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Abstract: Nowadays, China’s food consumption structure is shifting from being survival-oriented
to health-oriented. However, the food industry is still facing a research and development (R&D)
dilemma. Scientific evaluation of an enterprise’s R&D performance can help to reduce the investment
risk of R&D and promote economic benefits. This study implements the dynamic data envelopment
analysis (DDEA) technique to measure and evaluate the level of R&D performance in the Chinese
food manufacturing industry. Twenty-eight listed companies were selected for the study, considering
the time period from 2019 to 2021. After constructing a system of inputs, outputs and carry-over
indicators, overall and period efficiency scores were obtained. The results reveal that the overall level
of R&D in the industry is relatively low (0.332). Average efficiency scores across years were estimated
as 0.447, 0.460, 0.430 for 2019, 2020, and 2021, respectively. Lastly, this study considers the actual
business situation of the industry and makes suggestions for improvement from the perspective of
enterprises and the government; these anticipate aiding the food manufacturing industry to improve
the performance management of R&D activities.

Keywords: dynamic DEA; research and development; food; efficiency

1. Introduction

It is widely accepted that the food industry is related to people’s livelihoods and is
essential for economic development. According to the Food and Agriculture Organisation
of the United Nations (FAO), if the population reaches 9.1 billion by 2050, global food
production will need to increase by 70% [1]. China, one of the four largest economies in Asia,
has seen a steady growth in the market size of its food industry. As the epidemic recovers,
China’s food manufacturing revenue is expected to reach approximately $339 billion
by 2025 [2]. In addition, the emergence of a wealthy society has resulted in shifting
consumers’ needs from simple sustenance to diverse, high quality, and sustainable products,
creating opportunities and challenges for the food industry.

Research and development (R&D) is a decisive factor in achieving a competitive
advantage for businesses [3]. Nevertheless, in 2020, the food manufacturing sector was con-
nected with 11,560 R&D projects, which is only around one-seventh of the manufacturing
industries with the highest number of R&D projects [4]. Additionally, the food industry
invests much less in R&D than other industries, with only 1/20th of the highest [5]. The
way of enhancing R&D capabilities to meet the current needs of the market and thus
provide an incentive for Chinese food companies should be further assessed. Therefore, it
would be meaningful to establish an objective performance evaluation system, in order to
identify and analyse the problems in the food R&D process and, thus, propose suggestions
for improvement.
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1.1. Evaluation of R&D Performance

The increasing complexity of R&D activities and the large number of R&D resources
currently available act as a restricting factor for companies to conduct performance eval-
uations. These rationalise the use of limited resources and thus aid companies to adjust
their R&D plans. To face the challenges, scholars have also made attempts using different
methods, summarised in Table 1.

Table 1. Methods for the evaluation of R&D performance.

Methods Sources

Peer review Pölönen et al. [6]; You and Jung [7]

Bibliometric methods Ding et al. [8]; Zou [9]

Analytic hierarchy process (AHP) Wang et al. [10]; Shin et al. [11]

Balanced scorecard (BSC) Bigliardi and Ivo Dormio [12]

Factor analysis Guo and Yang [13]

Data envelopment analysis (DEA) Chachuli et al. [14]; Chen et al. [15]

Stochastic frontier analysis (SFA) Wang [16]; Matricano et al. [17]

To the best of our knowledge, the current literature mainly focuses on static R&D
efficiency over a specific period. The approach of using a dynamic perspective to measure
the interrelationship role in the R&D process has not yet been widely explored. In fact,
the company’s investment in R&D is cumulative, affecting an extended time period [18].
To be more precise, the output of one period operates as an input for the next one. A
dynamic framework allows the real-time allocation of resources to follow changes over
time, avoiding errors in efficiency measurement [19]. Kao [20], for instance, used the case
of the Taiwanese forests to demonstrate that a static assessment of DMUs only leads to
overestimating efficiency. In this case, the forest stock is used as a quasi-fixed input linking
two consecutive periods, and the dynamic analysis results are more accurate and reliable
than the ones obtained via the static analysis. Therefore, an evaluation of the overall system
and period efficiency of R&D inputs over multiple periods could be essential.

In addition, current research focuses, at the macro level, in the area of R&D and
national economic growth [21,22] and comparisons of R&D efficiency between coun-
tries [23,24]. However, there are few assessments of the R&D performance of industries or
companies. Data collection due to non-disclosure and the inconsistency in the statistical
calibre of each company’s R&D data are the main challenges which impede research on
this topic [25].

In particular, of the small number of existing industry studies, scholars have focused
more on high-tech industries and less on traditional manufacturing [13,18]. Some studies
have shown that the food industry has a relatively low R&D intensity compared to other
manufacturing industries [25,26]. Gopinath and Vasavada [27] suggest that there are
spillover effects from R&D activities in the food industry through empirical analysis. It
implies that the R&D achievements of the leaders in the food industry can be easily imitated
by other firms, which further undermines firms’ enthusiasm to invest in R&D. Nevertheless,
the evaluation of the industry’s R&D performance is still critical. The food industry is on
a constant quest to fulfil consumer needs, such as additive-free, organic, and sustainable
food, and therefore R&D and innovation are necessary.

Overall, the methods used for the evaluation of the R&D performance activities are
very different. They have been applied mainly to macro or high-tech industries, with less
emphasis on traditional manufacturing industries such as the food industry. However, the
specifics of its R&D efficiency are not sufficiently clear for the food processing industry.
Moreover, the vast majority of research on performance assessment is based on a static
perspective, and the industry’s inter-relationship between the multiple years has not been
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explored. Considering intertemporal effects helps companies to allocate R&D resources
appropriately over time.

1.2. Dynamic DEA

The use of Window analysis [28] and the Malmquist index [29] was the first attempt
by scholars to investigate multi-year efficiency. However, this approach fragmented the
individual periods and ignored the presence of carry-over activity between periods [30].
The dynamic DEA approach is deemed as a good remedy for this shortcoming. Dynamic
DEA, which was originally introduced by Färe and Grosskopf [31], is an improved DEA
model designed to measure the relative efficiency of DMUs with a dynamic perspective
over time. Following this, scholars have made significant methodological improvements
towards a more compact application of a dynamic DEA approach to help solve real-world
problems. Table 2 summarises the development and applications based on key literature.

