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Abstract: This study explores the effect of phosphorus (P) fractions, under P addition or not, based
on a common vetch-rape model cropping system in alkaline soil. A two year field experiment was
conducted at Tuzuo Banner modern agricultural Park in Inner Mongolia, China. Two phosphorus
levels, including P0 (no fertilizer) and P45 (45 kg·ha−1 P), were performed in common vetch and
rape either grown alone or intercropped. We analyzed the changes of the physicochemical properties
and phosphorus fractions in the rhizosphere soil. Intercropping enhanced the common vetch and
rape yield by 42.05% and 24.91%, on average, compared with corresponding sole cropping on
an equivalent area basis. The average land equivalent ratio (LER) was 1.34. Intercropping had a
significant AP concentration, of 65.32% and 33.99% at the P0 level, and 62.83% and 36.19% at the P45
level, respectively, compared to that of the sole common vetch and rape. With the application of P,
intercropping improved the Resin-Pi and NaHCO3-Pi fraction (61.17%, 87.03% at the P0 level and
96.50%, 41.85% at the P45 level, compared to monocropped common vetch and rape in 2019). The
changes in NaOH-Pi and NaOH-Po (except for NaOH-Pi in 2019) showed no significant difference
between cropping systems. Intercropping significantly accumulated concentrations of HCl-P, while
depleting Residual-P, in 2020. In conclusion, common vetch/rape with the addition of P polyculture
stimulated rhizosphere soil P mobilization and had a yield advantage over sole cropping.

Keywords: common vetch; intercropping; phosphorus fractions; P application; rape

1. Introduction

Phosphorus (P) is the second most indispensable macronutrient for plant growth [1].
Most P removal from soil depends on the parent soil material. As crops remove soil P from
within, there is a reduction in the soil P content [2,3], and very little remains when plants
use P in the soil [4]. Therefore, supplementing soil P can provide nutritional support for
plant growth [5,6]. Farmers routinely apply P fertilizers to increase plant-available soil P
concentrations and thus increase crop yield [7]. However, the phenomenon of excessive
and irrational application of phosphate fertilizer is widespread in China [8]. When P
is added as fertilizer to the soil, it is easy for insoluble phosphate to be fixed by soil or
microorganisms. A long-term nonstandard application of phosphate fertilizer thus results
in a large amount of P accumulation and a decrease in P use efficiency [3], which thereafter
affects soil fertility. In addition, the increase in P discharged through runoff and leaching in
farmland ecosystems causes water eutrophication and constitutes a potential threat to the
environment [9].

One effective way to solve this problem is by growing plant species that can scavenge
recalcitrant soil P. It has been found that certain legume plants, such as white lupin (Lupinus
albus L.) and faba bean (Vicia faba L.), exude large amounts of carboxylates to mobilize and
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acquire poorly available soil P [10,11]. The negative effects of legumes on soil P may be
attenuated when grown in a mixture with grass [12]. Different plant species can possibly
alleviate competition for P in intercropping systems. Durum wheat (Triticum turgidum
durum L.) and common bean (Phaseolus vulgaris L.) exhibited different behaviors in rhi-
zosphere P dynamics [11]. Maize and maize/faba bean intercropping alone depleted the
sparingly labile Po fraction, while faba bean alone depleted the labile and moderately labile
Po fractions [13]. Common vetch (Vicia sativa L.), a kind of leguminous green manure, can
fix atmospheric N in root nodules and activate potential nutrient components in soil [14].
Moreover, rape (Brassica napus L.) and legumes have much in common in activating insolu-
ble P in the soil. The change in P fractions in pools is affected by many factors. Rhizosphere
pH and organic anions exhibit greater contributions than acid phosphatase activity does in
enhancing rhizosphere P availability [15]. However, previous studies on P fraction changes
only focused on legume-dominated polyculture and root exudates. Phosphatases were
emphasized, and very little is known about how soil physiochemical properties respond to
P fractions on legume-brassica intercrops. The potential of legume/brassica polyculture in
P bioavailability merits investigation.

