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Abstract: Accurately estimating and forecasting evapotranspiration is one of the most important tasks
to strengthen water resource management, especially in desert areas such as La Yarada, Tacna, Peru,
a region located at the head of the Atacama Desert. In this study, we used temperature, humidity,
wind speed, air pressure, and solar radiation from a local weather station to forecast potential
evapotranspiration (ETo) using machine learning. The Feedforward Neural Network (Multi-Layered
Perceptron) algorithm for prediction was used under two approaches: “direct” and “indirect”. In the
first one, the ETo is predicted based on historical records, and the second one predicts the climate
variables upon which the ETo calculation depends, for which the Penman-Monteith, Hargreaves-
Samani, Ritchie, and Turc equations were used. The results were evaluated using statistical criteria to
calculate errors, showing remarkable precision, predicting up to 300 days of ETo. Comparing the
performance of the approaches and the machine learning used, the results obtained indicate that,
despite the similar performance of the two proposed approaches, the indirect approach provides
better ETo forecasting capabilities for longer time intervals than the direct approach, whose values of
the corresponding metrics are MAE = 0.033, MSE = 0.002, RMSE = 0.043 and RAE = 0.016.

Keywords: evapotranspiration; forecasting; machine learning; deep learning; arid zones

1. Introduction

Nowadays, great efforts are made to achieve an efficient use of water in economic
activities, especially in agriculture; activity that registers the highest water consumption
in the world. Accurate prediction of vegetation water consumption is important in the
fields of hydrology and irrigation engineering [1]. Evapotranspiration (ET) is one of
the most important components of the hydrological cycle and its accurate estimation is
very important for the hydrological water balance, design, and management of irrigation
systems, crop yield, and water resources planning [2–5]. Likewise, it plays an essential role
in simulating the hydrological effects of climate change [6].

Various methods have been developed over time to estimate potential evapotranspira-
tion (ETo) from weather data. These methods vary in complexity from models that require
only basic information, such as the maximum and minimum air temperatures, to complex
models that estimate ETo through energy balance models, such as the Penman-Monteith
method [7].

To date, there have been attempts to estimate and predict ETo more accurately. Some
of them involve numerical and statistical approaches that attempt to accurately simulate
the random nature of climate variables [8]. In parallel, artificial intelligence techniques
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have been developed with the use of tools based on statistical learning theory, such as
artificial neural networks [9–12].

Artificial neural networks (ANNs) are a mathematical approach to the functioning of
the brain that can be schematically represented for better understanding [13]. The use of
ANNs is widespread, although conventional machine learning (ML) methods, including
ANN, principal component analysis (PCA), support vector machines (SVM), and regression
analysis, among others, have been successfully used for decades. Recent advances in deep
learning have aroused special interest in academia by the intelligent monitoring of various
natural and artificial processes [14]. The reason for selecting the Multilayer Perceptron
in this research was its ease of implementation. MLP is also known for providing high-
quality models while keeping the learning time relatively low compared to more complex
methods [15]. Likewise, time series forecasting is becoming one of the most important
branches of big data analysis [16]. Hydrology is not unrelated to this and especially ETo
forecasting, which is used in crop irrigation scheduling.

The reference evapotranspiration (ETr) is usually computed in advance to obtain the
actual evapotranspiration (ETa). For the ETo estimation, artificial intelligence techniques,
specifically ML, are suitable methodologies due to their excellent computational efficiency
and less dependence on data [17].

In Peru, similar works have been developed [12,18], but in high Andean basins that
also use meteorological information; however, other approaches, such as the one addressed
by this research, have not been considered. In addition, in the Tacna Region, there are no
similar studies.

There are proposals for comparing the calculation of ETr with different methods.
For instance, Yang [19] makes a detailed comparison of methods based on temperature
and radiation using computational techniques implemented in MATLAB, with significant
results. Nowadays, ML is becoming a widely used tool in hydrology [20]. Research
proposals using data science are increasing in the calculation of ETr and especially in the
validation of the precision of various classical and some recent methods [21]. Specifically,
deep learning using neural networks has become a very powerful and interesting alternative
for the prediction of climate variables based on temperature [9].