Mariz et al. [32] reviewed the application of dynamic DEA during the past 30 years.
They found that the energy, environment, and transport sectors were the most prevalent
ones, accounting for 15%, respectively. In addition, studies using dynamic DEA are
concentrated in the USA, China, and Taiwan. Little attention, however, has been paid to the
performance evaluation in the traditional food manufacturing industry using a dynamic
DEA model, regarding R&D efficiency improvements.

Table 2. Methods for the evaluation of R&D performance under the dynamic DEA techniques.

Author & Year Area Identified Techniques

Chen [33] Production network Dynamic Network—DEA model (DNDEA)

Tone and Tsutsui [30] Electric utilities in US and Japan Slacks-based dynamic DEA model (DSBM)

Tone and Tsutsui [34] Electric power companies Dynamic Slacks-based model with network
structure (DNSBM)

Jafarian-Moghaddam and Ghoseiri [35] World’s railways Fuzzy dynamic multi-objective DEA model

Kao [20] Taiwanese forests Dynamic relational analysis model

Omrani and Soltanzadeh [36] Airlines in Iran Dynamic network DEA model

In this study, we measure and evaluate the R&D performance of the Chinese food
manufacturing industry across multiple years and multiple sectors, by applying a rela-
tional dynamic DEA approach, proposed by Kao [20]. This study provides a macro and
comprehensive picture of the current situation of the R&D performance of the Chinese
food industry, while proposing further improvements for resource allocation and avoiding
unnecessary waste of human, material, or financial resources; this will, thus, improve the
efficiency of R&D abilities. Finally, it can facilitate policymakers to implement a scientific
program of technological advancement that will increase economic contribution through
enhanced levels of R&D performance.

The remainder of the paper is organized as follows. Section 2 briefly describes the
research methodology followed, by putting more emphasis on the DEA approach and the
dynamic DEA model based on Kao’s study [20]. This section also presents the framework
for constructing input and output indicators for R&D in the food industry and the potential
logic for selecting indicators. Next, Sections 3 and 4 showcase the results and relevant dis-
cussion, respectively. Finally, Section 5 presents conclusions and future research directions.

2. Methodology

Data envelopment analysis (DEA) is the primary analytical method used in this study.
Compared to other methods of performance assessment, DEA has several advantages: for
example, the DEA approach enables the evaluation of a system that makes use of (multiple)
inputs to produce (multiple) outputs. In addition, there is no need to make assumptions or
prioritize weights, making them highly objective [37]. A multi-stage evaluation study on
the level of R&D performance of food manufacturing companies using the DEA method
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can ensure the objectivity and accuracy of the measurement and evaluation results. In
particular, this study draws on Kao’s dynamic relational DEA model [20] to explore the
topic. This section demonstrates the study’s design by explaining the construction of the
dynamic DEA model, the selection of operational factors, and the data collection and
analysis procedures.

2.1. Model Specification

The dynamic relational model, proposed by Kao [20], enables the relative efficiency
of the overall system and its individual periods to be measured separately over multiple
periods. Unlike the inputs, the quasi-fixed inputs take a while to adjust to the optimum
level [38]. In this case, quasi-fixed input is forest stock as it operates mainly in the sense that
the forest trees left after harvesting in one period can continue to grow in the next. Quasi-
fixed input is used as the flow to link two adjacent periods in series, allowing the several
periods to possess interlinkages. The model optimises and improves on the relational
model proposed by Kao and Hwang [39]; the model proposed in 2010 does not consider
the presence of intermediate products in the first and last periods, thus compensating for
the shortcomings. In addition, overall efficiency and period efficiency can be calculated
simultaneously, and the mathematical relationship between the two is explored as well,
thus contributing more to the understanding of the relationship between the whole and
its constituent parts. The dynamic system used in this study refers to Kao’s relational
model [20] to calculate the R&D efficiency scores of the Chinese food manufacturing
industry over the last three years.

Cook et al. [40] argue that knowledge of the performance measurement objectives
can influence the model’s orientation, which means understanding whether the industry
achieves an efficient production frontier by reducing inputs or expanding output. Food
research and development aim to develop new products and place them on the market to
meet consumers’ needs [41]. The management of food manufacturing companies expect
more R&D investment to attain higher levels of profit; this implies an output enhancement
and thus, an output-oriented model has been chosen for this study.

In order to measure the relative efficiency of n DMUs, let X(t)
ij (i = 1, 2 . . . m),

Y(t)
rj (r = 1, 2 . . . s) and Z(t)

f j ( f = 1, 2 . . . g) donate the ith input, rth output and fth flow,

respectively, to the jth DMU in period t. Z(t)
f j plays a linkage role between two consecutive

periods, which means Z(t)
f j acts not only as an output in period t, but also as an input in

the next period t + 1. In addition, donate Xij = ∑
p
t=1 X(t)

ij and Yrj = ∑
p
t=1 Y(t)

rj as the total
quantities of the ith input and rth output within all t periods, respectively [20]. Figure 1
demonstrates the general dynamic system used in this study, which connects two adjacent
periods with Z(t)

f j .
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According to the structure in Figure 1, the output-oriented model is developed to
measure the efficiency of DMUk under the assumption of constant returns to scale with
Kao’s relational model [20]:

max
1
Ek

= ∑m
i=1 υiXik + ∑g

f=1 ω f Z(0)
f k

Subject to:
s

∑
r=1

urYrk +
g

∑
f=1

ω f Z(p)
f k = 1

(
m

∑
i=1

υiXij +
g

∑
f=1

ω f Z(0)
f j

)
−
(

s

∑
r=1

urYrj +
g

∑
f=1

ω f Z(p)
f j

)
≥ 0 (1)

(
m

∑
i=1

υiX
(t)
ij +

g

∑
f=1

ω f Z(t−1)
f j

)
−
(

s

∑
r=1

urY
(t)
rj +

g

∑
f=1

ω f Z(t)
f j

)
≥ 0, j = 1, 2 . . . n; t = 1, 2 . . . p

ur, υi, ω f ≥ ε, r = 1, 2 . . . s; i = 1, 2 . . . m; f = 1, 2 . . . g

where υi , ur , ω f are virtual multipliers of input factor, output factor and carry-over,
respectively. The ε is a small non-Archimedean number, which was introduced to avoid
ignoring the metric because of the “zero weight” [42].