The cultivated land in China is approximately 1.35× 108 hm2, and the P-deficient land
is approximately 6.667 × 107 hm2 [16]. China faces the challenge of feeding its population
and livestock and improving the soil environment by implementing sustainable measures
in agriculture. The Inner Mongolia agricultural and pastoral staggered area is an important
ecological defense line in northern China and, even, across the whole country. It is the
hub of material exchange between agricultural areas and pastoral areas. Its geographical
environment is suitable for forage grass planting [17]. Accelerating the development of
the grass industry in agricultural and pastoral areas and optimizing the planting structure
can not only improve the regional economy but also improve the ecological environment,
which is an important dynamic for the efficient and sustainable development of agriculture
and animal husbandry [18].

In this study, a two year rapeseed-common vetch intercropping experiment with
different P applications was used. Our objectives were to (i) evaluate the various soil P
fractions in the rhizosphere of monocropped and intercropped plant species and (ii) find
the main soil physicochemical parameters that drive the change in soil P fractions in three
crop intercropping systems.

2. Material and Methods
2.1. Site Description

The study was conducted between 2019 and 2020 at the agricultural experimental
station (40◦56′ N, 110◦48′ E), Inner Mongolia Autonomous Region, a typical agropastoral
ecotone of north China. This area is characterized by a semiarid and temperate continental
monsoon climate, with rainfall concentrated from July to September. The annual precip-
itation ranges between 300 and 400 mm. The average annual temperature is 7.2 ◦C, in
2019−2020 (Figure 1), and the frost-free period is approximately 133 days. The annual
average sunshine hours are approximately 2952.1 hours. The test station has irrigation
conditions and therefore the water factor is not considered in the experiment. The soil type
is classified as chestnut soil. The physicochemical properties of the soil before sowing are
shown in Table 1.

Table 1. Basic characteristics of the tested soil.

pH SOM
(g/kg)

TN
(g/kg)

AN
(mg/kg)

TP
(g/kg)

AP
(mg/kg)

TK
(g/kg)

AK
(mg/kg)

8.45 16.56 0.53 90.4 0.54 15.51 16.64 140.2
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IRCV were calculated to be 40%:60% by conversion, based on a unit area. A 0.5 m wide 
walkway between plots was built to separate the plots from each other. 

In all treatments, rape and common vetch were sown at seeding rates of 15 kg·ha−1 
and 75 kg·ha−1, respectively, using 0 kg or 45 kg P·ha−1 (as calcium superphosphate), and 
120 kg N ha−1 (as urea) as basal nutrients. No more fertilizers were applied in the following 
growth period. All fertilizers were uniformly broadcast and incorporated into the upper 
30 cm of the soil before sowing. Weed control was carried out as needed to ensure good 
germination during the growing season. 

2.3. Sampling 
2.3.1. Forage 

To determine the forage sample yield, 1 m plants were hand-harvested at 3 cm above 
the soil surface, about 86 and 91 days after sowing, in 2019 and 2020. The cuttings were 
separated from weeds immediately, and the fresh weight was determined. The sample 
was then dried in an oven (ULM 800, Member GmbH, Schwa Bach, Germany) at 105 °C 
for 0.5 h and thereafter dried at 80 °C to a constant weight to measure aboveground dry 
matter biomass. 

Figure 1. Monthly precipitation (bar) and mean air temperature (curve) of the experiment site from
2019 to 2020.

2.2. Experimental Design and Crop Management

In 2019, a field experiment was established with rape and common vetch in a com-
pletely randomized block design with six blocks. The three cropping patterns were mono-
culture rape (R), monoculture common vetch (CV), and two rows of rape intercropping
with four rows of common vetch (IRCV). All cropping patterns were treated with two P
levels; no further P fertilizer was applied (P0), and 45 kg P·ha−1 was continuously applied
(P45). Each treatment had five replications.

