, a straight line path was derived if no collision in the occupancy
map occurred. Otherwise, the PRM was used to find the shortest collision free path (within
the pre-generated PRM network). To further improve the computational efficiency, all



Agriculture 2022, 12, 1977 9 of 20

simulated collection orders were stored together with the, for that order, optimized set of
collection positions. For each new generation, this enabled an initial check of whether the
suggested collection orders have already been optimized by means of collection angles
or not. If not, a new optimization simulation is initiated, otherwise the already stored
feasibility value is used.

A 20-core computer was used for the parallel computations, leading to a total simula-
tion time for all set of parameters (field type, carrying capacities) of about 5 days.

3. Results

Simulations with the same set of parameters were carried out for both field 1 and field
2. The simulations included both the nearest neighbor and the optimization approaches.
For the nearest neighbor, to enable a fair comparison, two different cases were studied.
In the first case, notion of traditional vehicle without distance collection possibilities was
modeled and referred to as the “benchmark”. In the other case, the AVN notion was used
and referred to as the “nearest neighbor with radius R” (referred as NNR). Additionally, the
optimization approach was divided into two cases using the AVN notion. In the first case,
random permutations of the pickup sequence were used for the initial population, which here
is referred to as “random permutation initialization” (RPI). For the second case, the nearest
neighbor collection sequence was included in the initial population, which is referred to as
the “nearest neighbor permutation initialization” (NNPI). For each of these four cases, the
three different carrying capacities 1, 10, and all bales were evaluated, leading to 12 different
simulations for each field. The resulting paths for carrying capacity CC = 10 are shown in the
main text while the paths for the remaining simulations can be found in Appendix A.

3.1. Nearest Neighbor Approach

Figure 5 shows the resulting paths for field 1 with CC = 10 of the benchmark-(U)
and NNR case (L). Circle ‘o’ represents bales heuristically optimized pickup positions and
dots ‘•’ and ‘.’ represents bales positions and discretized pickup position at reach radius
respectively. By adding a reach radius, the traveled distance was reduced from 1750 m to
1590 m while the collection sequence remained.

Figure 6 shows the resulting paths for field 2 with CC = 10 of the benchmark-(L) and
NNR case (R). By adding a reach radius, the traveled distance was reduced from 1470 m to
1300 m while the collection sequence remained.

3.2. Optimization Approach

Figure 7a shows the resulting paths for field 1 with CC = 10 of the RPI case where ‘x’
represents bales optimized pickup positions. Figure 7b shows the corresponding fitness
convergence where black dots ‘·’represent the best fitness in each generation and marker
‘+’ represents the average population fitness value in each generation. Figure 7c shows
the resulting path of the NNPI case with the corresponding fitness convergence (d). By
incorporating a nearest neighbor optimization as guess in the initial collection sequence
population, the travelled distance was reduced from 1470 m to 1360 m.
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and (d) NNPI convergence.

Figure 8a shows the resulting paths for field 2 with CC = 10 of the RPI case and the
corresponding fitness convergence (b). Figure 8c shows the resulting path of the NNPI case with
the corresponding fitness convergence (d). By incorporating a nearest neighbor in the initial
collection sequence population, the travelled distance was reduced from 1490 m to 1230 m.

3.3. Results Compilation

Results of the travelled distance for all simulations are compiled in Tables 4 and 5
where the two path planning approaches and their respective subcases are arranged in
columns from left to right for the three different carrying capacities given in rows. For
the optimization approach, solutions for CC = 1 had weak dependency on the collection
order. Some deviations compared to NNR might occur due to the fact that the discrete
collection positions do not necessary coincide with a straight line from the storage location
to the bales. Hence the NNR with CC = 1 is an approximation for the optimized approach.
Table 4 shows the compiled results of the travelled distance for field 1.
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Figure 8. Resulting paths for field 2 with CC = 10 of (a) RPI case, (b) RPI convergence, (c) NNPI case,
and (d) NNPI convergence.

Table 4. Compiled results for field 1.

Path Distance (m)

Path Planning
Approaches

Nearest Neighbor Approach Optimization Approach

(Traditional vehicles) (AVN notion) (AVN notion)

Subcases Benchmark NNR RPI NNPI

Vehicles Carrying
Capacity (CC)

CC = 1 9630 ~9040 ~9040 ~9040
CC = 10 1750 1550 1470 1360
CC = all 1160 990 860 820

It can be observed in Table 4 that an increasing carrying capacity for all three cases
resulted in a significant distance reduction. Percentage reduction in the travelled distance
in field 2 for the three carrying capacities are shown in Figure 9.
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Table 5. Result compilation for field 2.

Path Distance (m)

Path Planning
Approaches

Nearest Neighbor Approach Optimization Approach

(Traditional vehicles) (AVN notion) (AVN notion)

Subcases Benchmark NNR RPI NNPI

Vehicles Carrying
Capacity (CC)

CC = 1 8900 8380 ~8380 ~8380
CC = 10 1470 1300 1490 1230
CC = all 990 830 880 740
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Figure 9. Travelled distance reduction for the three carrying capacities within each case for field 1.

Figure 10 shows a comparison of the path planning cases for two carrying capacities
(CC = 1 will give approximately the same result for the different cases) by means of per-
centage reduction in the travelled distance. Black bars represent NNR over the benchmark,
white bar with solid line borders NNPI over the benchmark and white bar with the dashed
dotted border NNPI over NNR.