This study aims to test the efficiency of two approaches (direct and indirect) to predict
daily ETo in an arid region located in southern Peru, using machine learning with daily cli-
mate information from an automatic recording station scheduled to 30 min. The algorithm
used corresponds to an MLP (Multi-Layer Perceptron) neural network architecture, to de-
termine the suitability of the proposed forecasting schemes, using the hyperbolic tangent as
an activation method that delivers transformed values between −1 and 1. For the forecast-
ing effort, we considered ETo values derived from the equations of Penman-Monteith [7],
Hargreaves [22], Ritchie [23], and Turc [24].

The research goal of this study is to devise a predictive model to calculate the evotran-
spiration of our study zone and compare this with other methods. The model may be well
extended to other arid zones. In this direction, this study attempts to answer the following
research questions:

RQ1: Can time series data be adequately transformed into data from supervised
problems to apply to neural network models?

RQ2: Can an acceptable accuracy of evapotranspiration prediction be obtained using
multilayer perceptron?

RQ3: Can a deep learning model perform better than calculation applying the Penman-
Monteith, Hargreaves-Simoni, Ritchie, and Turc equations in arid zones?

Our main hypothesis is that using deep learning models we can obtain a high degree
of precision in evapotranspiration prediction in the arid zone of Tacna.

2. Theoretical Foundations of Evapotranspiration

Several authors [22–25] have studied evapotranspiration dynamics; in this sense, the
present study uses these definitions and formulations to be able to compare the calculations
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of evapotranspiration with the prediction based on neural networks. Next, we will make a
brief description of the formulations used in this research.

Potential Evapotranspiration

The potential evapotranspiration (ETo) expresses the evaporative power of the atmo-
sphere at a specific place and time and does not consider the characteristics of the crop or
soil factors. The factors that affect ETo are climatic variables, such as temperature, radiation,
humidity, wind and pressure [17–20]. It also describes the maximum water losses that
can be achieved by evaporation and transpiration from a field covered by a reference crop
(for example, turfgrass or alfalfa) without water restrictions [26]. Consequently, ETo is a
climatic parameter and can be calculated from meteorological data. Among the various
methods used to estimate ETo, the FAO 56 Penman-Monteith method is recommended
as the main method to determine ETo; it is physically based and explicitly incorporates
both physiological and aerodynamic parameters [7]. Reference evapotranspiration (ETo)
modeling is important in reservoir management, regional water resource planning, and the
assessment of drinking water supplies [22–24]. Other ETo equations are still being used
due to historical previous use and data access restrictions (Table 1).

Table 1. Evapotranspiration equations.

Name Ref. Equation

Penman-Monteith equation [25] (1)
Hargreaves-Samani equation [22] (2)

Ritchie equation [23] (3)

Turc equation [24]
(4)
(5)

Penman-Monteith equation. From the original Penman-Monteith equation (Equa-
tion (1)), the aerodynamic equations, surface resistance, and the FAO Penman-Monteith
method can be derived to estimate the ETo [25].

ET0 =

[
∆

∆ + γ∗
(Rn − G)

(
10
L

)
+

γ

∆ + γ∗
90

T + 275
u2(es − ea)

]
(1)

where:

ET0 = reference evapotranspiration (mm/day).
γ* = modified psychometric constant (mbar/◦C).
es − ea = saturation vapor pressure deficit (mb).
es = saturation vapor pressure (mb).
u2 = wind speed at 2 m from the surface (m/s).
L = latent heat of vaporization (cal/g).
∆ = slope of the saturation pressure curve.
γ = psychrometric constant (mbar/◦C).
Rn = net radiation on the crop surface (cal/cm2 day).
T = average temperature (◦C).
G = density of soil heat flux (cal/cm2).