By solving this linear programming model, the optimal solution
(

u∗
r , υ∗i , ω∗

f

)
is ob-

tained from model (1). Furthermore, the efficiency of the whole system, Es
k and the efficiency

of the period t, E(t)
k can be calculated using Formulae (2) and (3), respectively:

Es
k =

∑s
r=1 u∗

r Yrk + ∑
g
f=1 ω∗

f Z(p)
f k

∑m
i=1 υ∗i Xik + ∑

g
f=1 ω∗

f Z(0)
f k

(2)

E(t)
k =

∑s
r=1 u∗

r Y(t)
rk + ∑

g
f=1 ω∗

f Z(t)
f k

∑m
i=1 υ∗i X(t)

ik + ∑
g
f=1 ω∗

f Z(t−1)
f k

(3)

2.2. Selection of Operational Factors

The selection of inputs, outputs, and carry-overs (flows) indicators for the dynamic
model in this study is based on the existing literature, so as to collect the appropriate data
for the Chinese food supply sector. Table 3 summarises the existing literature based on the
choice of input and output indicators for R&D performance in various industries.

Regarding input indicators, most scholars choose indicators from the perspective of
human, material, and financial resources [19,43,44]. Of these, R&D expenditure and R&D
labour are two commonly used indicators to measure R&D investment [44]. R&D expendi-
ture includes the salaries of R&D personnel, raw materials consumed, and depreciation of
assets used in the research process. R&D labour represents the number of full-time R&D
personnel in a company. These two indicators reflect the importance companies attach to
R&D and their ability to innovate independently [45]. Thus, they are selected as inputs for
this study.

For food manufacturing companies, it is imperative to turn R&D-type investments into
economic benefits so that more profits can be made. Table 3 also indicates that revenue and
profits are the mostly used output indicators. Revenue is divided into operating revenue
and non-operating revenue. Since the non-operating revenue is not directly related to
daily operating activities, its inclusion may lead to imprecise results in measuring R&D
performance. Therefore, operating revenue is chosen as an output indicator in this study.
In addition, net profit is the ultimate result of a business’s operations and has therefore
been chosen as an output indicator.
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Table 3. Indicator selection for R&D performance evaluation.

Related Literature Industry Input Output

Liu et al. [44] Industrial enterprises R&D expenditure Sales revenue of new products
R&D personnel Revenue from principal business

Delvaux et al. [25] Food-processing firms
Total cost of goods sold

RevenuePhysical capital
Labour

Chachuli et al. [14]
Renewable energy

industry

Publication
Installed capacityHuman capital

Patent

Xiong et al. [19] Research institutes
R&D expenditure

IncomeR&D personnel

Yu et al. [18] High-tech industry R&D expenditure New product revenue
R&D labour Revenue

Wang et al. [43] New energy enterprises
Fixed assets Total profits
Staff wages

Market valueR&D costs

Hashimoto and Haneda [46] Pharmaceutical industry R&D expenditure
Patents

Pharmaceutical sales
Operating profit

Schmidt-Ehmcke and Zloczysti [47] Manufacturing industry R&D investments Patent applications

The capital stock is a dynamic factor with a continuum [48]. The capital stock can
represent the capital resources available to a food manufacturing company and reflects
the scale of the company’s production operations in a given year. This implies that the
capital stock can be considered as the current year’s output. However, in another sense,
it is the sum of the various types of capital invested in a food manufacturing company
in the following year. It can therefore be considered as an input in the following year.
Therefore, capital stock is engaged in inputs and outputs and can be a carry-over (also
called intermediate product) factor to link up two adjacent periods. Table 4 summarises the
indicators selected for the study. All indicators are measured in CNY, except R&D labour,
which is measured in terms of headcount.

Table 4. Measure indicators of the R&D process.

Role Indicator Description Data Source

Input R&D expenditure

Direct expenses related to the
company’s efforts to develop,

design, and enhance its products
or technologies

Annual reports and
financial statements

Input R&D labour The number of full-time R&D
personnel in the given year

Carry-over Capital stock The total share capital issued by
a company

Output Operating revenue
Revenue generated from the
company’s primary business

activities

Output Net profit
Total profit of the enterprise for

the period after deduction of
income tax

2.3. Data Collection

This study follows the industry classification guidelines issued by the China Securities
Regulatory Commission in 2012 and selects listed companies in the food manufacturing
industry (Code C14) under the broad manufacturing category (Category C) as research
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subjects. The Chinese R&D food manufacturing industry was selected due to its high
amount of spending, which exceeds even that of the USA [49]. All the companies listed
are traded on stock exchanges in the territory of China as well [50]. For objective reasons,
such as special treatment and the unavailability of R&D data, we failed to utilize the data
of all companies and needed to screen these companies. The rationale of this screening
is described in more detail below. Furthermore, the time period from 2019 to 2021 was
selected for this study. However, due to the carry-over factor, the study needed to include
data from 2018 to 2021. This particular period was chosen for the study since companies
began to announce R&D information after 2018. Figure 2 visualises the dynamic structure
of the indicators applied to this study.
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The annual financial report reflects essential information on the enterprise’s financial
position, operating results, and cash flow position for the year. Considering the availability
and authenticity of the data of food manufacturing enterprises, this study uses the publicly
released financial statements and annual reports with standard audit opinion reports issued
by audit firms as the primary data source for the model. The data is collected by visiting
the companies’ official websites, which is completely legal and does not entail data leakage.
To enhance the rigor and validity of the study, the following principles were followed in
selecting all the enterprises under consideration.

Firstly, it is more valuable to collect a larger sample of studies for the purpose of
evaluating R&D performance; however, a significantly large number of DMUs can reduce
the ability of DEA to differentiate [40]. A ‘rule of thumb’ in DEA-relevant literature is that the
number of DMUs should be at least twice the number of input and output combinations [51].

Secondly, listed companies with unusual financial positions or other unusual circum-
stances in the study period from 2018 to 2021 were excluded. Shanghai and Shenzhen Stock
Exchanges have given these companies the special treatment (ST) label. It means that they
have been operating at a loss for two or three consecutive years and may have problems
with their business management compared to the rest of the sample [52]. Thus, such
companies will not be considered to make the study more comparable and informative.