In all of the treatments, the rape and common vetch were cropped in even rows with
inter row spacing of 25 cm, and the distance between the rape and adjacent common vetch
rows was 25 cm in the intercropping treatments. Each plot had an area of 5 × 6 m2 for
monoculture rape and common vetch. Each intercropping plot comprised four strips, and
two rows of rape alternating with four rows of common vetch were planted in each strip.
Consequently, when planting from the same side of the plot, the last excess row was not
sampled, and the intercropping area ratios occupied by rape and common vetch in the
IRCV were calculated to be 40%:60% by conversion, based on a unit area. A 0.5 m wide
walkway between plots was built to separate the plots from each other.

In all treatments, rape and common vetch were sown at seeding rates of 15 kg·ha−1

and 75 kg·ha−1, respectively, using 0 kg or 45 kg P·ha−1 (as calcium superphosphate), and
120 kg N ha−1 (as urea) as basal nutrients. No more fertilizers were applied in the following
growth period. All fertilizers were uniformly broadcast and incorporated into the upper
30 cm of the soil before sowing. Weed control was carried out as needed to ensure good
germination during the growing season.

2.3. Sampling
2.3.1. Forage

To determine the forage sample yield, 1 m plants were hand-harvested at 3 cm above
the soil surface, about 86 and 91 days after sowing, in 2019 and 2020. The cuttings were
separated from weeds immediately, and the fresh weight was determined. The sample
was then dried in an oven (ULM 800, Member GmbH, Schwa Bach, Germany) at 105 ◦C
for 0.5 h and thereafter dried at 80 ◦C to a constant weight to measure aboveground dry
matter biomass.
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2.3.2. Soil

For soil analyses, we sampled 3 cores (7 cm ∅, 30 cm) with a soil auger at the first 30 cm
of each plot (Figure 2). We removed plant residues from the soil and then sieved at 2 mm.
The sample was air-dried to constant weight in a drying room for elemental analyses.
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Figure 2. Schematic diagram of monoculture common vetch (a) monoculture rape (b) intercropping
of rape and common vetch (c) and the location of soil sampling in different treatments.

2.4. Soil Analysis
2.4.1. General Soil Parameters

The soil pH was measured after the suspension of the soil in water (1:5 weight/volume).
The organic matter (OM) and total nitrogen (TN) contents of the soil samples were

determined using an element analyzer (Flash EA, Thermo Electron Corporation, Bremen,
Germany). There is no carbonate in the soil. Therefore, the soil C is considered to be
exclusively organic. The total phosphorus (TP), organic phosphorus (OP), and inorganic
phosphorus (IP) for the bulk soil were determined as a sum of Hedley fractions (see below).

2.4.2. Phosphorus Fractionation

The fractionation of soil P was carried out using the Hedley method [19], which adopts
the modifications introduced by Tieseen et al. [20]. Next, 0.5 g of dry soil was weighed
and extracted sequentially by shaking overnight (16 h) with a solution. (1) First, 30 mL of
deionized water and two resin strips (Selemion™ ion exchange membrane; Asahi Glass
Co. Ltd., Tokyo, Japan) were used. P was then extracted from these resins by shaking with
20 mL of 0.5 M HCl for 2 h (Resin-P). (2) Secondly, 30 mL of 0.5 M NaHCO3 was used
after the pH was adjusted to 8.5 (NaHCO3-P). (3) Subsequently, 30 mL of 0.1 M NaOH
(NaOH-P) was used, followed by (4) 20 mL of 1 M HCl (HCl-P). Each step was centrifuged
(8000× g, 1 min) and filtered. The inorganic P (Pi) concentration in all of the extracts was
determined using the Mo-Sb Spectrochrometry method [21]. The total P in each form
(Pt) concentration was measured with the same methods after digestion with potassium
persulfate and sulfuric acid at hot temperatures. The organic P (Po) in these fractions
was calculated by subtracting the Pi from Pt. The residual P, remaining after extraction
step (4), was extracted after calcination of the residue for 1 h at 550 ◦C with 1 M sulfuric
acid (H2SO4) for 24 h.