Hargreaves-Samani equation. In the literature review, many equations have been
developed to calculate evapotranspiration, but the main limitation of most methods is
the availability of data on climate variables (sometimes we have incomplete or inaccurate
data) and local calibration [22]. This equation mainly needs the maximum and minimum
temperature and is as follows:

ET0 = 0.0023Rs

(
Tmax + Tmin

2
+ 17.8

)√
Tmax + Tmin (2)
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where:

ET0 = reference evapotranspiration.
Tmax = maximum temperature ◦C.
Tmin = minimum temperature ◦C.
Rs = solar radiation extraterrestrial in (MJ/m2 day).

Ritchie equation. This equation is used when the crops are not very mature. The
equation is as follows:

ET = α1

[
3.87 ∗ 10−3 ∗ SR(0.6 ∗ Tmax + 0.4 ∗ Tmin + 29)

]
(3)

where:

ET = reference evapotranspiration.
SR = solar radiation (MJ/m2 day).
Tmax = maximum temperature ◦C.
Tmin = minimum temperature ◦C.
α1 = is a coefficient that is calculated as follows:

If: 5 ◦C < Tmax < 35 ◦C→ α1 = 1.1
If: Tmax > 35 ◦C→ α1 = 1.1 + 0.05 [Tmax − 35]
If: Tmax < 5 ◦C→ α1 = 0.01 + exp [0.18 (Tmax + 20)]
The calculation of α1 depends on the maximum air temperature.
Turc equation. Within the classification of methods for the calculation of evapotranspi-

ration based on radiation, we find the proposal made by Turc [24]. The expression of the
equation is the following:

RH ≥ 50%→ ET = 0.0133
T

T + 15
(SR + 50) (4)

RH < 50%→ ET = 0.0133
T

T + 15
(SR + 50)

(
1 +

50 + RH
70

)
(5)

where:

ET = reference evapotranspiration.
RH = is the percentage relative humidity.
T = average temperature ◦C.

Machine Learning. We aim to deepen the use of the statistical theory for constructing
mathematical models designed to make inferences from sample data (historical), and the
role played by computer science in machine learning is important. First, in the training, we
need efficient algorithms to solve the optimization problem, as well as to store and process
the enormous amount of data that is available; in our case, of climate variables. Second,
once the learning process of a model is complete, its representation and algorithmic solution
for inference shall also be efficient. In certain applications, the efficiency of the learning
or inference algorithm, that is, its spatial and temporal complexity, can be as important
as its predictive accuracy. This technique is widely used in the field of hydrology and its
applications are very varied for various problems related to water management [25,27].

3. Theoretical Foundations of Artificial Neural Networks

In this section, we will review the main concepts, to understand artificial neural
networks as a computational technique to predict evapotranspiration.

3.1. Artificial Neural Networks and Multilayer Perceptron

According to Equation (6) [13], in the Feedforward Architecture, the Topology of the
Arrangement of Neurons and their Interconnections Makes the Information Flow in a
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Unidirectional Way so that it can Never Pass more than Once through a Neuron before
Generating the Output Response.

ŷ = g
(

w0 + ∑m
i=1 xiwi

)
(6)

where:

ŷ = exit.
g = non-linear activation function.
w0 = bias (weights).
∑m

i=1 xiwi = linear combination of inputs.

3.2. Multi-Layer Perceptron

There are limitations when working with a simple perceptron. With it, we can only
discriminate patterns that can be separated by a hyperplane and a line in the case of two
input neurons. One way to overcome these limitations is to include hidden layers; thus,
obtaining a neural network called multilayer perceptron 2. The Multi-layer Perceptron
or MLP is usually trained using an error Back Propagation algorithm or BP. The MLP
configuration is integrated with neurons stacked in multiple layers. Each node in each
layer is connected to all other nodes in the next layer. There is no connection between the
nodes in the same layer. In an MLP, the data moves from input to output through the layers
in one direction (forward). Hence, this architecture is also known as a backpropagation
network [28].

3.3. Optimization

The optimization method is a gradient descent, which can be seen as a local optimizer
in a continuous search space. The purpose of the gradient descent is to find the smallest
error made in the cost function. Equation (7) establishes the gradient descent method. It
will take a random point and go through it in a loop until it finds the point of least loss,
updating the weights on each route [29].