Lastly, indicators with negative values are excluded. One of the assumptions of the
DEA approach is that the input and output indicators are non-negative [53]. The data
selected may have negative net profit values that do not meet the DEA assumptions and
are therefore excluded.

After screening, 28 listed Chinese food manufacturing companies met the above-
mentioned requirements and, as such, they were selected to be further analysed with
DEA. All inputs, carry-overs and outputs set into the benchmarking process can be found
on Appendix A.

2.4. Results Analysis

To better understand the data, descriptive and correlation analyses were conducted on
operational indicators (inputs, outputs, and carry-over). Then, for modelling, running, and
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analysing our data, we utilised the programming language Python 3.7.6 and, in particular,
version 2.1 of PuLP as the free linear programming library. The R&D efficiency scores for
the whole system and the period efficiencies will be collated. In order to provide a more
tangible measure of the overall level of R&D across the food industry, the average R&D
efficiency and the corresponding ranking of each DMU were presented. Finally, we used
Spearman’s rank-order correlation to check for strong correlations between non-parametric
measures with ranking variables over a three-year period, which made our analysis more
rigorous. Additionally, efficiency differences between sectors and periods were assessed
for the examined time period by implementing the non-parametric Kruskal–Wallis test.

3. Findings
3.1. Descriptive Statistics

Tables A1 and A2 gives an overview of the descriptive analysis of the operating
indicators for the observation period from 2019 to 2021. In terms of input indicators, the
number of R&D expenditures and R&D labour varies and is highly discrete among food
manufacturing companies. In addition, R&D expenditure and the number of R&D labour
increased year on year over the last three years, by 34.3% and 33.5%, respectively. Figure 3
presents that food manufacturing companies are aware of the importance of R&D and are
beginning to invest more. At the same time, investment in R&D activities has stimulated
output. Based on the descriptive data, we find that operating revenue and net profit also
show a year-on-year growth trend between 2019 and 2021 (Table A2).
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3.2. Correlation Analysis

Based only on the descriptive analysis (see Table A2), drawing any specific linkage
between R&D inputs and benefit outputs could be frivolous. To this end, Table 5 uses
Pearson’s correlation coefficients to show the relationships between inputs and outputs
in model (1). It displays that input and output indicators are positively correlated at
the significant level of 0.01; this indicates that the higher the R&D input, the greater the
generated benefits. In particular, we find a strong relationship between the input variable
“R&D expenditure” and the two output variables, with correlation coefficients of 0.638 and
0.839, respectively. The following sub-section will show the R&D efficiency scores based on
multiple input and output indicators using the dynamic DEA approach.
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Table 5. Coefficient of correlation between inputs and outputs.

R&D Expenditure R&D Labour Operating Revenue Net Profit

R&D expenditure 1
R&D labour 0.610 ** 1

Operating revenue 0.638 ** 0.313 ** 1
Net profit 0.839 ** 0.467 ** 0.858 ** 1

Note: ** p < 0.01.

3.3. Empirical Results

The ε is introduced to prevent the occurrence of weights being zero, which would
otherwise lead to relevant measurements being ignored in the performance evaluation
process. Table 6 illustrates the R&D efficiency scores obtained from the output-oriented
relational model (1) as well as their corresponding ranks. It is clear that Table 6 provides
the R&D efficiency scores for the whole system (Es

k) and the period efficiencies (E(1)
k , E(2)

k ,

E(3)
k ) obtained via formulae (2) and (3), respectively.

Table 6. R&D efficiency measures of food manufacturing companies in China.

DMU Company Sector System Rank 2019 Rank 2020 Rank 2021 Rank

1 Yunnan Energy Investment Organic food 0.6449 5 0.969 3 0.73 8 0.851 4

2 Sanquan Food General foods 0.2351 12 0.437 12 0.455 12 0.397 13

3 Fuling Preserved Pickles General foods 0.9387 2 0.865 4 1 1 0.995 3

4 Anhui Jinhe Industrial Additives 0.0729 24 0.071 27 0.072 27 0.077 26

5 Ke Ming Food General foods 0.1798 17 0.114 24 0.226 22 0.236 20

6 YanKershop General foods 0.0557 27 0.082 26 0.06 28 0.065 27

7 Zhuangyuan Pasture Dairy 0.3199 10 0.398 13 0.741 7 0.636 7

8 New Hope Dairy Dairy 0.2127 16 0.283 18 0.256 19 0.308 16

9 Garden Biochem Food medicine 0.159 18 0.35 16 0.396 15 0.306 17

10 Angel Yeast Fermented products 0.0635 26 0.057 28 0.072 26 0.064 28

11 Hengshun Vinegar Condiments 0.2128 15 0.383 14 0.488 11 0.392 14

12 Terun Dairy 0.6072 6 0.754 6 0.831 5 0.776 5

13 Sanyuan Food Dairy 0.4724 9 0.658 9 0.565 10 0.567 8

14 Bright Dairy Dairy 0.9254 3 0.823 5 0.955 4 1 1

15 Star Lake Bioscience Additives 0.1398 20 0.36 15 0.324 16 0.29 18

16 MeiHua Holdings Group Amino acids 0.5062 8 0.695 7 0.674 9 0.503 9

17 Milkland Dairy 0.2698 11 0.5 11 0.439 13 0.485 10

18 Yili Dairy Dairy 0.9993 1 1 1 1 1 1 1

19 Snowy Sky Condiments 0.1183 21 0.256 20 0.261 18 0.2 23

20 Apple Flavor & Fragrance Group Spice and additives 0.1444 19 0.295 17 0.29 17 0.309 15

21 Qianhe Condiment and Food Condiments 0.5267 7 0.685 8 0.742 6 0.73 6

22 Guangzhou Restaurant Group General foods 0.1067 22 0.214 22 0.178 24 0.247 19

23 Shengda Bio-Pharm Additives 0.0716 25 0.151 23 0.188 23 0.162 24

24 Haitian Flavouring Condiments 0.2157 14 0.235 21 0.229 21 0.216 21

25 Jingshen Salt & Chemical Industry Condiments 0.1029 23 0.27 19 0.25 20 0.206 22

26 AnKee Condiments 0.2295 13 0.528 10 0.431 14 0.46 12

27 Vland Biotech Fermented products 0.0443 28 0.088 25 0.079 25 0.106 25

28 Toly Bread Bakery 0.7294 4 1 1 0.971 3 0.485 10

Average 0.3323 0.4471 0.4607 0.4309

Additionally, we used Spearman’s rank-order correlation to check the relationship of
non-parametric measures with the ranked variables in three years [54]. Based on the three-
year efficiency rankings (see Table 6), we obtained the non-parametric rank correlation
coefficients, in Table 7. The results show a significant positive correlation between the
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rankings at the significance level of 0.01. In addition, the correlation coefficients for the
rankings are all greater than 0.9, indicating a strong correlation between the efficiency
rankings within three years.