2.4.3. Formatting of Mathematical Components

The land equivalent ratio (LER) is often regarded as an indicator of intercropping
benefits [22]. The LER was calculated according to:

LER = (Yicv/Yscv) + (Yir/Ysr) (1)

where Yicv and Yir are the forage yields of intercropped common vetch and rape, respec-
tively. Yscv and Ysr are the forage yield of sole common vetch and rape, respectively. If the
LER is greater than 1, this indicates an intercropping advantage for yield.
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Phosphorus activation coefficient (PAC) is often considered as an indicator of soil
phosphorus availability and can be calculated according to the following formula [23]:

PAC= (AP (mg/kg)/TP (g/kg) × 1000) × 100% (2)

2.5. Statistical Analysis

The statistical analyses were carried out with SPSS (IBM SPSS Statistics 23). Signifi-
cance was declared at p < 0.05. The graphs were constructed using Origin software (Version
8.5; Northampton, MA, USA) and used to draw figures. Redundant analysis was per-
formed with CANOCO (Version 5.0, Ithaca, NY, USA). The partial least squares method
(PLS-PM) was used to model the relationship between soil properties and phosphorus
fractionation. The path coefficient and the coefficient of determination (R2) in the path
model were estimated by R (4.0.3) and verified with the plspm package.

3. Results
3.1. Effect of Cropping System and P Application Rate on Forage Yields and Land Equivalent
Ratios (LERs)

The forage yields for the common vetch sole cropped (CV), common vetch inter-
cropped (ICV), rape sole cropped (R), and rape intercropped (IR) during the two year
experiment are presented in Table 2. The average LER was 1.34 (Table 2), indicating that
common vetch/rape intercropping had a yield advantage over sole cropping. The data
demonstrates that intercropping, with P addition, significantly increased the common vetch
and rape yields. Intercropping increased the common vetch yield by 32.40% and 58.01%,
compared with that in monocultures at P0 and P45 in 2019 (p < 0.05), respectively. The
IR at P0 and P45 increased dramatically, by 42.40% and 43.66%, compared with that in
the monocultures in 2019 (p < 0.05), respectively. P application significantly increased the
common vetch yield by 56.31% and 86.55%, the rape yield by 83.30% and 84.93% relative
to no P application in 2019 (p < 0.05), and by 35.16% and 43.46% and 31.23% and 39.87%
in 2020 (p < 0.05), respectively. Without P application, the yield of the sole common vetch
and rape decreased by 23.82% and 3.80% compared to the corresponding intercrop in 2020,
respectively. The intercropped common vetch and rape significantly increased yield with P
application by 39.32% and 10.80% in 2020, compared with the corresponding sole crops.
Intercropping, on average, enhanced common vetch and rape yield by 42.05% and 24.91%,
respectively, compared with the corresponding sole cropping on an equivalent area basis.

Table 2. Dry matter yield (×103 kg·hm−2) of common vetch and rape and land equivalent ratios
(LER) as affected by phosphorus (P)-fertilization rate and cropping system from 2019 to 2020.

Year
Annual P Rates

(kg·hm−2)

Common Vetch
(kg·hm−2)

Rape
(kg·hm−2) LER

Sole Cropped Intercropped Sole Cropped Intercropped

2019
0 9.66 ± 1.28 Bd 12.79 ± 0.21 Bc 17.43 ± 1.02 Bb 24.82 ± 0.30 Ba 1.38
45 15.10 ± 0.40 Ad 23.86 ± 0.69 Ac 31.95 ± 1.48 Ab 45.90 ± 1.62 Aa 1.52

2020
0 10.01 ± 0.32 Bd 13.14 ± 0.79 Bc 22.80 ± 0.63 Bb 23.70 ± 0.65 Ba 1.22
45 13.53 ± 0.94 Ad 18.85 ± 0.44 Ac 29.92 ± 0.70 Ab 33.15 ± 2.40 Aa 1.23

