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Abstract: A novel method of disease diagnosis, based on images that capture every part of a diseased
plant, such as the leaf, the fruit, the root, etc., is presented in this paper. As is well known, the plant
genotypic and phenotypic characteristics can significantly impact how plants are affected by viruses,
bacteria, or fungi that cause disease. Assume that these data are unknown at the outset and that the
appropriate precautions are not taken to prevent classifications skewed toward uninteresting traits.
An approach to avoid categorization bias brought on by the morphology of leaves is suggested in
this study. The basis of this approach is the extraction of textural features. Additionally, Bayesian
Optimization is suggested to obtain training hyperparameters that enable the creation of better-
trained artificial neural networks. First, we initially pre-processed the images from the PlantVillage
dataset to remove background noise. Then, tiles from images were used to reduce any potential bias
from leaf form. Finally, several cutting-edge tiny convolutional neural networks (CNNs), created
for contexts with little processing power, were trained on a new dataset of 85 × 85 × 3 px images.
MobileNet, which had a 96.31% accuracy rate, and SqueezeNet, which had a 95.05% accuracy rate,
were the models that predicted the best performance. The results were then examined using Precision
and Recall measures, which are important for identifying plant diseases.

Keywords: disease detection; smart farming; computer vision; texture features; artificial intelligence;
hyperparameter optimization

1. Introduction

Plant diseases in crops are one of the main problems in agriculture, and result in
losses of physical resources, work, and time invested in food and raw material produc-
tion. Furthermore, detecting and classifying diseases constitutes one of the most complex
challenges in smart agriculture, and much research is focused on it. It is important for
farmers to know the type of disease affecting their crops accurately at an early stage to
enable them to react on time. Therefore, early detection of diseases in agriculture is of vital
importance. According to the FAO, pests are estimated to cost between 20 and 40 percent of
global crop production yearly. In addition, plant diseases cost the world economy around
USD 220 billion annually, and invasive insects around USD 70 billion [1].

Phytopathology is the science that deals with the study of plant diseases. Its study
implies knowing the causes, the responsible pathogens, their interaction with the physiol-
ogy of plants, and the methods to control them and reduce their negative impact [2]. Plant
diseases are caused by infectious agents (biotic factors such as fungi, bacteria, or viruses)
and non-infectious agents (abiotic factors such as sunburn, mineral deficiency, etc.) [3].
Abiotic diseases are less dangerous due to their non-communicable nature; hence, they are
primarily preventable [2].

For training artificial intelligence algorithms that detect or classify plant diseases,
images that include, for example, all the leaves or fruits are often used [4,5]. However, this
can influence the classification of traits that are not necessarily related to the disease and
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may be due to plant phenotypic or genotypic aspects. If these characteristics are not known
a priori, algorithms could be trained in the wrong way. In this work, a novel way based
on the texture of disease symptoms is proposed to avoid bias due to the genetic aspects
of plants.

This paper is organized as follows. Section 2 shows some related works. Then, in
Section 3, the materials and methods are presented. Next, in Section 4, the results and
analyses are shown, and finally, in Section 5, conclusions, limitations, and future work
are presented.

2. Related Work

Focusing on texture features to detect plant diseases is an approach that researchers
have proposed in recent years and remains an open field. In [6], the authors extracted Color
Statistic Features (CSF), SIFT texture Features, Johnson SB Probability Distribution, Method
of Moments, Modeling, and SIFT with Johnson SB Distribution. First, they compared their
approach with the state-of-the-art methods used to calculate feature vectors. Then, linear,
quadratic, and cubic SVM classifiers were used to determine the classification accuracy
of all feature vectors. In [7], the authors calculated features based on the Gray-Level
Cooccurrence Matrix (GLCM), feature selection, and classification. In their study, six
color features and twenty-two texture features were extracted. Support vector machines
were used to perform one-vs-one classification of plant disease. The proposed disease
identification model provides an accuracy of 98.79% on tenfold cross-validation. The
accuracy of a self-collected dataset was 82.47% for disease identification and 91.40% for
healthy and diseased classification. In [8], the authors extracted texture features of plants
infected with capsicum with the GLCM method, followed by the classification of diseases
using an SVM classifier. As a result, their method can differentiate with a precision of
around 100%. Finally, in [9], the authors proposed a method using a K-nearest neighbor
(KNN) classifier. They were able to extract texture features from the leaf disease images
for classification. Diseases such as Alternaria, anthracnose, bacterial blight, leaf spot, and
canker of various plant species were classified. Their proposed approach can detect and
recognize the selected diseases with 96.76% accuracy.