W = W − n
∂j(W)

∂W
(7)

where:

W = new position for the parameters that are closest to the minimum.
n = learning ratio

In recent years, different optimization algorithms have been developed to improve
neural network models. These algorithms are responsible for reducing losses and provid-
ing more accurate results; making improvements to the neural network by optimizing
parameters such as weight optimizations, initial weight, learning rate and bias, number of
hidden layers, number of nodes in hidden layers, and activation functions [30].

4. Materials and Methods
4.1. Data Description

Data were taken from an automatic weather station (Davis Instruments, Vantage Pro2
Plus), located in the La Yarada irrigation area, which we can see in Figure 1. The data
correspond to the period from June 2005 to March 2020, that is, around 16 years of recording,
with steps of 30 min. These data were taken from daily figures, generating 5294 records,
starting from the file obtained from the automatic station and using code in Python pro-
gramming language, as a pre-treatment task. The climate variables extracted from the
station record were: maximum, minimum, and average temperature; relative humidity;
wind speed; atmospheric pressure; precipitation; solar radiation; and evapotranspiration.
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Figure 1. Weather station Davis Instruments, Vantage Pro2 Plus.

4.2. KDD (Knowledge Discovery from Data)

This work should be aligned with the computational point of view of the KDD pro-
cess [31]. In the cleaning phase, we took the original dataset from the automatic weather
station in xls format (Microsoft Excel 17.0), with 253,091 records (period from June 2005 to
March 2020) of temperature (◦C), humidity (%), wind speed (km/h), atmospheric pressure
(hPa), precipitation (mm), radiation (W/m2) and evapotranspiration (mm), which were
measured and recorded every 30 min. In the selection phase, we transformed the time and
date variables and addressed the Null values. In the transformation phase, we performed
average aggregation tasks in the case of temperature, humidity, wind speed, atmospheric
pressure, radiation, and summation aggregation in the case of precipitation and evapotran-
spiration; grouping this especially with the date information, to have the data organized at
a daily level.

As part of the transformation phase, noise cleaning of the data was carried out using
the normalization technique with the mean and standard deviation. In the case of the
specific climate variable of wind speed, we had an original defect, apparently caused by
some (sensor) instrument calibration problem, since a lag was noted in its representation
between the years 2019 and 2020. This was solved by applying data correction techniques
based on related settings and interpolations. Furthermore, a moving average technique was
used to smooth the data and identify any data out of range. For data exploration, we used
machine learning techniques since they are efficient tools for the treatment of large volumes
of data [32,33], and especially in hydrology [34,35]. We also had to convert the temporal
format (time series) to a working scheme of a supervised problem. For the prediction, we
used a framework based on a neural network algorithm (Multi-Layered Perceptron) widely
used in hydrological forecasting [34].

4.3. The Data Science and Its Application in Hydrology

There are many previous works where different machine learning techniques have
been used for the treatment, prediction, and analysis of different hydrological variables. In
this way, they may inform design strategies for adequate irrigation and, thus, optimize the
use of water resources.
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4.4. Study Area

The study region is located in the Tacna region (Figure 2), located at the head of the
Atacama Desert. It has a hyper-arid climate and is located in the extreme south of Peru and
northern Chile [36,37]. In this area, the cultivation of olive trees has been developed mainly
due to its low water consumption. The predominant irrigation system is by drip and
the water source comes from groundwater, whose aquifer system presents water quality
problems due to marine intrusion and a significant reduction in groundwater levels, since
the extraction volumes exceed the recharge volume; adding to this are governance and
governability problems [38–40].
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Figure 2. Location of the study area.

4.5. Used Approaches

Two approaches were considered to forecast the ETo. The first approach (direct ap-
proach, Figure 3a) involved obtaining the ETo that the automatic station software calculated
using the Penman-Monteith equation and then applying the MLP-based deep learning
model described above to directly simulate the ETo time series; obtaining the predicted
values of ETo, which were subsequently contrasted and evaluated in their accuracy. The
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second approach (indirect approach, Figure 3b) involved applying the MLP-based deep
learning model to predict each of the variables on which the ETo calculation depends, and
then applying the Penman-Monteith, Hargreaves-Samani, Ritchie, and Turc equations for
calculating the ETo; being of interest to evaluate its application in arid zones. A notebook
was implemented in Python, using “keras” and “tensorflow” high-level libraries, as the
execution engine of our deep learning model, both for its training, prediction, visualization,
and evaluation.
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Torres et al. (2011) [7].

