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Abstract: Coffee is the world’s most traded tropical crop, accounting for most export profits, and is a
significant source of income for the countries in which it is produced. To meet the needs of the coffee
market worldwide, farmers need to increase and monitor coffee production and quality. Coffee leaf
disease is a significant factor that decreases coffee quality and production. In this research study, we
aim to accurately classify and detect the diseases in four major types of coffee leaf disease (phoma,
miner, rust, and Cercospora) in images using deep learning (DL)-based architectures, which are the
most powerful artificial intelligence (AI) techniques. Specifically, we present an ensemble approach
for DL models using our proposed layer. In our proposed approach, we employ transfer learning and
numerous pre-trained CNN networks to extract deep characteristics from images of the coffee plant
leaf. Several DL architectures then accumulate the extracted deep features. The best three models
that perform well in classification are chosen and concatenated to build an ensemble architecture
that is then given into classifiers to determine the outcome. Additionally, a data pre-processing and
augmentation method is applied to enhance the quality and increase the data sample’s quantity to
improve the training of the proposed method. According to the evaluation in this study, among all DL
models, the proposed ensemble architecture outperformed other state-of-the-art neural networks by
achieving 97.31% validation. An ablation study is also conducted to perform a comparative analysis
of DL models in different scenarios.

Keywords: ensemble learning; coffee leaf disease; deep learning; image classification; transfer
learning; fine-tuned CNN

1. Introduction

Coffee is the most traded tropical crop, with up to 25 million farming households con-
tributing up to 80% of the worldwide output. Coffee production is concentrated in developing
nations, where it accounts for a substantial portion of the export profits and is a primary source
of revenue. It is one of the world’s most popular drinks and is among the most traded commodi-
ties [1], where the market is continuously growing owing to increased demand in emerging
economies and its substantial contribution to specialized and innovative products in developed
countries. The diseases affecting coffee plants are a critical factor severely limiting coffee’s
productivity. Biotic stresses, such as leaf miner, rust, phoma, and Cercospora, damage coffee
plants and cause defoliation and a reduction in photosynthesis, thus reducing the production
and quality of the product [2]. Thus, identifying and measuring plant diseases is highly impor-
tant in phytopathology. It is essential to understand both causal agents and the severity of the
symptoms for effective pest and disease management [3]. If not treated appropriately, these
diseases can cause significant leaf damage and crop fatality [4].

The Fourth Industrial Revolution (4IR) is the peak era of current industrial technology,
where cyber–physical systems can be connected via deep learning, machine learning, artificial
intelligence, and big data [5]. The 4IR can also increase productivity and growth in various
aspects. One of the sectors experiencing technological growth and development is agriculture,
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where technologies such as artificial intelligence, machine learning, and deep learning positively
impact agriculture’s development and productivity [6]. Smart agriculture is a new and evolving
technology that integrates advanced strategies for increasing agricultural production while also
increasing agricultural inputs in a sustainable and environmentally responsible manner. It is
now possible to reduce errors and expenses to achieve ecologically and economically sustainable
agriculture [7]. Recently, several efforts have been made to use artificial intelligence (AI) to help
farmers accurately recognize diseases and pests that damage agricultural production and to
judge the severity of the symptoms.

AI attempts to provide computers with human-like intelligence by simulating human
intelligence processes. It allows for analysis, learning, and problem solving while presenting
new knowledge. AI has the potential to transform agriculture by allowing farmers to obtain
better results with less work while providing numerous additional benefits [8]. In recent
years, AI research has experienced significant growth in machine learning applications,
particularly a new class of models called deep learning. Notably, DL algorithms have
demonstrated better performance in various domains than traditional machine learning
methods [9,10]. DL models have significant relevance when promising outcomes are
obtained. Many methods have been used in recent years to identify diseases in plants,
and DL methods have proven to be quite efficient. Owing to the growing interest in DL in
agriculture, numerous studies have been conducted, demonstrating that visual evaluation
is reliable for plant disease detection [11]. Researchers have been developing DL solutions
for agriculture in recent years by classifying species and diseases using convolutional
neural networks (CNN) [12,13]. CNNs are the most promising DL-based algorithms for
automatically discriminating features and learning robustness. DL consists of several
convolutional layers representing learning features based on data [14].