3. Materials and Methods
3.1. Dataset

In recent years, the scientific community has used the PlantVillage dataset [10] to
propose solutions using artificial intelligence algorithms such as in [11–21]. This dataset
is usually selected since it contains a wide variety of images corresponding to different
diseases and crops. The tomato crop was chosen from this dataset because it is one of the
most important vegetables in world agriculture, the second most important crop after the
potato [22]. The size of the images is 256 × 256 px in RGB. Examples of the dataset can be
seen in Figure 1.

Problems and challenges. PlantVillage contains images of tomato leaves taken in
controlled environments, with at least nine different disease types and stages of develop-
ment. It is one of the most referenced literature datasets for crop diseases. However, it has
limitations that must be considered.

X Although the dataset preserves a certain homogeneity in the image capture conditions,
such as the distance from the camera to the leaves, some classes were collected in
different places. Moreover, in the original works [10,23], it is not indicated whether the
tomato varieties are identical or different in each class. Therefore, there is uncertainty
in this regard.

X Some morphological features of the leaves could be due to phenotypic and genotypic
aspects of the variety and not necessarily a consequence of the disease. For example,
in [24], the authors classified the silhouette of the leaves, obtaining an accuracy of
52.3% based on the ResNet-50 model.
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X The dataset was made with images captured in different lighting and background
conditions for each class, resulting in a classification bias. This was detected by the
same authors in [24], who classified the backgrounds of the images, obtaining an
accuracy of 62.3%. They recommend performing segmentation and eliminating the
background before any classification procedure.

X The dataset significantly differs in the number of images for some classes. An imbal-
ance of the classes can be observed mainly between the mosaic virus class and the
yellow leaf curl class, as seen in Figure 2.
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Figure 1. Examples of original PlantVillage dataset [10].
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Figure 2. Number of images in the original dataset for each class [10].

3.2. Metrics

There are many ways to measure the performance of models used for classification
in supervised learning. Nonetheless, metrics based on the confusion matrix were used in
this research.

The confusion matrix is one of the most used tools in machine learning for evaluating
classification models [25,26]. It is a matrix that compares the number of predictions for each
class that are correct and those that are incorrect. The four main metrics that are extracted
from the confusion matrix are:

Accuracy (1): The overall accuracy of a model is simply the number of correct predictions
divided by the total number of predictions. The model’s prediction accuracy is measured
as a percentage value between 0 and 1, with a value of 1 indicating a perfectly performing
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model. Accuracy can be defined as the ratio of correct predictions to the total number
of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision (2): Measures how well the model correctly identifies the positive class. Using
only this metric to optimize a model would minimize false positives.

Precision =
TP

TP + FP
(2)

Recall (3): Measures how good the model is at correctly predicting all positive observations
in the dataset. However, it does not include information on false positives.

Recall =
TP

TP + FN
(3)

F1-score (4): The harmonic mean of Precision and Recall. The F1-score returns a number in
a range between 0 and 1. If the value is 1, this indicates perfect Precision and Recall. If the
value is 0, the Precision or Recall is 0. The higher the value of F1, it can be said that there is
better the balance between the two metrics.

F1 = 2× Precision× Recall
Precision + Recall

(4)

where:

TP (True Positives): The number of positive observations the model correctly predicted
as positive.
FP (False Positive): The number of negative observations the model incorrectly predicted
as positive.
TN (True Negative): The number of negative observations the model correctly predicted
as negative.
FN (False Negative): The number of positive observations the model incorrectly predicted
as negative.

3.3. Convolutional Neural Networks (CNNs) Selected for This Research

State-of-the-art small CNNs were used for disease classification based on their tex-
tural properties. The CNNs preselected for the experiments were MobileNet [27], Mo-
bileNetV2 [28], MobileNetV3 [29], EfficientNetB0 [30], NasNetMobile [31], SqueezeNet [32],
and ShuffleNet [33].

The main characteristic for selecting the networks is their easy implementation in de-
vices with low computational capacity, such as smartphones or Raspberry microcontrollers.