Mean 12.08 17.16 25.53 31.89 1.34
Significance of F P F P

Years (Y) 1.06 0.31 1.00 0.323
P rate (P) 173.14 <0.0001 112.46 <0.0001

Cropping system (C) 108.13 <0.0001 26.81 <0.0001
P × C 16.06 <0.0001 3.28 0.079

Notes: Values are means ± standard errors (n = 5) and yields of intercropped crops are expressed on an equivalent
area basis. Values followed by the same lower-case letters between sole crop and intercrop and by the same capital
letter between P0 and P45 are not significantly different in a particular year at p < 0.05 by LSD. The bold entries
indicate p-values < 0.05.
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3.2. Changes in Soil Physiochemical Properties of the Rhizosphere

The soil physiochemical properties were all significantly affected by the P rate and
cropping pattern (Table 3). The rhizosphere pH in the monocropped common vetch did
not differ from that in the monocropped rape soil. In contrast, intercropping significantly
decreased the rhizosphere pH by 0.26 and 0.13 pH units, in 2019, and 0.35 and 0.57 pH
units in 2020, respectively, compared with that of the sole rape soil. Compared to the
monocultures, the OM content in the intercropped treatments was significantly improved,
except for P0 in 2020 (Table 4). With P application, intercropping increased the TN content
by 21.05% in 2019 and 15.09% in 2020, compared to that in the sole rape. No difference
was observed for the TN at P0 in the different cropping systems in 2019 and 2020 (Table 4).
There was a significant interaction between the P rate and the year on TP and AP (Table 3).
Compared to the monocropped rape, intercropping had a significant TP concentration of
13.70%, 5.97% at the P0 level in 2019 and 2020 and 5.95% at the P45 level in 2019 (Table 4).
Similar to TP, AP showed a trend of higher concentrations under intercropping than under
monocultures. Particularly in 2020, intercropping had a significant AP concentration, by
65.32% and 33.99% at the P0 level and 62.83% and 36.19% at the P45 level, respectively,
compared to that of sole common vetch and rape (Table 4). The PAC was significantly
affected by the P rate, cropping pattern, and their interactions (Table 3). The PAC ranged
between 2.16 and 2.73 in 2019 and 2.13–3.81 in 2020 (Table 4).

Table 3. Multi-factor analysis of variance of soil physiochemical properties in 2019–2020.

Factors pH OM TN TP AP PAC

Year (Y) *** NS ** *** *** ***
P rate (P) * *** *** *** *** ***

Cropping pattern (CP) *** *** *** *** *** ***
Y × P NS NS NS *** *** NS

Y × CP NS NS NS * *** ***
P × CP NS NS ** *** NS NS

Y × P × CP NS NS NS NS NS NS
Notes: NS, *, **, and *** represent p > 0.05, p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively, the same as below.

Table 4. Soil physiochemical properties in 2019–2020.

Year P Treatments pH OM
(g·kg−1)

TN
(g·kg−1)

TP
(g·kg−1)

AP
(mg·kg−1)

PAC
(%)

2019

P0
CV 8.67 ± 0.11 a 17.06 ± 1.13 b 0.56 ± 0.02 a 0.77 ± 0.05 ab 16.64 ± 1.68 b 2.16 ± 0.30 b
R 8.68 ± 0.07 a 18.30 ± 1.51 b 0.54 ± 0.02 a 0.73 ± 0.04 b 18.59 ± 1.25 b 2.56 ± 0.15 a

IRCV 8.42 ± 0.15 b 20.91 ± 2.51 a 0.54 ± 0.04 a 0.83 ± 0.02 a 22.07 ± 2.30 a 2.67 ± 0.32 a

P45
CV 8.52 ± 0.09 ab 20.09 ± 3.81 b 0.59 ± 0.02 b 0.83 ± 0.05 b 17.85 ± 1.95 b 2.18 ± 0.35 b
R 8.60 ± 0.04 a 20.22 ± 1.73 b 0.57 ± 0.05 b 0.84 ± 0.03 b 22.52 ± 2.38 a 2.69 ± 0.35 a

IRCV 8.47 ± 0.09 b 24.08 ± 1.29 a 0.69 ± 0.04 a 0.89 ± 0.01 a 24.35 ± 0.97 a 2.73 ± 0.09 a