4.6. Method Applied to Avoid Prediction

After all the tests were performed and achieving intermediate results, we noticed that
we could only predict one day at a time, since we were not making a “prediction over
prediction”, that is, predicting values based on data that were not real but the product of
our prediction using MLP. Therefore, we created a technique called the “deception method”,
which involved us using the past 7 days to predict the next one, and in the next iteration we
replaced the last value t-1 (which was already predicted) with the real value corresponding
to the day in question; and thus, day to day, we predicted 300 days, with actual data as
the input from our MLP. We called this technique the “phased and replacement model”,
according to Figure 4.
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4.7. Performance Measures of Predict Models

Mean Square Error (MSE): Sensitive to extreme values of the residual.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

Root Mean Square Error (RMSE): Expressed in the same units as Loss Given Default.

RMSE =
√

MSE

Mean Absolute Error (MAE): Also known as Mean Absolute Deviation (MAD).

MAE =
1
n

n

∑
i=1
|yi − ŷi|

Relative Absolute Error (RAE): Ratio of MAE of the model and MAE of a simple predictor.

RAE =
∑n

i=1|yi − ŷi|
∑n

i=1|yi − yi|

Coefficient of determination (R-squared): In an OLS regression model with a constant
term, R-squared can be interpreted as the proportion of variation in LGD that is explained
by variation in the regressors.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2

Adjusted coefficient of determination (adjusted R-squared): Corrected for the number
of regressors (k).

R2
= 1−

(
1− R2

) n− 1
n− k− 1

5. Results and Discussion
5.1. Results
5.1.1. Data Pre-Processing Results

In the data preprocessing phase, the moving average technique was used [35] to soften
and display out-of-range values, obtaining very good results as shown in Figure 5. The
data and the Python code are hosted in Mendeley Data as “Data Set for climate values
of Yarada-Tacna (Peru) 7 June 2005 to 6 March 2020 Period” (it includes the Dataset and
Source Code in Python) [41].
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Figure 5. Visualization of out-of-range evapotranspiration values using moving averages.

Once the data were prepared for treatment as a supervised problem, both strategies
suggested in Figure 4 were applied. First, for the direct approach, day-by-day evapo-
transpiration was predicted according to the historic values of the evapotranspiration
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obtained from the weather station. To avoid prediction according to the data predicted,
this prediction (of one day) was made based on seven historic previous days. As we
moved forward, the corresponding value was replaced by the actual data from Day 1 of the
new data, obtained from the weather station, and so on, with our proposed phased and
replacement model (Figure 5). The data frame that served to predict the next value was
updated, according to the model of the previously trained neural network.

5.1.2. Applied Methods Results

For the indirect approach, we used the daily prediction of other climate variables
(temperature, pressure, radiation, wind, humidity) to apply the Penman-Monteith equation
as well as the Hargreaves-Samani, Ritchie, and Turc equations. We considered it important
to verify the precision of each one of them for the specific data of our study region. This
allowed us to predict 300 days, one at a time, and under regular conditions; and allowed
us to predict daily data with great precision. Figure 6 shows the prediction using the
neural network contrasted with the actual data; observing a good approximation for the
direct approach.
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Figure 6. Comparison of the 300-day ETo prediction using a neural network with the actual data
(Direct approach).

Precision indicators of the model based on the neural network for the direct ap-
proach are: MAE = 0.03312 (Media Absolute Error); MSE = 0.001875 (Media Square Error);
RMSE = 0.043303 (Root of the MSE); and RAE = 0.015553 (Relative Absolute error).