3.4. Method for Hyperparameter Optimization

For hyperparameter optimization, there are several techniques. We analyzed four
of them:

1. Grid Search [34].
2. Randomized Grid Search [35].
3. Bayesian Optimization [36].
4. Genetic Algorithms [37].

The Grid Search and Randomized Grid Search techniques are simple to implement
and are probably the most used by many researchers and engineers to optimize hyperpa-
rameters [38]. Nonetheless, these techniques have a “brute force” approach, which means
that hyperparameter options are chosen based on intuition or experience and are tested,
hoping that the “best” will be found among the chosen options.
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Their advantage is that they are simple to implement and fast. However, these
techniques are also known as “uninformed” because the search is performed without
considering previously obtained results of hyperparameter combinations [39,40].

On the other hand, the “informed” methods follow an iterative sequential process
where the best combinations of hyperparameters are sought, considering the results of
previous searches based on some optimization algorithm. The most used methods of this
type are Bayesian Optimization and Genetic Algorithms. A comparison of the different
methods can be seen in [39].

The Grid Search and Randomized Grid Search methods were discarded for this work
to rely on a more robust method. The method was selected between Bayesian and Genetic
Algorithms optimization. A search was carried out in the literature in which the pros and
cons of each are elucidated [38–43]. Based on the conclusions of these works, the following
can be summarized:

• Optimization with Genetic Algorithms does not require any probabilistic model and
works directly with the objective function. On the other hand, Bayesian Optimization
uses a surrogate function, making it more efficient in using computational resources
since it simplifies the original function, typically unknown in the case of neural
networks.

• This means that fewer experiments are needed to achieve acceptable results. Further-
more, although in some studies, the results with Genetic Algorithms are better, the
difference is insignificant.

• Genetic Algorithms have excellent parallelism capabilities, so the genetic algorithm
performs very well when solutions are stored in memory, which can be improved over
time. On the other hand, Bayesian Optimization cannot exploit parallelism because
each experiment depends on the previous one. This makes optimization with Genetic
Algorithms a more computationally demanding method.

• More characteristics differentiate them, but for this study, the requirement of less
computational capacity by Bayesian Optimization makes it more suitable for selecting
hyperparameters. Consequently, this was the method selected.

4. Results and Analysis
4.1. Effect of Leaf Shape on Disease Classification

The images in the dataset used in this research were biased due to the shape of the
leaves. Although this bias is reported in the literature [24], a test was performed to measure
its magnitude in this work.

X Binary segmentation was performed with Naïve Bayes classifier to obtain the silhou-
ette of the leaves (Figure 3).

X Data augmentation was performed to eliminate the negative effect of data imbalance
over the silhouette dataset.

X Training of the ResNet-50 model was carried out with the binary images, similar
to [24].

X The hyperparameters used for model training were learning rate = 0.00234, optimizer
= SGD (Stochastic Gradient Descent), epochs = 20, loss = categorical cross-entropy.
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Figure 4 shows the confusion matrix results, in which a significant number of true
positives (matrix diagonal) were correctly classified only considering the leaf’s shape.
However, the model did not classify the Target spot class. Almost all samples of this class
were classified in other classes. Hence, all their metrics are zero in Table 1.
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Numbers in the matrix mean the samples classified in each class, and the colors help to identify
where more samples are classified (darker colors).

Table 1. Training results of the ResNet-50 model with the silhouettes dataset.

Class Precision Recall F1-Score Samples

Bacterial spot 0.4504 0.8683 0.5931 319
Early blight 0.5502 0.9133 0.6867 150

Healthy 0.4959 0.7605 0.6003 238
Late blight 0.5085 0.8755 0.6433 273
Leaf mold 0.6805 0.8042 0.7372 143

Septoria spot 0.4564 0.4135 0.4339 266
Spider mites 0.4536 0.8800 0.5986 250
Target spot 0.0000 0.0000 0.0000 211

Yellow leaf virus 0.4000 0.0250 0.0470 801
Mosaic virus 0.6731 0.6250 0.6481 56

Accuracy 0.4928 2707
Macro avg 0.4669 0.6165 0.4988 2707

Weighted avg 0.4334 0.4928 0.3898 2707

Figure 5 and Table 1 show the results of the training and prediction with the test
dataset consisting of only the silhouette leaves. An accuracy of 49.28% is observed, close
to the result reported in [24] of 52.3%. It can even be seen how for some classes, it has a
considerably high Recall (proportion of instances belonging to the class correctly classified),
for example, 91.33% in the early blight class, 88% for spider mites, and 87.55% in the
late blight class. The findings confirm what is reported in the literature and ratify the
importance of isolating the shape of the leaves to classify plant diseases.
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4.2. Plant Disease Detection Strategy Based on Image Texture

Image cropping. This research proposes cropping the original dataset images to isolate
the morphological characteristics from the classification. The proposed process consists of
the following steps:

(a) The original images were segmented to remove background noise. This was performed
with the segmentation method based on the machine learning Naive Bayes Algorithm.