However, DL has drawbacks, such as the necessity of large amounts of data for training
the network. For example, the performance of the CNN deteriorates if the available dataset
does not contain sufficient images. This critical drawback can be overcome via transfer
learning. Transfer Learning has several advantages, one of which is that it does not
require a large amount of data for training the network, as knowledge from previous
similar learning tasks can be transferred to the current task. The control of crop losses
is ensured by the rapid recognition of the disease’s cause, which enables the prompt
selection of the best protective strategy. It also represents the initial and most crucial
phase of disease prevention. Our motivation is to develop a system that can adequately
classify coffee diseases. Early disease identification can result in more successful treatments
and longer survival spans. Although transfer learning has been used in several disease
detection methods [15–19], researchers need to develop more disease detection methods in
coffee plants using transfer learning.

Herein, relevant works on machine learning and deep learning for classifying and
detecting plant diseases are reviewed. Marcos et al. [20] focused on detecting rust in coffee
leaves. This study used a genetic algorithm to compute an optimal convolution kernel mask
that emphasizes fungal infections’ texture and color features. Gutte et al. [21] used three
phases for monocot and dicot diseases. First, they segmented the leaf using the k-mean
clustering technique. Feature extraction was then performed to determine the shape, color,
and texture. Finally, they used a support vector machine (SVM) to identify plant diseases.
Abrham et al. [22] classify coffee leaf disease into three major types of disease: Coffee Wilt
Disease (CWD), Coffee Berry Disease (CBD), and Coffee Leaf Rust (CLR). First, the author
used GLCM and color features for feature extraction; then, they used an artificial neural
network (ANN), k-Nearest Neighbors (KNN), a Naïve and a hybrid self-organizing map
(SOM), and a Radial basis function (RBF) for classifying the coffee plant leaf diseases.

Manso et al. [23] proposed an application for detecting coffee leaf diseases in images cap-
tured using smartphones. Various types of backgrounds for images using the YCbCr (Luminance,
Chrominance) and HSV (Hue, Saturation, Value) color spaces were analyzed throughout the
segmentation process and compared with k-means clustering in the YCbCr color space. The
iterative threshold algorithm is called the Otsu algorithm and calculates the damage caused by
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coffee plant diseases. Finally, for a classification in the segmentation of foliar damage, an ANN
trained with a robust machine learning algorithm was used. According to the experts, the result
obtained is auspicious, as it shows the feasibility and effectiveness of identifying and classifying
foliar damage. Babu et al. [24] developed a software model that effectively suggests corrective
measures for disease or pest management in the agricultural field and achieves control solutions.
They used five modules. First, they extracted the edge of a leaf to find the token value. Second,
the module trained the neural network with the leaf and identified the error graph. Identifying
and recognizing the leaf disease or pest species was carried out during the third and fourth
modules. The last module attempted to match the identified disease or pest samples to examples
in the database containing disease and pest image samples and suggest appropriate actions.

Marcos et al. [25] proposed training a CNN for identifying rust infection. For an
evaluation, they provided a set of images to an expert. The author compared the results,
which showed that the method could recognize infection with high precision, as evidenced
by the high dice coefficient. Dann et al. [26] used the YOLOv3-MobileNetv2 model for
detecting diseases in robusta coffee leaves. They develop a prototype that can capture the
input images and then classify the disease into four classes: Cercospora, miner, phoma,
and rust. Ramcharan et al. used a smartphone-based CNN model to identify cassava plant
diseases with an accuracy rate of 80.6% [27].

In [28], transfer learning was used to classify ten diseases in four major crops that have
received little attention. The data were transferred from a smartphone to a computer through
a local area network (LAN), and the performances of six pre-trained CNNs, i.e., GoogLeNet,
VGG19, DenseNet201, VGG-16, AlexNet, and ResNet101, were evaluated. GoogLeNet had the
best validation accuracy at 97.3%. Real-time image classification was performed under the test
conditions, and the prediction scores for each disease class were obtained. All models showed a
reduction in accuracy, with VGG-16 achieving the highest accuracy at 90%. Esgario et al. [29]
used 1747 images of Arabica leaf and trained various deep convolutional models (VGG-16
and ResNet50) for classifying the degree of severity and biotic stress. The trained VGG-16
DCNN, which identified various biotic diseases, achieved a 95.47% accuracy, whereas ResNet50
validated each leaf condition efficiently with a 95.63% accuracy rate.