Table 7. Spearman’s rank correlation test results for rankings in three years.

System 2019 2020 2021

System 1

2019 0.940 ** 1

2020 0.945 ** 0.963 ** 1

2021 0.952 ** 0.942 ** 0.948 ** 1
Note: ** p < 0.01.

We find that none of the food manufacturing companies had an effective R&D effi-
ciency (Es

k = 1) for their systems during the three years. In particular, only the DMU18
(Yili Dairy) had an R&D efficiency of 0.999, which is close to being fully efficient. This
indicates that Yili Dairy has maximised technological innovation, resulting in a high-level
input–output efficiency without the need for input or output adjustments. This was closely
followed by DMU3 (Fuling Preserved Pickles) and 14 (Bright Dairy) with high R&D effi-
ciency. On the other hand, DMUs 6 (YanKershop), 10 (Angel Yeast) and 27 (Vland Biotech)
have the lowest R&D efficiency scores.

In 2019, the company’s R&D levels for DMUs 18 (Yili Dairy) and 28 (Toly Bread)
were highly efficient, with efficiency scores of 1. The top two companies that obtained the
highest system efficiency, Yili Dairy and Fuling Preserved Pickles, also achieved the top
two positions in R&D efficiency during 2020. Besides, the most efficient R&D companies
in the period 2021 are two dairy companies, Yili Dairy and Bright Dairy. Similarly, the
companies with the lowest R&D efficiency were the same as those with the lowest system
efficiency in each period (DMUs 6, 10, and 27).

The last row of Table 6 illustrates the average efficiency scores of the whole system
and each of the three years. The mean of the system R&D efficiency score is 0.3323, which
indicates that the industry’s R&D performance is at a relatively low level between 2019 and
2021. Precisely, the period from 2019 to 2020 showed slight growth in the average R&D
efficiency score, reaching the peak at 0.4607 in 2020. However, the average score fell again
to 0.4309 in 2021.

It is worth mentioning that dairy companies were at a high level, while those of the
spice and fermented product companies were relatively low. In particular, three of the six
companies with moderately high system efficiency scores (efficiency score greater than or
equal to 0.6) are the dairy manufacturing companies; these are the DMUs 12, 14 and 18.
Additionally, four of the five companies with low system efficiency scores (score less than
or equal to 0.1) are the additives and fermented product manufacturers; these are the DMUs
4, 10, 23 and 27. There is a wide gap in R&D efficiency among listed companies in the
food manufacturing industry, which implies that the technological innovation capacity
needs to be improved. Testing efficiency differences both by year and by sector per year on
the selected time periods, it seems that there are no efficiency differences between them
(Table 8). However, the little p-value in year 2021 for sectorial differences may indicate that
there is a need for a greater sample in order to potentially highlight statistically significant
differences between sectors.
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Table 8. Kruskal–Wallis for the acquired efficiency scores: (a) between years, (b) between years
by sector.

χ2 df P ε2

a Between years

Eff. scores 0.0696 2 0.966 8.38 × 10−4

b Between years by sector

2019 7.29 5 0.210 0.270

2020 7.58 5 0.810 0.281

2021 11.06 5 0.070 0.409

4. Discussion

The food manufacturing sector is at the bottom of the industry in terms of efficiency
of investment in R&D, which is consistent with previous studies [25,26]. To the best of our
knowledge, this is the first-time dynamic DEA has been applied in the food sector, while
this methodology is mostly used in the technology sector, as mentioned in the literature
review section. A similar approach was used from Halaskova et al. (2021) to measure
the efficiency of public and private sectors. In their paper, they explored two different
time-periods between 2010/2013 and 2014/2017, considering each of the three-year periods
as unified systems [55]. However, as Kao (2014) stated ignoring the operations of the
component divisions (i.e., periods) may obtain misleading results [56].

Additionally, there is a severe differentiation in the R&D capabilities of food man-
ufacturing companies, mainly in the form of outstanding R&D capabilities of some of
the top companies, while most of the remaining companies are at the stage of weaker
R&D capabilities. For example, China’s current innovative tea products have a low barrier
to entry and lack technical barriers, resulting in a highly competitive and homogenized
market. After Heytea pioneered the cheese tea product, other brands scrambled to imitate
and copy the recipe. However, as there have been no significant products’ differentiation,
it has been challenging for brands to gain an advantage in the industry. The spillover
effects mentioned in the literature review could explain this phenomenon [27]. Technology
development requires significant investment and carries significant risks as well, and when
the “technology spillovers” occurs, other companies are significantly less motivated to
innovate. This is because competitors can acquire the technology of the leading company at
no cost and invest in the production of new products [27]. Although new technologies can
benefit the food market, relying on “technology spillovers” is not a sustainable solution.
If the overall R&D capacity cannot be enhanced, then the economic growth of the whole
industry will be affected. Research and development in science and technology is a booster
and strong support for the development of the food industry while seeking to meet new
consumer demands such as convenience, nutrition, and health.