(b) The segmented image was subdivided into nine tiles of 85 × 85 × 3 pixels each, and
only those with more than 80% of pixels corresponding to the object of interest (the
leaves) were selected; the other tiles were eliminated (Figure 6).

(c) The selected tiles formed the dataset for training. Figure 7 shows an example of each
class of the new dataset. The bacterial spot class was removed because it presents
different stages of the disease in the original dataset, which represents an additional
challenge since the early stages present significant similarities with the healthy class
and do not allow its correct classification.
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4.3. Data Balance

An imbalance of classes similar to the original dataset could be observed, so balancing
was carried out by applying data augmentation for the first seven classes and reducing
random data for the yellow leaf curl class, obtaining the results for a total of 26,148 images.
The data augmentation techniques applied were horizontal flip, vertical flip, and random
rotation (−55◦, 55◦) (Figures 8 and 9).
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Figure 9. Number of resulting images after class balancing.

The new dataset was divided into training, validation, and testing. Although there
is no standard rule for this subdivision, it was realized following similar works in the
literature, which show divisions generally between 70% and 80% of data for training and
between 20% and 30% for validation and test data (Table 2).
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Table 2. Number of images in the new dataset. Training, validation, and test subsets.

Class Train Validation Test Total

Early_blight 2031 543 207 2781
Late_blight 2016 517 291 2824
Leaf_Mold 2088 531 131 2750

Septoria_leaf_spot 2014 561 349 2924
Spider_mite 2015 533 276 2824
Target_Spot 2084 540 218 2842

Mosaic_virus 2042 502 49 2593
Yellow_Leaf_Curl 2167 503 1021 3691

Healthy 2055 559 305 2919
Total 18,512 4789 2847 26,148

Percentage 71% 18% 11% 100%

4.4. Predictive Power of Texture Features

In order to obtain a degree of interpretability for the classification methods to be used,
we sought to know the predictive power of texture features in the case of diseases that affect
plants. For this reason, the GLCM (Gray Level Co-occurrence Matrix) method was used
to extract and explore the features with machine learning methods. GLCM is a statistical
method for extracting texture features that consider the spatial relationship of pixels. This
method constructed a gray-level co-occurrence matrix (GLCM), also known as a gray-level
spatial dependence matrix [44].

The GLCM functions characterize an image’s texture by calculating how often pairs of
pixels with specific values and spatial relationship occur in an image, creating a GLCM,
and then extracting statistical measures from this matrix. The GLCM method functions do
not provide information about the objects’ shape but rather about the spatial relationships
of the pixels. The texture features extracted were Homogeneity, Contrast, Correlation, and
Dissimilarity [45]

Contrast = ∑
i

∑
j
(i− j)2Cij (5)

Correlation = ∑
i

∑
j

(i− µi)
(

j− µj
)
Cij

σiσj
(6)

Homogeneity = ∑
i

∑
j

Cij

1 + |i− j| (7)

Dissimilarity = ∑
i

∑
j

Cij|i− j| (8)

where:

i = row number.
j = column number.
µ = mean of the GLCM (an estimate of all pixel intensities that contribute to the GLCM).
σ = variance of the pixel intensities that contribute to the GLCM.
C = element ij of the normalized GLCM.

Contrast measures the gray level variations between reference pixels and their neigh-
bors (5). The correlation indicates the linear dependence of gray levels in the GLCM (6).
Homogeneity is usually inversely related to contrast and indicates the similarity of off-
diagonal elements in the GLCM (7). Finally, dissimilarity is a measure of the distance
between pairs of pixels in the region of interest (8) [45].

The analysis was carried out with the skimage.feature library and its greycomatrix,
greycoprops functions, with which the combination of distance and angle that best separated
the groups was sought for two dimensions, pairwise combinations of the extracted features
vs. the correlation. The results of this analysis are shown in Figure 10. There are groupings
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due to a high correlation between the elements of the same class. However, there is also
a correlation between the classes, which represents a challenge of high complexity if you
want to separate the classes based only on these combinations of characteristics.
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Figure 10. Graphical analysis of texture features extracted with GLMC. Correlation vs. (a) Dissimilar-
ity, (b) Contrast, (c) Energy, (d) Homogeneity. EB: Early Blight, H: Healthy, LB: Late Blight, LM: Leaf
Mold, MV: Mosaic Virus, SL: Septoria Leaf, SM: Spider Mite, TS: Target Spot, YL: Yellow Leaf.