In the literature, although significant efforts have been made to develop various DL
models to identify diseases in several crops, these models, unfortunately, are neither feasible
nor effective for detecting coffee disease. Therefore, a reliable approach is needed to accurately
identify various diseases in coffee plants. To satisfy this need, we propose a DL-based ensemble
architecture in this paper, which yields efficient and accurate results. Table 1 shows the detailed
analyses of the state-of-the-art studies and our proposed model. In this paper, we, for the first
time, develop fine-tuned and high-performing deep CNNs for coffee leaf disease detection (or
classification) using transfer learning and conduct an extensive experimental optimization of
the constructed CNNs. The main contributions of our work are as follows:

• We develop a collaborative ensemble architecture to classify the diseases in coffee plants.
The proposed strategy is based on re-training the pre-trained DL models using the coffee
disease dataset and combining the weights of the three best-performing algorithms to
make an ensemble architecture for better disease detection in coffee leaf.

• The pre-trained DL models utilized in this study are fine-tuned using our proposed
layers, which can replace traditional disease detection in plants and improve overall
classification accuracy.

• A data pre-processing and data augmentation strategy is employed to improve the
poor image quality of the training data and increase the diversity in input data to
generate better outcomes on small datasets.

• The effectiveness of the proposed architecture is assessed with several hyper-parameters
such as activation functions, batch size, learning rate, and L2 regularizer, to increase classi-
fication accuracy. This ablation study demonstrates how our architecture outperforms the
previous state-of-the-art studies in detecting coffee leaf diseases.
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Table 1. Detailed analyses of the proposed and state-of-the-art studies.

Reference Model Strength Weakness

[20] Genetic Algorithm
- Superior performance to Otsu

segmentation method
- Obtained high dice coefficient score

- Ineffective control over
luminosity inhomogeneity

- Small dataset

[21] Support Vector Machines - Post-processing not required
- Better results on instance segmentation

- High computational cost
- Excessive pre-processing required

[23] Extreme Learning Machine - Automatic detection using the mobile application
- Great results from an extreme learning machine

- The image results from the camera’s
automatic adjustment are different

- Need more segmentation adjustment
for background color

[24] Deep Convolutional Networks - Able to detect 13 different types of diseases
- Big impact augmentation process

- Small dataset
- Fine-tuning does not have a big impact

[25] Convolutional Neural Network Simple morphology erosion improves the detection Has a long runtime

[26] YOLOv3-MobileNetv2 - Lightweight depth-wise convolutions are used
- Good lighting conditions

- Has a long runtime
- High computational cost

[27] Single-Shot Multibox (SSD)
with MobileNet

- Good results of detection boxes
- Model inference time is quite fast

- Decrease in model recall
- Decrease in performance

from image to video

[28] ResNet101, VGG16, DenseNet201,
GoogLeNet, AlexNet, and VGG19

- A cost-effective resources system
- Transmitted data using

Local Area Network (LAN)

- Decrease in accuracy results on
real-time classification

- Unstable Internet/LAN network

[29] A Multi-task System
Based on CNN

- Using multi-task on the CNN model
- Low cost

- Low dataset representation
- Has a long runtime

Ours Ensemble Learning Technique - Improved accuracy over prior techniques
- Robust to noise and better generalization

- Extensive training is required
- Relies on large data

The remainder of this paper is organized as follows: In Section 2, the materials and methods
are described. The experimental results are described and compared with those of other recent
iterative methods in Section 3. Finally, future studies and conclusions are described in Section 4.

2. Materials and Methods

This section thoroughly discusses the proposed method with pre-trained algorithms,
multiple layers, and ensemble learning. An illustration of the pre-processing, augmentations,
training, and evaluation stages of coffee leaf disease identification is shown in Figure 1. DL
algorithms are trained and optimized using a variety of hyper-parameters for fine-tuning and
transfer learning methods. In neural networks, optimizers adjust the learning rates and biases
accordingly. In the ensemble stage, we finally combine the three best DL methods to increase
the accuracy of the results.