Table 5 shows the compiled results of travelled distance for field 2.
Percentage reduction in the travelled distance in field 2 for three carrying capacities

are shown in Figure 11.
Figure 12 shows comparison path planning cases for two carrying capacities (CC = 1

will give approximately the same result for all cases) by means of a percentage reduction
in the travelled distance. The black bar represents the NNR over benchmark, the white
bar with solid line borders NNPI over benchmark, and the white bar with dashed dotted
border is the NNPI over NNR.
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4. Discussion

In order to simplify the computational intensity in optimizing the path planning task
for the bale collection operations, there have been a number of approximations made in
the modeling, as described in the scope and modeling part of the paper. This includes
neglecting vehicle kinetics, considering bale collection only, keeping the PRM network static,
discretization of the collection positions, etc. The GA is also significantly dependent on
settings for the optimization algorithm, which effects both the accuracy and calculation time.
Convergence to an optimal solution is, for instance, highly dependent on the size of the initial
population and number of generations. Apart from CC = 1, the benchmark approach will
always underestimate the travel distance since the loading stage is excluded from the distance
calculation (i.e., relative improvements by the AVN will also be underestimated). Although
these approximations will affect the output in an absolute manner, it is plausible that the
relative behavior will remain, which was therefore focused on in making conclusions.

Taking the modeling limitations into consideration, some key insights were gained by
analyzing the simulation results. It was found that adding carrying capacity significantly
reduced the traveling distance for the bale collection operations. There was an exponential
decaying trend in the distance reduction with respect to the carrying capacity. Hence, the
bale collection procedure can be significantly improved, even with a small carrying capacity
added. Comparing the benchmark with NNR showed that NNR reduced the travelled
distance by about 10–20% (depending on field type and carrying capacity). Comparing the
nearest neighbor strategy with optimization, the collection order may change for optimiza-
tion (whether this is generally true or not cannot be concluded by the data presented in
this paper). As would be expected, the simulations showed that the optimization approach
reduced the travelled distance compared to the nearest neighbor approach. Compared to
the benchmark, this reduction was about 20–30% for field 1 and 15–25% for field 2 and
compared to NNR, this reduction was around 10–20% for field 1 and around 5–10% for field
2. Thus, the relative travelled distance reduction for the optimized solutions was slightly
higher for the regular simple field (Field 1) compared to the complex field (Field 2). These
travelled distance improvements can be compared to the similar studies by [21,22], which
showed a 6.0 and 6.8% reduction for similar cases, respectively. It should be noted that
the convergence to optimal solution strongly depended on the choice of initial population.
The results indicate that the nearest neighbor initialization is a better choice than randomly
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permutated initialization independent of carrying capacities and field complexity (similar
results for both fields).

5. Conclusions

It can be concluded that a vehicle with neighborhood collection capabilities and added
carrying capacity can significantly reduce the travelled distance for bale collection opera-
tions (the benchmark model even gives an underestimation in this study). To generate short
paths, the optimization approach is superior compared to the nearest neighbor approach
and including the benchmark collection order in the initial population for the genetic
algorithm improves the convergence compared to random initialization. Hence, imple-
menting the optimization path planning approach, neighborhood collection capabilities,
and adding a carrying capacity will have a significant effect on the farmers’ economic and
environmental sustainability. By reducing the working distance through optimized path
planning implies less fuel consumption and more cost effectiveness. Although the primary
focus in this study was on bale collection operation, it is plausible that the same approach is
applicable in similar activities both within agriculture and beyond, for example, in forestry.
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Appendix A

Figure A1 shows the resulting paths for field 1 with CC = 1 of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 9630 m to
9040 m while the collection sequence remained.

Figure A2 shows the resulting paths for field 1 with CC = all of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 1160 m to
990 m while the collection sequence remained.

Figure A3a shows the resulting paths for Field 1 with CC = all of the RPI case and
the corresponding fitness convergence (b). Figure A3c shows the resulting path of the
NNPI case with the corresponding fitness convergence (d). By incorporating a nearest
neighbor in the initial collection sequence population, the travelled distance was reduced
from 860 m to 820 m.
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Figure A4 shows the resulting paths for field 2 with CC = 1 of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 8900 m to
8380 m while the collection sequence remained.

Agriculture 2022, 12, x FOR PEER REVIEW 20 of 22 
 

 

Figure A3. Resulting paths for field 1 with CC = all of (a) the RPI case, (b) RPI convergence, (c) NNPI 

case, and (d) NNPI convergence. 

Figure A4 shows the resulting paths for field 2 with CC = 1 of the benchmark-(a) and 

NNR case (b). By adding a reach radius, the traveled distance was reduced from 8900 m 

to 8380 m while the collection sequence remained. 

 
 

 

(a) (b) 

Figure A4. Resulting paths for field 2 with CC = 1 of (a) the benchmark and (b) NNR. 

Figure A5 shows the resulting paths for field 2 with CC = all of the benchmark-(a) 

and NNR case (b). By adding a reach radius, the traveled distance was reduced from 960 

m to 830 m while the collection sequence remained. 

   
(a) (b) 

Figure A5. Resulting paths for field 2 with CC = all of (a) the benchmark and (b) NNR. 

Figure A6a shows the resulting paths for field 2 with CC = all of the RPI case and the 

corresponding fitness convergence (b). Figure A6c shows the resulting path of the NNPI 

case with the corresponding fitness convergence (d). By incorporating a nearest neighbor 

in the initial collection sequence population, the travelled distance was reduced from 880 

m to 740 m. 

Figure A4. Resulting paths for field 2 with CC = 1 of (a) the benchmark and (b) NNR.



Agriculture 2022, 12, 1977 19 of 20

Figure A5 shows the resulting paths for field 2 with CC = all of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 960 m to
830 m while the collection sequence remained.
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Figure A6a shows the resulting paths for field 2 with CC = all of the RPI case and
the corresponding fitness convergence (b). Figure A6c shows the resulting path of the
NNPI case with the corresponding fitness convergence (d). By incorporating a nearest
neighbor in the initial collection sequence population, the travelled distance was reduced
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