4.5. Hyperparameter Optimization

The Bayesian Optimization method was applied to the seven models chosen for this
study, and the results can be seen in Table 3. The method was applied with the SKOPT
library from scikit-optimize [46].

The optimization function and the learning rate were the two hyperparameters cho-
sen for optimization. The optimization functions tested were RmsProp, Adagrad, SGD,
Adamax, Adam, and Adadelta. The learning rate was defined in a range from 1 × 10−6 to
1 × 10−1 for the search.

As can be seen in Table 3, the results of the MobileNetV3 and EfficientNetB0 networks
did not converge. Their accuracy was below 33% for MobileNetV3 and less than 14% for
EfficientNetB0. Thus, they were discarded for the phase of training with the hyperparame-
ters found. Five epochs were used in each iteration for the optimization process, and a total
of 100 iterations were extended for each optimization.

Partial dependence plots (PDP) constitute a model-agnostic interpretability method in
machine learning [47]. In the plot, the vertical axis shows the average probability of the
predictions, and the horizontal axis shows the values of the hyperparameters. The blue
line captures how the average predicted probability changes as the hyperparameter values
change. It is observed that the highest probability of the predictions occurs in the lower
part of the curve. The calculation of PDP has a causal interpretation. By changing one
of the hyperparameters, the changes in the predictions are measured [43,47]. Doing this
analyzes the causal relationship between the hyperparameter and the prediction. Figure 11
shows the PDP produced by the Bayesian Optimization in this study. Again, the partial
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dependence shows the average effect on the predictions as the value of the hyperparameters
changes, in this case, the optimizer and the learning rate.
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Table 3. Results of the Bayesian Optimization applied to the preselected models.

Model Optimizer Learning Rate Accuracy

MobileNet Adagrad 0.06851166 0.9197443
MobileNetV2 Adagrad 0.00537715 0.9088542
SqueezeNet Adagrad 0.02899546 0.8979640

NasNetMobile Adamax 0.00051483 0.8411458
ShuffleNet Adagrad 0.03231302 0.8671875

MobileNetV3 SGD 0.03170745 0.3214962
EfficientNetB0 Adamax 1.06 × 10−6 0.1387311

4.6. Training Results

The five models with the best performance on Bayesian Optimization were chosen to
be trained and compared. The training was carried out on the Google Colab platform with
access to GPU. The NVIDIA brand GPU used has the following characteristics (Figure 12).
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Figure 12. GPU technical specifications from Google Colab.

Training loss. Figure 13 shows the evolution of the loss during training. The employee
loss function was categorical cross-entropy, also called log loss or logistic loss. With this
function, each predicted class probability is compared to the desired output 0 or 1 of the
actual class. Then, a loss is calculated that penalizes the probability based on how far it is
from the expected value. The error penalty is logarithmic. The value is large for significant
differences close to 1 and is small for minor differences that tend to be 0. The highest loss
of approximately 0.6 was obtained for the NasNet model. SqueezeNet obtained the best
performance, with a value close to 0.2.

Accuracy: As mentioned above, the overall accuracy of a model is simply the number
of correct predictions divided by the total number of predictions resulting in a percentage
value. This measurement is performed simultaneously with the data selected for training
and validation. The main objective is that the two results do not diverge significantly.
In the case of the training carried out with the selected models, the best accuracy with
the validation data was obtained with the MobileNet model, close to 95%. On the other
hand, the lowest accuracy was again obtained with the NasNet model. It is also important
to highlight that both (loss and accuracy) behaviors show no overfitting since the gap
between the training and validation results remains constant and is not significantly large
(Figure 14).

4.7. Analysis

Although the metrics obtained from the confusion matrix and test data shown in
Figure 15 and Table 4 are generally valuable for the analysis, the objective was focused
on Precision and Recall. This is because these metrics are considered the most important
when dealing with the detection of diseases that can significantly affect the economy of a
vegetable producer if the detection is not executed reliably.
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Figure 15. Confusion matrix results of the four best-performing models: (a) MobileNet, (b) SqueezeNet,
(c) NasNetMobile, and (d) MobileNetV2. Numbers in the matrix mean the samples classified in each
class, and the colors help to identify where more samples are classified (darker colors).
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Table 4. Metrics obtained from the confusion matrix (Macro Avg).