Figure 1. Block diagram of the proposed methodology.
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2.1. Ensemble Method

In this study, we implement an ensemble method by combining the three best models
to improve the classification accuracy rate for solving the problem of coffee leaf disease
detection and classification. The ensemble method usually produces more accurate re-
sults than a single model. One of the standard techniques for generating ensemble-based
algorithms is bagging. Bagging is a practical and straightforward method to improve per-
formance. It involves two steps: the first is applying the base model to the training dataset,
and the second step is aggregating the generated models by combining the predictions
from several predictors. Our ensemble method architecture is shown in Figure 2, which
combines EfficientNet-B0, ResNet-152, and VGG-16, which are the best three DL models
under consideration. The ensemble learning we used can be represented by the following
equation:

f (Y) =
n

∑
i=1

wk fi(Y) (1)

where Y is a model input vector, n is the number of models, f (Y) is the aggregated model
predictor, wk is the aggregating weight for combining the ith model, and fi(X) is the
ith model. The standard error predictions are used as an indicator of model prediction
confidence, which is given by:

σe = {
1

n− 1

n

∑
b=1

[y(xj; Wb)− y(xj; ·)]2}1/2 (2)

where y(xj; .) = ∑n
b=1 y(xj; Wb)/n, and n is the number of neural networks. The associated

model prediction is more reliable if σe is smaller. We adopt DL models by fine-tuning
the last layers through transfer learning and layer freezing. The images are resized and
augmented to 224 × 224 × 3; subsequently, they are fed into a pre-trained model for
automatic feature extraction.

Figure 2. Proposed DL-based ensemble architecture with best three fine-tuned CNN architectures.

In this study, we adopt EfficientNet-B0, ResNet-152, VGG-16, InceptionV3, Xception,
MobileNetV2, DenseNet 201, InceptionResNetV2, and NasNetMobile for our recommended
layer. For the CNN-based model, the output can be represented by:

XL
K = f

(
∑

i∈Mk

XL−1
K ∗WL

lk + bL
K

)
(3)
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The final layer comprises two dropout layers, three fully connected layers, a flattening layer,
and a softmax classifier generated from the base models. Due to the flattened layer, we direct
and convert the feature sets from the last layer into a 1D array, which is then passed into a dense
layer containing 64 hidden units. We used ReLu for the activation function, which is given by:

f (x) = max(0, x) (4)

where x is output of each neuron.
Figure 3 represents our proposed layer. A rectified linear unit function is used before

the prediction process to activate the dense layer, representing a label with one neuron. This
method uses a linear approach, in which biases and weights are applied to each feature map
to generate the probability. We use a 20% dropout rate in the dropout layer to eliminate
overfitting in the hidden layer with 64 hidden neurons. For our final classifier, we use the
softmax function [30], which is given by:

σ(~z)i =
ezi

∑K
j=1 ezi

(5)

where~z denotes the input vector, zi represents the elements of the input vector, and K
denotes the total number of classes.

Figure 3. Schematic diagram of proposed layers.

EfficientNet-B0 generates different CNN-family models using a composite scaling
method. This series is approximately six times faster and eight times smaller than other
deep neural networks such as VGG-16, Inception-V3, ResNet-152, and DenseNet201.
The network depth is determined by the number of layers in the network. The number
of filters in the convolutional layer determines its depth. The resolution is determined
by the width and height of the input image. ResNet-152 is a CNN model developed
by Kaiming et al. [31]. ResNet-152 contains 152 layers, three layers for each residual
function, and has the highest accuracy among the Resnet family members. VGG-16 is
a CNN usually recognized as one of the best computer vision models [32]. This model
significantly improved prior-art configurations, evaluated the networks, and increased
the depth using a minimal (3× 3) convolution filter architecture consisting of 16 convo-
lutional layers. Figure 4, represents the overall architectures with proposed layers used
to classify coffee leaf diseases.
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Figure 4. CNN base model architectures with proposed layers.

2.2. Fine Tuning and Transfer Learning

In this section, we explain how to train and fine-tune our model. First, in the pre-trained
base model, we use the ImageNet dataset weights, obtained using 14 million images classified
into 1000 categories. These weights can be imported from the Keras library. The base models
trained on ImageNet weights can quickly utilize available features and improve their image
recognition performance due to their pre-initialized weights. Image classification features
are included in ImageNet’s weights, which are obtained through training. Compared with
randomly selected weights, the transfer learning process reduces the amount of work required,
and it accelerates [33] the process while requiring less work than arbitrarily initialized weights.
Second, using a coffee leaf disease image as training data, we fine-tuned our proposed end
layers by freezing the other layers of all base models. As a result, the above-specified technique
used in training prevents the initial layers of models from being overwritten by the coffee
dataset weights during the initial training epochs. Thus, we can preserve the initial pre-trained
ImageNet weights in the initial layer for better training purposes. After the model’s final
layers are trained with our coffee dataset, the entire network is unfrozen, where the classifier
and our proposed layers are then integrated and constructed our proposed model using
weights from the ImageNet dataset as well as the coffee leaf disease image dataset. Our test
data are used in the final validation of our model.
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2.3. Loss Function and Hyper-Parameter