2020

P0
CV 8.44 ± 0.23 ab 18.57 ± 1.61 a 0.54 ± 0.05 a 0.71 ± 0.02 a 15.14 ± 0.31 c 2.13 ± 0.09 c
R 8.58 ± 0.12 a 20.50 ± 2.03 a 0.50 ± 0.06 a 0.67 ± 0.02 b 18.68 ± 0.20 b 2.78 ± 0.11 b

IRCV 8.23 ± 0.21 b 20.77 ± 1.32 a 0.52 ± 0.09 a 0.71 ± 0.01 a 25.03 ± 0.80 a 3.54 ± 0.12 a

P45
CV 8.40 ± 0.24 a 19.12 ± 1.57 b 0.60 ± 0.03 a 0.79 ± 0.02 b 20.50 ± 0.34 c 2.59 ± 0.07 c
R 8.51 ± 0.24 a 22.42 ± 2.41 ab 0.53 ± 0.03 b 0.86 ± 0.04 a 24.51 ± 1.40 b 2.85 ± 0.28 b

IRCV 7.94 ± 0.31 b 24.21 ± 3.01 a 0.61 ± 0.06 a 0.88 ± 0.01 a 33.38 ± 0.64 a 3.81 ± 0.07 a

Notes: The data represent the mean ± SD; n = 5. Values followed by different letters within a column indicate
significant differences between sole crop and intercrop under the same phosphorus application level at the
p < 0.05 level.

3.3. Changes in Soil P Fractions in the Rhizosphere

The content of P fractions decreased in the order HCl-P > NaOH-P > Residual-P >
NaHCO3-P > Resin-P (Figure 3). The soil Resin-Pi was significantly affected by year, P
rate, cropping pattern, and the interaction among them (Table 5). The Resin-Pi in the
IRCV was reduced slightly, by 8.83% and 6.12%, in 2019, and 16.16% and 12.46% in 2020,
respectively, compared to that in the sole common vetch and rape, but intercropping with
P application appreciably improved the Resin-Pi content (Figure 4a,b). The NaHCO3-P
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was significantly affected by year, P rate, and their interactions (Table 5). The NaHCO3-Pi
fraction was significantly (61.17%, 87.03% at the P0 level and 96.50%, 41.85% at the P45
level in 2019) greater in the intercropped, than in the monocropped, common vetch and
rape (Figure 4a). Conversely, the NaHCO3-Po fraction decreased by 21.39% and 6.76%
and 24.58% and 42.72% in the intercropped and monocropped common vetch and rape,
respectively (Figure 4a). The NaHCO3-Pi fraction was dramatically (43.25% and 32.60%
at the P45 level in 2020) greater in the intercropped, than in the monocropped, common
vetch and rape (Figure 4b). The NaHCO3-Po fraction increased by 28.92% and 20.35%
at the P45 level in the intercropped and monocropped common vetch and rape, respec-
tively (Figure 4b). The changes in NaOH-Pi and NaOH-Po (except for NaOH-Pi in 2019)
showed no significant difference between cropping systems (Figure 4a,b). Compared to the
monocropped common vetch and rape, the 1 M HCl-Pi concentration of the intercrop was
significantly increased 28.66% and 8.61% at the P0 level and 9.87% and 23.01% at the P45
level (Figure 4a), and the 1 M HCl-Pi concentration of the intercrop was decreased 4.77%
and 0.84% at the P0 level and−10.40% and 3.77% at the P45 level (Figure 4b). Intercropping
significantly accumulated concentrations of HCl-Po and Residual-P, while significantly
depleting concentrations of HCl-Pi, in 2019 (Figure 4a). Intercropping significantly accumu-
lated concentrations of HCl-P, while significantly depleting Residual-P, in 2020 (Figure 4b).
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Figure 3. Concentration and proportional distribution of soil P fraction in response to different
cropping patterns.

Table 5. Multi-factor analysis of variance of soil P fractions in 2019–2020.

Factors Resin-P NaHCO3-
Pi

NaHCO3-
Po NaOH-Pi NaOH-Po 1 M

HCl-Pi
conc.