Model Accuracy Precision Recall F1-Score Parameters MB *

MobileNet 96.31% 95.55% 95.93% 95.72% 3,762,056 28.7
SqueezeNet 95.05% 93.98% 93.95% 93.91% 120,760 1.2

NasNetMobile 95.01% 92.73% 94.22% 93.29% 5,495,132 64.7
MobileNetV2 94.59% 92.35% 94.20% 93.17% 3,741,448 28.8

ShuffleNet 91.50% 89.36% 90.80% 89.93% 969,256 8.2
* MB: Megabytes.

MobileNet: When the classifier indicates that the sample data represent a specific
disease, this is correct on average 95.55% of the time (Precision). In addition, it detects
95.93% of the diseases present on average (Recall).

SqueezeNet: When the classifier indicates that the sample data represent a specific
disease, this is correct on average 93.98% of the time (Precision). In addition, it detects
93.95% of the diseases present on average (Recall).

NasNetMobile: When the classifier indicates that the sample data represent a specific
disease, this is correct on average 92.73% of the time (Precision). In addition, it detects
94.22% of the diseases present on average (Recall).

MobileNetV2: When the classifier indicates that the sample data represent a specific
disease, this is correct on average 92.35% of the time (Precision). In addition, it detects
94.20% of the diseases present on average (Recall).

For plant diseases, there are two aspects of vital importance in decision making for
their control:

i. The loss of crops represents high costs. Consequently, action must be taken quickly to
control the disease’s focus and not apply chemical agents to larger areas.

ii. The correct detection of the disease is necessary so as not to apply the wrong control
agents, which can cause an increase in the resistance of the disease to subsequent
controls.

Therefore, Precision and Recall are metrics that provide the most reliability for decision
making in this context. Even though a model with better accuracy is correct most of the time,
they make a prediction. Hence, if their Recall is lower than others, they miss more diseases.
Consequently, improving this metric is essential as long as a reasonable computational cost
is maintained for the hardware used in the solution.

In this sense, the model that presented the best performance in all metrics was Mo-
bileNet. The results are shown in Table 5.

Table 5. Training results for the MobileNet model.

Class Precision Recall F1-Score Samples

Early blight 0.9755 0.9614 0.9684 207
Healthy 0.9408 0.9902 0.9649 305

Late blight 0.9500 0.9141 0.9317 273
Leaf mold 0.9489 0.9924 0.9701 131

Septoria spot 0.9384 0.9599 0.9490 349
Spider mites 0.9526 0.9457 0.9491 250
Target spot 0.9209 0.9083 0.9145 218

Yellow leaf virus 0.9931 0.9824 0.9877 1021
Mosaic virus 0.9796 0.9796 0.9796 305

Accuracy 0.9631 2847
Macro avg 0.9555 0.9593 0.9572 2847

Weighted avg 0.9634 0.9631 0.9631 2847
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5. Conclusions, Limitations, and Future Work

This work proposes a disease classification strategy based on the texture features of the
images and hyperparameter optimization for the training of small CNNs with the Bayesian
Optimization technique.

The proposed strategy is justified in that the shape of the leaves has a predictive power
that can bias the result of the classification. Furthermore, although diseases can influence
the shape of the leaves in plants, they can also be determined by phenotypic and genotypic
characteristics that are unknown to the study dataset.

The results show that it is possible to carry out a classification with competitive results
using small convolutional neural network models that do not require a large computing
capacity to be implemented.

Bayesian Optimization is an important alternative in the search for ideal hyperparam-
eters and can shorten the development time of future artificial intelligence models based
on CNNs.

This research was conducted with only a part of the PlantVillage dataset, which
corresponds to images of diseases that affect tomato crops. Consequently, the research on
the other species of plants in the dataset, such as potato, pepper, or apple crops, which are
important economically worldwide, was not within the scope of this study.

One of the main limitations of this work is that the results are not compared with
those obtained in previous works. However, reference is made to research that has trained
algorithms with the original dataset in Section 3.

In future works, tests should be conducted with different sizes of images, which allow
for improving the resolution for a better classification based on the texture caused by the
diseases in the plant leaves.

Research should also be conducted to improve performance based on the Precision and
Recall metrics because these give greater reliability in the timely and accurate identification
of possible plant diseases.

It is necessary to conduct more research on optimizing other CNN hyperparameters,
such as the number of layers and filters, as well as on different implementation strategies
of these models to know the performance in natural conditions with energy and computing
capacity limitations.
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