This section describes how these loss functions and hyper-parameters are chosen to
produce an efficient approach to solving the problem. Both loss and accuracy determine
the performance of a deep learning model [34,35]. As DL models aim for the lowest
possible error rate, a model will be more efficient if the computed loss is lower than if the
computed loss is higher. For multi-class classification, we use categorical cross-entropy to
calculate the average difference between the expected value, the predicted value, and the
loss measurement. The categorical cross-entropy is given by,

L(CCE) =
l

∑
q=1

yq ∗ log(ŷq) (6)

where ŷq denotes the i scalar value in the model output, yq denotes the equivalent target value,
and the output size is the number of scalar values in the model’s output. The local minima
can be quickly approached by weights using an adaptive gradient descent function during the
training process. To achieve the most outstanding results from loss reduction, a better learning
process, efficient memory use, and implementation simplicity, we select the Adam optimizer
over other optimization algorithms, such as RMSProp or SGD [36]; Table 2 shows that Adam
achieves better results than SGD and RMSProp. Small learning rates (LR) are presented for
the hyper-parameter values and are shown in Table 3. The Adam optimizer achieves rapid
convergence with greater efficiency and speed. To avoid overloading computational memory
when sending information over a network, we use a batch size of 32. Furthermore, each model
is trained for 50 epochs with a fixed duration to observe the reaction.

Table 2. Validation accuracy achieved using Adam, SGD, and RMSProp optimizers.

Models Adam SGD RMSProp

VGG-16 94.2 93.1 93.9
Inception-V3 83.9 83.8 78.6
ResNet-152 93.8 93.8 90.3

Xception 85.4 85.1 85.3
MobileNet-V2 74.6 64.6 74.5

DenseNet 83.8 83.7 84.6
InceptionResNet-V2 86.9 85.8 86.7

NASNetMobile 83.8 82.3 81.5
EfficientNet-B0 95 91.9 94.23

Table 3. Loss function and Hyper-parameters.

No. Hyper-Parameters Values

1 Reduced LR 10e−5

2 Initial LR 10e−3

3 Optimizer Adam
4 Loss function Categorical cross-entropy
5 Epoch 50
6 Batch size 32

2.4. Dataset

This study uses five classes for classification: healthy, phoma, miner, rust, and Cer-
cospora. Explanations for each class are presented in Table 4. The dataset contains 1300 im-
ages, consisting of 260 images for each class. We divided the dataset evenly between the
five classes, with 20% used for validation and 80% used for training. All sample images
are resized and normalized using Keras’s automatic resizing script, which resizes all input
images to 224 × 224 in dimensions because no two images have the exact same dimensions.
The image dataset used in this experiment is the same as that used in the symptom dataset
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in Esgario’s study [29]. We use images as a subset and make minor modifications by
keeping the number of classes the same. The dataset that we use has a large number of
disease images, and the images of diseases are shown more clearly. Additionally, there are
no image duplications in the dataset that we use.

Table 4. Detailed class dataset.

Type of Leaf Description

Healthy Green without any spots or damage of any kind.

Miner (Peri Leucoptera coffee)
Large, wavy dark patches on the leaf’s upper surface.
Rubbing an area or bending a leaf causes the upper epidermis
to break, revealing tiny white caterpillars in the new mines.

Phoma (Phoma costaricensis) A leaf that turns brown and dies starting from the tip area.

Cercospora (Cercospora coffeicola) Dry areas that are brown in color with a border in the shape of
a bright halo around it.

Rust (Hemileia vastatrix) Features patches that resemble a halo that ranges in color
from yellow to brown.

2.5. Data Preprocessing and Augmentation

The data are transformed into a standard classification format after pre-processing the
images. The images are first converted into RGB, and the pixel resolution is kept constant
at 224 × 224 pixels. As part of the image augmentation process, an open-source Keras
ImageDataGenerator class is used to enhance the dataset size by recreating images using
various pre-processing techniques, including random rotation (15°), horizontal and vertical
flips, width and height shifts, shear ranges, fill modes, and transpositions. The Keras
normalization function is used to normalize the images of coffee leaf diseases, which
transforms the input images’ floating pixel values.