HCl-Pi
conc.

HCl-Po Residual-P

Year (Y) *** *** *** ** *** NS *** *** **
P rate (P) *** *** *** *** NS *** *** *** ***
Cropping

pattern
(CP)

*** NS *** *** NS *** NS *** **

Y × P *** *** *** NS ** *** * NS *
Y × CP NS *** *** *** NS *** * *** ***
P × CP *** *** *** *** * *** *** NS ***
Y × P
× CP ** *** *** * NS *** *** NS NS

Notes: NS, *, **, and *** represent p > 0.05, p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001, respectively.
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Figure 4. Comparisons of P fraction in different cropping patterns at two P levels in 2019 (a) and
2020 (b).
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3.4. Relationships between P Fractions and pH, OM, TN, TP, AP, and PAC

Redundancy analyses (RDA) showed that pH, OM, TN, TP, AP, and PAC could explain
78.68% and 9.05% of the variation in P fractions (Figure 5). Among all the con-strained
variables, TP (F = 95.9, P = 0.002), AP (F = 5.1, P = 0.002), PAC (F = 18.1, P = 0.002), and pH
(F = 3.2, P = 0.012) had a significant impact on the P fractions. The P fractions (except for
Residual-P and NaOH-Po) were significantly and negatively associated with pH. The Resin-
P, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, 1 M HCl-Pi, and concentrations of HCl-Po were
significantly and positively associated with the OM, TN, TP, AP, and PAC concentrations.
HCl-Pi was dramatically and positively associated with TP.
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3.5. PLS-PM Analysis

The PLS-PM explored the relationship between soil pH, soil chemical properties, and
P composition (labile P, moderately labile P, nonlabile P and residual P) (Figure 6). This
model indicated that the changes in pH had significant and direct negative effects on
available P (0.70) and soil labile P (0.20). However, the changes in pH had no direct effect on
moderately labile P, nonlabile P and residual P. TP had significant and direct positive effects
on labile P, nonlabile P and residual P. We found that TP, AP and OM directly and strongly
affected the P composition. However, soil TN had no significant effect on P composition.
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* p < 0.05, ** p < 0.01, *** p < 0.001. The model is assessed using the Goodness of Fit (GoF) statistic,
and the GoF value was 0.59.

4. Discussion

In the present study, we found an increase in the aboveground biomass in common
vetch/rape intercrops (Table 2). This result contradicts the view that the dry matter of
wheat/maize is significantly lower than that of monocropped maize [24]. Previous stud-
ies have explained that the process of intercropping system growth and production are
essentially driven by niche complementarity and interspecific competition, which is highly
related to the species in the community [25]. However, a number of studies have reported
consistent results [11,26,27]. For example, Liu found F. multifora–A. paniculata intercropping
significantly increased the yield compared with sole F. multifora by improving the ecological
environment and soil quality of rhizosphere soil [28]. The complementary features in
morphology and ecological functions between sudangrass and alfalfa prompted productiv-
ity [29]. Moreover, additional P is essential for increasing biomass. The beneficial effects
of P addition promoted legumes to fix more atmospheric nitrogen and increased the pro-
ductivity of the inter-crops utilized in photosynthesis, which resulted in maximum forage
yield [30,31]. Consequently, common vetch/rape intercropping, when P was provided in a
reasonable amount, facilitated the production of desirable forages, which contributes to
livestock production.

It has been reported that legumes can generally alleviate soil nitrogen (N) deficiency
through symbiotic biological N2 fixation and alleviate P deficiency by changing the soil
pH of the root zone [32,33]. In the present study, the TN concentration in the sole common
vetch was higher than that in the sole rape. The lack of a significant difference between the
sole common vetch and intercropped vetch may be due to competition between common
vetch and rape that reduced the N concentration and increased the P in compensation.
Intercropping increased the OM concentration, presumably because both common vetch
and rape are green manure crops, which are beneficial to soil fertility. After two years of crop
growth, the TP and AP concentrations showed a decreasing trend without P application
because the cropping systems mainly depleted the P concentration that is available to plants.
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Conversely, the P concentration accumulated with the P input. This finding is similar to
the dynamics of the phosphorus fraction in common bean/durum wheat intercropping
systems [11].