By having close values between the MAE and RMSE, we can infer that there is an
error evenly distributed and no significant outliers, which is confirmed as we can visualize
the comparative curve of the predicted values with the actual values. In addition, for the
methods based on gradients optimization, it is convenient to consider the RMSE to set
some parameters in the learning rate, which we did reiteratively.

The MAE is a low value (MAE = 0.033) and represents an element of penalty for
large errors; that is, it is less sensitive to atypical errors, which means that there are no
large errors.

Then we apply scheme (b), in which we are in charge of predicting the values of
the climate variables using our model based on neural networks, and then, based on
those predictions, calculate the different equations in the literature (Penman-Monteith,
Hargreaves-Samani, Ritchie, and Turc) and compare their errors and correlation coefficients
with the actual data.

In the following graphs, we show the prediction of the different climate variables
that will serve as the input to apply the different previously mentioned equations for
calculating the ETo, and compare their precision. Figure 7 shows the prediction for the
temperature variable, minimum and maximum, humidity, wind speed, pressure, and
radiation in 300 days, specifically using the MLP neural networks.
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Figure 7. Blue color, original data; red color, predicted data. The figure shows the prediction for
300 days, using neural networks, of Maximum Temperature (◦C), Minimum Temperature (◦C), Wind
Speed (km/hr), Moisture (%), Pressure (hPa), and Evapotranspiration (mm).

With the predicted climate variables, and using our proposal for a phased and ex-
change model, we calculated a total of 300 values daily (Figure 7). The evapotranspiration
was calculated using different equations, established as Penman-Monteith, Hargreaves-
Samani, Ritchie, and Turc, and we compared these results to the actual prediction and
analyzed its accuracy and performance, as can be seen in Figure 8.
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Figure 8. ETo calculated using the Penman-Monteith, Hargreaves-Samani, Ritchie, and Turc equations
for 300 days, using climate variables predicted with neural networks compared with the actual data.

In Table 2, we can see the summary of the various indicators of errors and accuracy
factors under the indirect approach. In this second approach, climate variables that serve
as the basis for calculating the ETo were predicted. The precision indicators show good
conditions in their process, with MAE, MSE, RMSE, and RAE values, which guarantee the
suitability of the predicted variables.
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Table 2. Metrics results.

Indicator Neural Network Penman-Monteith Hargreaves-Samani Ritchie Turc

MAE 0.033 0.586 0.467 0.749 0.104
MSE 0.002 0.411 0.285 0.632 0.016

RMSE 0.043 0.641 0.534 0.795 0.128
RAE 0.016 0.230 0.192 0.285 0.046

R-Squared 0.998 0.550 0.689 0.309 0.982
MAE = Mean absolute error; MSE = Mean square error; RMSE = root of the MSE; and RAE = Relative absolute error.

According to the MAE, being the most robust reference for our purpose as it is less
sensitive to atypical values, we established that the best prediction for evapotranspiration
is that of Turc, having a MAE of 0.104, as opposed to Hargreaves-Samani with a MAE of
0.467, Ritchie with a MAE of 0.749, and finally, Penman-Monteith with a MAE of 0.586. It
should be noted that we do not consider the prediction based on neural networks (MLP)
since in the application of scheme (b), we only use the equations to calculate the value of
evapotranspiration.

Figure 9 shows a comparative summary of the correlation factors between the
methods used.

Agriculture 2022, 12, x FOR PEER REVIEW 13 of 16 
 

 

 

Figure 9. Comparison of the ETo as compared to the application of the Penman-Monteith, Har-

greaves-Samani, Ritchie, and Turc equations. 

5.2. Discussion 

We found that deep learning using neural network algorithms, such as Multi-Layer 

Perceptron, may be used for the prediction of time series as in this case, but it is necessary 

to emphasize that one of the main problems in the classification of time series is given by 

its structure, generally, when classifying phenomena described by attributes. Their order 

does not affect the result; however, the time series preserve order or temporality, which 

does not allow for a change in the position of the data. Thus, algorithms that work with 

attributes cannot be applied in this type of problem [42]. This was previously solved by 

adapting the time series to the format of a supervised problem (Figure 10). 