2.6. Experimental Setup

In experimentation, we use Python with the Keras and TensorFlow frameworks for
fine-tuning our model. During training, the network was implemented on a computer with
a 2.60 GHz Intel Core i5-11400 CPU. An NVIDIA RTX A5000 GPU was used with a 64-bit
operating system and 16 GB of RAM to conduct the experiments. The details are presented
in Table 5. The pre-trained network was imported from Keras, and the first layer of the
base model is frozen in the first stage. The entire network is retrained using a fine-tuning
network based on the proposed layer and the coffee leaf disease images. We compare the
proposed CNN model with several other CNN models to validate our results. Some of the
validation procedures used for the dataset in this study are discussed in Section 3.

Table 5. System requirements.

No. Name Parameter

1 Development tool Python 3.7
2 CPU Intel Core i5-11400, 2.60 GHz
3 GPU Nvidia RTX A5000 GDDR6 24 GB
4 Memory 16 GB
5 Library TensorFlow
6 System type Windows 10, 64 bit

2.7. Performance Evaluation Metrics

A confusion matrix, also known as an error matrix, describes the performance of a classifi-
cation model with a set of test data. A confusion matrix can be used to calculate the potential
of the classifier. All diagonal elements indicate that the outcomes were correctly classified.
The unclassified results are represented in the off-diagonals of the confusion matrix. Conse-
quently, the ideal classifier will have a confusion matrix with only diagonal elements, with the
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other elements set to zero. Following the categorization procedure, a confusion matrix provides
actual and expected values [37]. There are rows and columns in the confusion matrix (CM) that
correspond to the ground truth labels and the actual class (e.g., healthy, phoma, miner, rust,
or Cercospora). A similar prediction value is provided for each validation sample, representing
the number of incorrect and correct classifications or predictions. A true positive is defined as
the percentage of correctly identified positive samples classified as positive. In contrast, a true
negative is defined as the percentage of negative samples correctly classified as negative. When
an image is identified as positive but is actually negative, this is known as a false positive.
A false negative is a result that appears to be positive but is actually negative [38]. Various
metrics were used to assess the DL-based models’ performances, including the precision, F1
score, area under the receiver operating characteristic (ROC) curve, validation accuracy, recall,
specificity, and sensitivity. The following Equations (7)–(11) are used to calculate the F1-score,
precision, specificity, accuracy rate, and sensitivity of each model:

Precision =
TP

TP + FP
, (7)

F1− Score =
2(TP)

2(TP) + FP + FN
. (8)

Speci f icity =
TN

TP + FN
, (9)

Accuracy =
TN + TP

TN + TP + FN + FP
, (10)

Sensitivity =
TP

FN + TP
, (11)

3. Results and Discussion

A publicly accessible dataset is used to evaluate the performance of the proposed
technique [29]. We used the symptom dataset as the subset, and the dataset is categorized
into five classes, where four classes are coffee leaf diseases (miner, phoma, Cercospora,
rust,) and one class contains healthy leaves. This dataset yields a significant amount of
heterogeneous agricultural data (containing 1300 images). This dataset is used in the
training and testing process. For model development, we utilize EfficientNet-B0, ResNet-
152, VGG-16, InceptionV3, Xception, MobileNetV2, DenseNet 201, InceptionResNetV2,
and NasNetMobile with several data pre-processing and augmentation techniques to
increase the size and diversity of the images. We employ an Adam optimizer in our
optimization technique, which has been widely used in previous investigations, with an
initial learning rate of 0.001 and a learning rate drop component of 0.1. For instance,
the training learning rate dropped to 0.0001 (0.001× 0.1) after 10 iterations, to 0.00001
(0.0001× 0.1) after 20 epochs, etc. For the other hyper-parameter used in this study, we
used a mini-batch of 32 and the cross-entropy loss function. Simultaneously, we use
Keras and TensorFlow APIs to develop fine-tuned baseline architectures. The proposed
architectures are trained using 20% of the test data and 80% of the training data. The hyper-
parameters included in this design plan show that the accuracy improved gradually as the
number of epochs increased over a short period, stabilizing at a given amount.