Compared with the monoculture, the common vetch/rape polyculture stimulated
rhizo-sphere soil P mobilization in both the common vetch and rape, with significantly
increased rhizosphere soil P concentrations (Figure 4). Resin-Pi, NaHCO3-Pi, and NaOH-
Pi were significantly increased, particularly Resin-Pi and NaHCO3-Pi, and represented
the most available fractions for plant uptake [20,34]. In comparison, the rhizosphere pH
decreased by 0.26 and 0.13 pH units in 2019, and 0.35 and 0.57 pH units in 2020, in the
intercropping system, respectively. This was significantly less than that in the rhizosphere
of the monocropped common vetch (Table 4). In the current experimental design, it was
difficult to distinguish between the contributions of common vetch and rape to such pH
changes. However, we may assume that the rape made little contribution to these changes,
as the monocropped rape did not produce any significant changes in the rhizosphere pH.
Intercropping significantly depleted the NaHCO3-Po and 1 M HCl-Pi fractions, especially
at the P0 level. This might be caused by the labile P pools in the initial soil that have
not yet met the P demand for common vetch and rape growth. The residual P reduction
observed in intercropping in 2020 might be supplemented by the transformation of the P
from residual P to inorganic P. This finding is in accordance with a study by Li [11].

We used RDA to evaluate the relative importance of rhizosphere pH, OM, TN, TP,
AP, and PAC in rhizosphere soil P mobilization. It was found that the P concentration
of intercropping was significantly negatively affected by the rhizosphere pH (Figure 5).
This finding agrees with most studies [15,35]. On one hand, the reason for this result
may be that the organic acids secreted by roots acidify the rhizosphere and improve the
utilization of phosphorus; on the other hand, it may also be due to the absorption of cations
more than anions in the process of nitrogen fixation in legume crops treated with NH4

+-N
fertilizer, which cause the roots to release H+, resulting in rhizosphere acidification [36,37].
In addition, the increase in the Resin-Pi concentration in the intercropping was mainly
induced by the TP concentration, and the increase in TP results in the increase in non-labile
P and residual-P. (Figure 6). In our study, pH was negatively correlated with labile P and
AP; AP, in the treatment at pH 8.40, compared to the treatment at pH 7.94, coincided with a
significant increase in labile P (Table 4, Figure 4b). This view disagrees with Bouray because
the pH value is below seven [38].

Cultivated pasture is an important part of ecological restoration and sustainable
agriculture. The reasonable combination of forage species with complementary traits can
benefit livestock and conserve the natural pastures, as well as reduce grazing pressure with
higher productivity. Meanwhile, increased forage production could compensate for the
insufficiency of available forage. This study indicates that legume/Brassica intercropping
offers an effective practice to realize sustainable agricultural development, whether with
the addition of P or not. In agricultural soils, the continuous application of P fertilizer not
only increases plant-available P forms (labile) and sparingly soluble P forms (mod-labile),
but also decreases nonlabile P forms [39,40].

5. Conclusions

The present study showed that the common vetch/rape intercropping system in-
creased the yield markedly, with a greater average yield than the corresponding sole crops
by 42.05% and 24.91%, respectively, especially with P application. The cropping patterns
affected the P fractions over the course of two years of cultivation and significantly de-
pleted the Resin-Pi and NaHCO3-Pi fractions and their concentrations. The HCl-P fraction
accumulated without P input. In the case of P fertilization, monocropping or intercropping
showed the greatest accumulation of Resin-Pi, NaHCO3-P, NaOH-Pi, and 1 M HCl-Pi
fractions. The changes in the soil P fractions that were investigated, with or without P
fertilizer application, suggested NaOH-Po, 1 M HCl-Pi and a concentration of HCl-P is a
potential source of plant-available P that can be used by common vetch/rape intercropping.
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