When the melamine-tainted milk powder incident came to light in 2008, the whole
domestic dairy industry suffered a severe turbulence [57]. At that time, consumers were
willing to increase their expenditures on foreign brands rather than trust domestic products
anymore. The breach of trust by some dairy companies led to a severe winter for the
entire domestic dairy industry. Following this, the Chinese government has reformed the
management of dairy products and related laws to raise technical standards and improve
the safety of dairy products. For example, the regulation of the entire dairy chain has
been strengthened, and the technical requirements and specific standards relating to dairy
products have been made more operational [58]. In the wake of the scandal, the dismal
performance of dairy companies also serves as a wake-up call to companies that food safety
is always uppermost in the minds of consumers. Strict external regulation coupled with
internal corporate awakening has led to a decade of accelerated investment in research and
development by dairy companies in an effort to regain consumer trust and confidence.
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One of the most outstanding R&D performers is Yili Dairy. Yili Dairy has created the
first three-tier R&D system in the industry, with R&D centres at all levels empowering and
supporting each other. Moreover, innovation centres have been built in seven locations
around the world, attracting a large number of dairy research talents and providing in-
tellectual support for the company’s research and technological innovation. In 2020, Yili
topped the list of “Top 10 Food Innovation Companies in China”. As of December 2021,
Yili ranked second among the top 10 companies in the world’s dairy industry in terms of
the total number of global patent applications and the total number of invention applica-
tions [59]. Against this backdrop, it makes sense that the DEA measurements show that
dairy companies excel in R&D efficiency and Yili has a strong performance in R&D in the
food manufacturing industry. Moreover, this reflects the fact that consumers will always
put food quality and safety at the forefront of their minds.

Additives and fermented products are typical applications in the field of biotechnol-
ogy [60]. The results show that R&D in food biotechnology companies is less efficient than
in the technology sector, which is in line with Fu’s view [61]. Based on the dataset, we
found that additives and fermented manufacturers invest a lot of research staff and R&D
expenditure, but do not get the expected returns. Possible explanations for this are: (a) the
poor capability of R&D labour, and (b) the low utilisation of R&D expenditure, which makes
it more challenging to translate R&D activities into economic benefits. Another possibility
is the mismatch between R&D investment and the company’s own needs, resulting in a
waste of human and financial resources and thus inefficient R&D. Additionally, a study
by Wang et al. [62] suggested that R&D results in biotechnology have a lagging effect. We
speculate that there is a high probability that food companies producing biotechnology
will be in a similar situation. It may require a period of time after R&D investment before
technological innovation can be injected into their operations as a growth driver.

A limitation of this study is that the selection of input and output factors is based
on literature reviews and does not use objective methods such as regression. The reason
behind this is the incomplete disclosure of non-financial data relating to R&D performance
inputs and outputs, such as the number of patents, in the annual statements of the listed
companies, which limits the selection of indicators. Publicly available annual reports do
not disclose R&D information until after 2018, causing limited access to R&D information.
Following the discussion in Djordjevic et al. (2021), we have implemented the Pearson
correlation to firstly ensure that the input/output classification is robust and justified and,
secondly, to avoid considering any indicators which are not significantly correlated at 99%
confidence interval to other indicators [63].

Moreover, an extended time period could have been analyzed, considering technologi-
cal change through the years following Window DEA principles [64], given the existence of
an appropriate dataset that reflects this period

Another constraint of this paper was the external influence of COVID-19 pandemic in
the R&D sector. Although an effort for clarifying efficiency differences among years was
made through a paired-Wilcoxon test, no significant differences were obtained from this
process. Similar results for the R&D performance were obtained from Yi et al. [65], where
they concluded that more funding is needed for implications of innovative applications in
the Chinese food sector. Despite the fact that this survey was concerning R&D performance
in COVID-19 period, there was no clue for the internal structure of the analysed firms, and
researchers had applied the Tobit model to further assess inefficiency causes. Although
Jin et al. [66] reported that COVID-19 had a negative impact on high tech companies, the
influence of the pandemic on technological skills of employees was positive. From another
perspective, R&D investments made before the pandemic, were deemed as a resistance
factor for minimising companies’ losses in the COVID-19 era, highlighting the importance
of such investments in extreme case scenarios such as the pandemic period [67].

Due to the fact that COVID-19 had a negative impact on enterprises’ profitability,
R&D expenses in the food sector have been minimised or annihilated [68]. Assessing
R&D performance in the food sector during the COVID-19 era demonstrates that in a
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short-term analysis there are no apparent differences. Thus, this paper aims to provide
preliminary results of COVID-19’s impact on R&D performance of the agricultural/food
sector; however, it is essential to acquire future data to gain more meaningful insights on
this phenomenon.

5. Conclusions
5.1. Contributions & Practical Applications

Drawing on Kao’s dynamic relational model [20], this study analyses the R&D effi-
ciency of 28 listed companies in China’s food manufacturing industry from 2019 to 2021, to
assess the level of R&D performance of the industry. In this paper, a three-year dynamic
R&D system is also developed, including inputs, outputs, and carry-over factors, in order
to calculate R&D efficiency scores for the whole system and each period, respectively.

Against the backdrop of low overall R&D efficiency, there is a need to leverage the
technological strengths of large enterprises in the food manufacturing industry while
mobilising the R&D enthusiasm of SMEs [69]. To narrow the R&D efficiency gap between
enterprises, the core competitiveness of the entire food manufacturing industry can be
improved through synergistic development.

At the corporate level, food manufacturing companies should place emphasis on R&D
activities and invest in R&D resources to gain a competitive advantage over their competi-
tors. The food manufacturing industry needs to strengthen its technological research and
development activities and promote technological transformation to develop products that
meet the needs of consumers, investors, and regulators. In addition, while approaching
advanced technologies, companies need to avoid technological dependence and achieve
breakthroughs in independent innovation. For example, in order to develop a probiotic
with its intellectual property rights, Yili Dairy went through rigorous experimental screen-
ing to create a probiotic strain that is beneficial to the intestinal health of Chinese people,
Bifidobacterium lactis BL-99. In terms of the use of R&D resources, on the one hand, the
inputs should be controlled to ensure that they are in line with the development status of
the company. On the other hand, project monitoring and other tools (e.g., regular audits)
can be used to measure whether the inputs are used effectively.

In addition, companies need to strengthen the management of R&D talent and improve
talent incentive policies. To attract high-level innovative talent, enterprises need to create
a good employment environment and provide preferential policies, such as additional
opportunities for R&D staff, career development planning and regular training. In addition,
as innovation seekers, food companies should cooperate with research institutes or higher
education institutions. The enterprises can make full use of the research resources provided
in order to solve their own bottleneck problem of insufficient scientific and technological
resources. Meanwhile, universities and research institutes may also need to use the plants
and processing equipment of enterprises as a pilot test or as practice bases. This type
of mutually beneficial cooperation can positively affect R&D resources management, by
saving company funds and creating the conditions for developing new products.