Figure 5 shows the graph of accuracy and loss in training and validation. In the training
accuracy graph, EfficientNet-B0 and VGG-16 perform very well, achieving more than 90%
accuracy. The last model is MobileNet-V2, achieving a less than 70% error rate. With a
minimum loss, EfficientNet-B0 shows the highest validation accuracy of 95%. VGG-16
performed well on the coffee leaf dataset, achieving 94.2% validation accuracy. The ResNet-
152 architecture achieves satisfactory performance with 93.8% validation accuracy, while
MobileNet-V2 shows a low performance with 74.6% validation accuracy. Overall, EfficientNet-
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B0 performs very well, followed by VGG-16 in training and validation loss accuracy. Finally,
MobileNet-V2 demonstrates poor performance in training and validation loss accuracy.

Figure 5. Accuracy and loss curves of proposed models used based on fine-tuning with our proposed layers.

A total of 248 images were validated in their respective classes using confusion matrix
techniques. Table 6 presents the ensemble model’s and proposed model’s performance scores.
The ensemble model achieves the highest state-of-the-art performance by achieving 97.3% in
accuracy, 95.1% in F1-score, 98.9% in specificity, 95.2% in sensitivity, and 95.7% in precision.
Next is the EfficientNet-B0 model, achieving 95% in accuracy, 94.9% in F1-score, 98.8% in
specificity, 94.8% in sensitivity, and 95.2% in precision. VGG-16 follows, achieving 94.2% in
accuracy, 94.1% in F1-score, 98.6% in specificity, 94% in sensitivity, and 94.4% in precision. Next
is ResNet-152, achieving 93.8% in accuracy, 93.3% in F1-score, 98.5% in specificity, 93.2% in
sensitivity, and 94% in precision. The MobileNet-V2 model achieves the lowest state-of-the-art
performance by achieving 74.6% in accuracy, 73.5% in F1-score, 94.5% in specificity, 74.1% in
sensitivity, and 76.8% in precision. Figure 6 presents the confusion matrix obtained by the
proposed ensemble architecture on the validation dataset.

Table 6. Performance comparison between the ensemble model and other fine-tuned models.
PR = Precision; SN = Sensitivity; SP = Specificity; F1 = F1-Score; ACC = Accuracy.

Models PR% SN% SP% F1% ACC%

VGG-16 94.4 94 98.6 94.1 94.2
Inception-V3 83.5 85.1 96.3 83.5 83.9
ResNet-152 94 93.2 98.5 93.3 93.8

Xception 85.5 85.3 96.6 85.2 85.4
MobileNet-V2 76.8 74.1 94.5 73.5 74.6

DenseNet 84.7 83.2 96.3 83.3 83.8
InceptionResNet-V2 86.7 86 97 86.1 86.9

NASNetMobile 85.1 83.1 96.3 83.3 83.8
EfficientNet-B0 95.2 94.8 98.8 94.9 95

Ensemble Model (ours) 95.7 95.2 98.9 95.1 97.3
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Figure 6. Confusion matrix of the ensemble model.

The area under the ROC graph is a measurable statistic for classification tasks with
multiple threshold levels. An ROC curve is used for all potential thresholds to compare the
true positive (sensitivity) against the false positive rate (1—specificity). The area under the
curve (AUC) represents the degree of distinction. In contrast, the ROC is a probability graph.
This indicates the effectiveness of the algorithm in discriminating between different classes.
The model is more effective at differentiating between classes with diseased and healthy
individuals with a higher AUC. Figure 7 illustrates the graph of the ensemble model, which
shows that the ensemble outperforms the other architectures by correctly classifying the
five different classes. Table 7 shows the ROC–AUC curve for the other fine-tuned models,
where EfficientNet-B0 performs most satisfactorily by achieving a 0.97 macro-average score;
the VGG-16 model trained with the coffee leaf disease dataset achieves a score of more
than 0.96 for the macro-average score; ResNet-152 performs relatively well, achieving 0.96
macro- and micro-AUC scores; and MobileNet-V2 performs the worst among all the models
by achieving a 0.84 macro-average score. Among all five classes, it scores lower for class 2
(miner), with only 0.86; the highest is class 3 (phoma), achieving 0.95 on average. Table 8
shows the performance time of our proposed ensemble architecture and other fine-tuned
models. This table shows that our proposed ensemble architecture is faster than other
fine-tuned models, achieving 6.3 s in the training process.