 

Figure 10. Transposing data from time format to supervised problem. 

Thus the “data frame” or data structure with two dimensions that stores the data of 

the variables is defined as shown in Table 3, where “t” represents the predicted value. The 

values are normalized for the hyperbolic tangent, which is the function of the neural net-

work activation whose input values are between −1 and 1. 

Figure 9. Comparison of the ETo as compared to the application of the Penman-Monteith, Hargreaves-
Samani, Ritchie, and Turc equations.

5.2. Discussion

We found that deep learning using neural network algorithms, such as Multi-Layer
Perceptron, may be used for the prediction of time series as in this case, but it is necessary
to emphasize that one of the main problems in the classification of time series is given by
its structure, generally, when classifying phenomena described by attributes. Their order
does not affect the result; however, the time series preserve order or temporality, which
does not allow for a change in the position of the data. Thus, algorithms that work with
attributes cannot be applied in this type of problem [42]. This was previously solved by
adapting the time series to the format of a supervised problem (Figure 10).
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Figure 10. Transposing data from time format to supervised problem.

Thus the “data frame” or data structure with two dimensions that stores the data
of the variables is defined as shown in Table 3, where “t” represents the predicted value.
The values are normalized for the hyperbolic tangent, which is the function of the neural
network activation whose input values are between −1 and 1.

Table 3. Transformation of time series to supervised problem format.

t-7 t-6 t-5 t-4 t-3 t-2 t-1 t

−0.32 −0.32 −0.33 0.35 −0.35 −0.36 −0.36 0.35
−0.32 −0.33 −0.35 0.35 −0.36 −0.36 −0.35 0.36
−0.33 −0.35 −0.35 0.36 −0.36 −0.35 −0.36 0.36
−0.35 −0.35 −0.36 0.36 −0.35 −0.36 −0.36 0.36
−0.35 −0.36 −0.36 0.35 −0.36 −0.36 −0.36 0.37

The results indicate that the prediction of evapotranspiration values using neural
networks has a lower error than the traditional formulations of Penman-Monteith [25],
Hargreaves [22], Ritchie [23] and Turc [24].

6. Conclusions

This work demonstrates the feasibility of forecasting the short-term daily ETo, which
is required for irrigation water management purposes, based on the Penman-Monteith,
Hargreaves-Samani, Ritchie, and Turc equations. Two approaches were tested using the
Feedforward neural network algorithm (Multi-Layered Perceptron). The first approach, the
direct approach, involves estimating future ETo time series from historical data obtained
from the automatic station. The second approach, the indirect approach, considers forecast-
ing the weather data necessary for the ETo equations, maximum temperature, minimum
temperature, wind speed, humidity, pressure, and evapotranspiration on a daily level using
the aforementioned machine learning and, subsequently, using these predicted values to
estimate future ETo values.

The model precision indicators based on neural networks for the direct approach
are values that guarantee a good precision in the forecast, MAE = 0.033, MSE = 0.002,
RMSE = 0.043, and RAE = 0.016. Regarding the indirect approach, the prediction of the
climate variables that were used to calculate the ETo was carried out. The precision
indicators show optimal conditions in their process and guarantee the suitability of the
predicted variables.

The results indicate that using the approaches proposed in this study makes it possible
to forecast up to 300 days of daily ETo in advance within a reasonable range of time.
Furthermore, the use of this methodology provides an additional estimate of the expected
variability values for each forecast day, which ensures a very good estimate of ETo. The
forecast with more than 300 days in advance is affected by the relationship of the value
of the time series with the previous ones. Therefore, the accuracy of the predicted ETo
decreases over time.
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Comparing the performance of the approaches and the machine learning used, the
results obtained indicate that, despite the similar performance of the two proposed ap-
proaches, the indirect approach provides better ETo forecasting capabilities for longer time
intervals than the direct approach. This result is because it only uses weather parameters
required for ETo equations to model and predict behavior, while for the direct approach, the
machine learning model is required to forecast the combined effect of the climate variables’
trend on the resulting ETo. Therefore, the indirect approximation may be extended to other
equations of ETo.
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