The government should also improve its policy and financial support so as to optimise
the R&D environment. Tax relief policy can reduce the R&D costs of enterprises with greater
intensity and direct the flow of production factors to the innovation sector. Therefore, the
government should continue to implement tax relief policies so that enterprises will have
more confidence to invest in research and innovation to achieve quality development.

Meanwhile, small, and medium-sized enterprises (SMEs) in the food industry often
lack capital and talent and can be subjected to technological suppression by large companies.
Therefore, there is little incentive for R&D activities. The government needs to allocate more
resources to SMEs; for example, by widening their access to finance to alleviate the financial
constraints on research and development. Companies that have an extensive unproductive
time period in transforming their R&D results also need to be offered extra support, such
as financial subsidies or establishing awards for research results as an additional incentive.
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Extra support can prevent such companies from being sapped of their own enthusiasm for
research and development due to time and risk issues.

The government needs to improve the food patent protection system and create a
business environment that respects innovation. As mentioned above, R&D activity in
the food industry tends to be concentrated in some companies due to the “spillover”
effect, with the remainder surviving by copying and imitating. Patent law should be able
to effectively protect research and development achievements as well as the legitimate
rights and interests of enterprises. At the same time, this will encourage research and
development activities, motivate other enterprises to carry out inventions and further
promote the progress and innovation of the food industry.

5.2. Future Research Directions

In addition, this study considers the whole system as a “black box” without fully
acknowledging the internal mechanisms within the R&D activities [20,70]. To this end, it
does not assess the various divisions in R&D activities and the reasons that lead to their
inefficiency. Uncovering the dynamic network structure of R&D activities is an intriguing
future research direction that could be explored. The dynamic network DEA approach of
Omrani and Soltanzadeh [36] could be implemented for R&D efficiency scores estimation
over time, considering the relationship between system and divisions [34].
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Appendix A

Table A1. Relevant dataset.

Inputs Outputs Carry-Over

Company Stock Code Year R&D Staff R&D
Expenditure

Operating
Income Net Profit Capital Stock

1 002053 2018 558,329,336
002053 2019 48 9,068,433 1,933,137,924 286,313,835 760,978,566
002053 2020 220 11,284,582 1,990,278,508 259,553,422 760,978,566
002053 2021 217 5,823,097 2,258,831,335 270,439,271 760,978,566

2 002216 2018 809,664,717
002216 2019 109 149,926,685 5,985,722,254 219,150,712 799,258,226
002216 2020 106 118,442,081 6,926,082,823 767,687,663 799,258,226
002216 2021 151 96,269,725 6,943,439,865 639,942,313 879,184,048

3 002507 2018 789,357,241
002507 2019 21 25,962,179 1,989,593,123 605,141,874 789,357,241
002507 2020 21 21,494,619 2,272,746,599 777,105,783 789,357,241
002507 2021 22 25,048,460 2,518,647,389 741,958,457 887,630,022

4 002597 2018 558,768,374
002597 2019 434 136,639,529 3,971,856,106 808,356,014 558,771,351
002597 2020 488 120,403,962 3,666,246,520 718,521,570 560,903,311
002597 2021 516 182,871,407 5,845,322,601 1,176,448,711 560,913,735

5 002661 2018 331,930,298
002661 2019 99 41,854,132 3,033,973,309 206,668,169 328,808,450
002661 2020 94 27,400,192 3,957,752,136 292,756,153 334,760,450
002661 2021 95 28,467,594 4,326,648,257 67,367,507 337,010,083
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Table A1. Cont.

Inputs Outputs Carry-Over

Company Stock Code Year R&D Staff R&D
Expenditure

Operating
Income Net Profit Capital Stock

6 002847 2018 124,000,000
002847 2019 68 26,900,715 1,399,275,041 127,613,274 128,400,000
002847 2020 173 51,500,758 1,958,851,487 242,120,751 129,360,000
002847 2021 169 55,190,165 2,281,504,302 154,363,226 129,360,000

7 002910 2018 187,340,000
002910 2019 35 9,461,944 813,554,461 51,321,172 190,680,600
002910 2020 15 9,103,148 739,820,698 10,453,468 233,680,600
002910 2021 16 9,246,922 1,021,431,542 53,533,056 232,381,032

8 002946 2018 768,339,599
002946 2019 123 69,754,667 5,674,953,670 251,445,167 853,710,666
002946 2020 150 74,966,721 6,748,631,857 289,434,618 853,710,666
002946 2021 146 90,797,649 8,966,872,398 341,261,734 867,271,477

9 300401 2018 479,288,315
300401 2019 97 42,757,359 718,384,536 343,706,533 479,288,315
300401 2020 99 29,736,199 614,894,441 272,264,656 551,007,557
300401 2021 137 68,545,827 1,117,099,893 510,007,726 551,007,557

10 600298 2018 824,080,943
600298 2019 591 333,462,090 7,652,754,552 939,880,334 824,080,943
600298 2020 640 386,191,432 8,933,035,778 1,422,132,783 824,080,943
600298 2021 730 475,198,936 10,675,333,008 1,321,484,377 832,860,943

11 600305 2018 783,559,400
600305 2019 124 52,943,612 1,832,193,611 330,267,318 783,559,400
600305 2020 124 57,769,207 2,014,309,859 320,078,453 1,002,956,032
600305 2021 151 78,542,779 1,893,347,830 118,332,057 1,002,956,032

12 600419 2018 207,114,418
600419 2019 10 3,182,198 1,626,592,714 142,028,807 207,114,418
600419 2020 13 5,223,872 1,767,673,596 153,602,820 268,599,337
600419 2021 18 6,498,985 2,109,258,101 160,959,099 320,190,246

13 600429 2018 1,497,557,426
600429 2019 60 20,355,603 8,150,710,057 159,042,286 1,497,557,426
600429 2020 71 35,327,399 7,353,344,572 15,400,349 1,497,557,426
600429 2021 73 117,654,695 7,730,723,573 208,678,748 1,497,557,426