Figure 7. ROC graph of the ensemble model.
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Table 7. Comparison of the AUC values for proposed ensemble architecture with other fine-tuned DL
models. The classes 0, 1, 2, 3, 4 represent Cercospora, Healthy, Miner, Phoma, and Rust, respectively.

Models Class 0 Class 1 Class 2 Class 3 Class 4 Micro-Average Macro-Average

DenseNet 0.90 0.89 0.83 0.95 0.91 0.90 0.90
NASNetMobile 0.91 0.89 0.83 0.96 0.90 0.90 0.90

InceptionResNet-V2 0.85 0.97 0.84 0.92 0.98 0.92 0.91
MobileNet-V2 0.94 0.82 0.81 0.95 0.67 0.84 0.84

Xception 0.95 0.90 0.86 0.91 0.92 0.91 0.91
Inception-V3 0.86 0.74 0.83 0.93 0.88 0.85 0.85

VGG-16 0.97 0.97 0.95 0.98 0.95 0.96 0.96
Resnet-152 0.98 0.99 0.90 0.97 0.97 0.96 0.96

Efficientnet-B0 0.98 0.99 0.93 0.96 0.98 0.97 0.97
Ensemble (ours) 0.98 1.00 0.92 0.97 0.98 0.97 0.97

Table 8. Average Epoch time of the training and testing of the proposed ensemble architecture and
other fine-tuned models.

Models Average Train Time Average Test Time

VGG-16 8 s 1 s
Inception-V3 8 s 23 ms
ResNet-152 9 s 1

Xception 8 s 1 s
MobileNet-V2 8 s 20 ms

DenseNet 8 s 43 ms
InceptionResNet-V2 8 s 1 s

NASNetMobile 8 s 34 ms
EfficientNet-B0 8 s 24 ms

Ensemble model (ours) 6.3 s 1 s

DL algorithms are very complex and are referred to as black boxes since any justifi-
cation does not support the prognosis. The visual prediction presentation is essential
for establishing confidence in AI-based intelligent systems. Figure 8 presents a visu-
alization of images with feature maps extracted from the intermediate convolution
layers of the ensemble model with different classes. Here, the model’s feature extraction
capability as the convolutional network becomes deeper, from left to right, is presented.
These feature maps show that the proposed network is effectively tuned to distinguish
between diseases in coffee leaves. The first image is Cercospora, the second image is
Healthy, the third image is miner, the fourth image is phoma, and the fifth image is rust.
This section defines the size and number of features of the various fine-tuned CNN
architectures used in this study. The CNNs and regular neural networks are identical.
They consist of neurons with biases and weights that can be used for training. Each
neuron processes a few impulses to conduct a dot product and may potentially perform
non-linearity. In general, the parameters are weights that are learned through an activ-
ity. These include weighted vectors, which are modified during the backpropagation
process and help the algorithm’s ability to anticipate outcomes. Table 9 shows the
parameter of the fine-tuned models used in this study. The best models that achieve
higher accuracy are VGG-16 with 14 million parameters, EfficientNet-B0 with 4 million
parameters, and ResNet-152 with 58 million parameters.
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Figure 8. Feature map representations of input images extracted from the intermediate layers of the
proposed ensemble network.

Table 9. Parameters of the fine-tuned models.

Models Parameters (M)

VGG-16 14
Inception-V3 21
ResNet-152 58

Xception 20
MobileNet-V2 2

DenseNet 12
InceptionResNet-V2 54

NASNetMobile 4
EfficientNet-B0 4

4. Conclusions

Coffee leaf diseases contribute to the decrease in quality in coffee production, and
detecting these diseases is highly advantageous and offers a practical, easy, and appropriate
way to improve coffee production. In this study, we proposed an effective and enhanced
ensemble architecture based on EfficientNet-B0, ResNet-152, and VGG-16 to identify coffee
leaf diseases. The proposed ensemble method achieved a maximum performance of 97.31%
validation accuracy. Although this study applied nine transfer learning models and designs
to identify coffee leaf disease, further research is still needed. In the future, we will develop
more in-depth CNN techniques that detect coffee leaf diseases, e.g., by improving the
detection and segmentation time efficiency and increasing the number of coffee leaf disease
images in the dataset utilized in this study. The proposed method will be applied to various
agricultural images for plant disease classification, fruit ripening detection, and cropland
surveillance, providing a foundation for future studies.
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