14 600597 2018 1,224,487,509
600597 2019 100 68,140,427 22,563,236,819 682,452,363 1,224,487,509
600597 2020 94 72,844,897 25,222,715,966 785,141,962 1,224,487,509
600597 2021 101 89,259,433 29,205,992,515 566,893,573 1,378,640,863

15 600866 2018 645,393,465
600866 2019 284 53,550,926 1,049,609,531 149,552,368 739,019,166
600866 2020 312 58,679,169 1,116,277,268 148,710,264 739,019,166
600866 2021 356 68,877,956 1,235,046,858 106,469,881 739,019,166

16 600873 2018 3,108,175,038
600873 2019 98 434,643,905 14,553,547,455 1,003,557,478 3,104,289,638
600873 2020 115 468,201,631 17,049,514,475 1,005,432,475 3,100,021,848
600873 2021 219 649,213,308 22,836,890,325 2,376,147,704 3,098,619,928

17 600882 2018 409,762,045
600882 2019 46 22,304,115 1,744,349,052 19,229,864 409,357,045
600882 2020 60 38,860,661 2,846,807,171 73,984,474 409,309,045
600882 2021 76 40,090,274 4,478,305,562 193,769,127 516,210,147

18 600887 2018 6,078,127,608
600887 2019 411 541,803,036 90,009,132,852 6,950,726,155 6,096,378,858
600887 2020 453 487,099,849 96,523,963,250 7,098,938,695 6,082,624,833
600887 2021 461 601,017,082 110,143,986,386 8,732,025,624 6,400,130,918

19 600929 2018 917,751,148
600929 2019 453 87,867,120 2,272,012,599 163,294,814 917,751,148
600929 2020 480 85,470,249 2,164,477,645 156,301,166 917,751,148
600929 2021 772 193,944,936 4,780,264,152 441,029,995 1,350,168,875

20 603020 2018 320,000,000
603020 2019 124 33,018,395 2,474,657,721 170,251,807 320,000,000
603020 2020 130 34,034,181 2,668,255,090 192,710,292 320,000,000
603020 2021 140 39,910,113 3,344,556,763 232,993,957 383,237,774

21 603027 2018 326,202,714
603027 2019 37 39,482,609 1,355,147,204 198,253,971 465,850,722
603027 2020 45 45,221,539 1,693,273,982 205,801,040 665,675,318
603027 2021 45 55,389,753 1,925,286,294 221,401,595 798,782,158
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Table A1. Cont.

Inputs Outputs Carry-Over

Company Stock Code Year R&D Staff R&D
Expenditure

Operating
Income Net Profit Capital Stock

22 603043 2018 403,996,184
603043 2019 292 61,337,012 3,028,699,726 383,438,304 403,996,184
603043 2020 397 77,382,774 3,287,486,223 464,237,089 403,996,184
603043 2021 346 77,446,242 3,889,924,382 564,886,983 565,594,658

23 603079 2018 112,000,000
603079 2019 137 27,901,281 519,149,812 37,759,207 112,000,000
603079 2020 135 35,685,966 867,314,753 189,972,212 171,188,958
603079 2021 145 39,643,033 789,732,755 71,822,072 171,188,958

24 603288 2018 2,700,369,340
603288 2019 426 587,425,291 19,796,889,800 5,356,242,595 2,700,369,340
603288 2020 513 711,748,663 22,791,873,936 6,409,030,014 3,240,443,208
603288 2021 599 771,919,702 25,004,031,043 6,671,470,526 4,212,576,170

25 603299 2018 559,440,000
603299 2019 368 89,000,000 4,190,385,022 260,205,816 775,730,854
603299 2020 368 89,230,000 3,937,297,486 152,027,531 774,379,748
603299 2021 392 115,736,800 4,761,367,450 340,989,147 772,926,545

26 603696 2018 168,000,000
603696 2019 33 13,180,385 421,296,739 42,797,000 235,200,000
603696 2020 37 10,572,417 420,400,962 52,817,550 235,200,000
603696 2021 33 13,775,589 548,965,239 45,392,683 235,200,000

27 603739 2018 116,000,000
603739 2019 196 74,997,960 846,777,963 89,391,435 154,667,000
603739 2020 216 79,913,467 960,249,354 122,304,777 154,667,000
603739 2021 264 100,936,653 1,150,823,565 150,097,268 252,084,840

28 603866 2018 470,626,000
603866 2019 24 8,842,772 5,643,709,760 683,358,392 658,876,400
603866 2020 34 11,295,700 5,963,004,181 882,839,002 680,152,702
603866 2021 89 20,645,747 6,335,381,672 763,265,674 952,213,783

Table A2. Distribution characteristics of selected indicators per year.

Period Role Indicator Year Average St.Dev. Max. Min.

2019

Carry-over Capital stock 2018 909,987,897 1,233,167,228 6,078,127,608 112,000,000

Input R&D expenditure 2019 109,491,585 160,342,599 587,425,291 3,182,198

Input R&D labour 2019 173 164 591 10

Carry-over Capital stock 2019 947,126,410 1,224,655,656 6,096,378,858 112,000,000

Output Operating revenue 2019 7,687,546,550 17,074,535,941 90,009,132,852 421,296,739

Output Net profit 2019 737,908,824 1,569,025,767 6,950,726,155 19,229,864

2020

Carry-over Capital stock 2019 947,126,410 1,224,655,656 6,096,378,858 112,000,000

Input R&D expenditure 2020 116,253,048 174,284,845 711,748,663 5,223,872

Input R&D labour 2020 200 180 640 13

Carry-over Capital stock 2020 990,183,108 1,246,656,935 6,082,624,833 129,360,000

Output Operating revenue 2020 8,444,877,879 18,390,488,392 96,523,963,250 420,400,962

Output Net profit 2020 838,620,037 1,708,771,917 7,098,938,695 10,453,468

2021

Carry-over Capital stock 2020 990,183,108 1,246,656,935 6,082,624,833 129,360,000

Input R&D expenditure 2021 147,070,102 207,936,664 771,919,702 5,823,097

Input R&D labour 2021 231 213 772 16

Carry-over Capital stock 2021 1,095,924,855 1,356,906,255 6,400,130,918 129,360,000

Output Operating revenue 2021 9,932,821,966 20,985,555,792 110,143,986,386 548,965,239

Output Net profit 2021 972,979,718 1,983,880,346 8,732,025,624 45,392,683
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