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Abstract: Pig behavior recognition and tracking in group-housed livestock are effective aids for
health and welfare monitoring in commercial settings. However, due to demanding farm conditions,
the targets in the pig videos are heavily occluded and overlapped, and there are illumination changes,
which cause error switches of pig identify (ID) in the tracking process and decrease the tracking
quality. To solve these problems, this study proposed an improved DeepSORT algorithm for object
tracking, which contained three processes. Firstly, two detectors, YOLOX-S and YOLO v5s, were
developed to detect pig targets and classify four types of pig behaviors including lying, eating,
standing, and other. Then, the improved DeepSORT was developed for pig behavior tracking and
reducing error changes of pig ID by improving trajectory processing and data association. Finally,
we established the public dataset annotation of group-housed pigs, with 3600 images in a total from
12 videos, which were suitable for pig tracking applications. The advantage of our method includes
two aspects. One is that the trajectory processing and data association are improved by aiming at
pig-specific scenarios, which are indoor scenes, and the number of pig target objects is stable. This
improvement reduces the error switches of pig ID and enhances the stability of the tracking. The
other is that the behavior classification information from the detectors is introduced into the tracking
algorithm for behavior tracking. In the experiments of pig detection and behavior recognition, the
YOLO v5s and YOLOX-S detectors achieved a high precision rate of 99.4% and 98.43%, a recall rate
of 99% and 99.23, and a mean average precision (mAP) rate of 99.50% and 99.23%, respectively, with
an AP.5:.95 of 89.3% and 87%. In the experiments of pig behavior tracking, the improved DeepSORT
algorithm based on YOLOX-S obtained multi-object tracking accuracy (MOTA), ID switches (IDs),
and IDF1 of 98.6%,15, and 95.7%, respectively. Compared with DeepSORT, it improved by 1.8% and
6.8% in MOTA and IDF1, respectively, and IDs had a significant decrease, with a decline of 80%.
These experiments demonstrate that the improved DeepSORT can achieve pig behavior tracking with
stable ID values under commercial conditions and provide scalable technical support for contactless
automated pig monitoring.

Keywords: YOLOX-S; pig behavior tracking; YOLO v5s; DeepSORT; ID switch

1. Introduction

The pig industry has always been the pillar of China’s livestock industry. Pig and
pork products play a key role in food security and nutrition strategies around the world.
The health situation of pigs determines the development and economic benefits of pig
farming [1], and the clinical or subclinical signs of most pig diseases are often associated
with abnormal pig behavior before the diseases are found. Therefore, the monitoring and
analysis of pig activity, diet, and other behaviors can help to quickly understand the health
condition of pigs [2,3]. Currently, the manual monitoring pig behaviors is a management
method for pig farms, and it requires a lot of labor and is time-consuming and inefficient.
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Another method of monitoring pig behavior by wearable smart devices, such as ear tags
using RFID wireless radio frequency technology, which can avoid the defects of manual
monitoring, usually irritate the pig and reduce the welfare of the pig [4]. In addition,
information technology tools have become an important method for the development of
modern agriculture. For the past few years, deep-learning-based techniques have been
adopted to achieve excellent performance in many fields, such as image recognition [5,6],
natural language process [7,8], and so on [9,10]. Thus, it is significant to detect abnormal
pig behavior quickly and accurately using computer vision technology at a low cost and no
contact to achieve intelligent pig farming [11].

Research has already begun to use automated surveillance techniques to observe pig
behavior for the early detection of potential health or welfare problems, such as the a pig’s
daily behavior [12] and eating and drinking behavior [13,14]. This suggests the feasibility
of using computer vision technology for the daily differential behavior monitoring of
pigs. Some researchers have implemented livestock behavior monitoring through MOT
techniques. For example, a CNN method was developed to classify different types of social
behaviors among preweaning piglets [15]. Two deep-learning-based detectors combined
with tracking processes were developed to identify pig postures and drinking behaviors
of group-housed pigs [16]. A probabilistic tracking-by-detection method was proposed,
which first used a fully convolutional detector to detect visible key points of individual
pigs and then tracked individual animals in a group setting [17]. A deep-learning-based
pig posture and tracking algorithm were designed to measure those behavior changes in an
experimental pig barn at different greenhouse gas (GHG) levels [18]. However, pig behavior
detection and tracking still face some difficulties, such as target occlusion, varying light,
overlapping, and error IDs of tracks in tracking [19,20]. Therefore, to improve the detector
and tracker performance, advanced detectors and MOT methods are being introduced to
pig behavior tracking applications.

In terms of target detection and classification, anchor-based and anchor-free detectors
are widely used for object detection and classification applications. The anchor-based detec-
tors are partitioned into one-stage and two-stage categories, and anchor-free detectors have
developed rapidly in the past two years. One-stage algorithms are dominated by the YOLO
series [21]. Two-stage algorithms, such as Faster R-CNN [22], are popular. Considering the
optimal speed and accuracy trade-off, this study chose the YOLO v5s algorithm as one of
the target detectors. The anchor-free detectors include the CornerNet [23], CenterNet [24],
and YOLOX [25] algorithms, and so on. Among them, YOLOX adopted advanced detection
techniques, i.e., decoupled head and strong data augmentation to achieve state-of-the-art re-
sults and won 1st place in the Streaming Perception Challenge (Workshop on Autonomous
Driving at CVPR 2021) using a single YOLO-L model; therefore, YOLOX-S was chosen
as another of the target detectors. In addition, this study compared the performances of
YOLO v5s and YOLOX-S on pig detection and behavior classification.

In terms of MOT, MOT has been a longstanding goal in computer vision. The task
of MOT is largely divided into locating multiple objects, maintaining their identities, and
yielding their trajectories given an input video [26]. Most existing MOT frameworks
can be grouped into three sets, Tracking By Detection (TBD), Joint Detection Embedding
(JDE) [27], and MOT based on the attention network [28]. Among them, TBD first adopted
the detector to output the detection result and then used the Kalman filter and Hungarian
algorithm to accomplish target tracking tasks, such as SORT [29] and DeepSORT [30]. The
performance of TBD highly depends on the performance of the employed object detector.
The JDE framework developed appearance representation in detection and association
tasks as multitask learning [27]. The MOT algorithms based on attention mechanisms are
TransTrack [28] and TrackFormer [31], both of which are efforts to apply a Transformer to
the MOT method. With significant improvements in the performance of target detectors
based on deep learning, DeepSORT has become a simple and efficient MOT method with
high accuracy at high speeds. In addition, Deep SORT was found to have a runtime speed
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of 25–50 FPS using modern GPUs [30]. Thus, DeepSORT was considered as our basic
tracking model.

Accurately tracking individual pigs in real farming scenarios remains a challenging
task due to the following issues: (1) lack of public dataset annotation of group-housed pigs
similar to MOT20 [32] datasets used for all MOT frameworks; (2) most of the detection
algorithms are sensitive to variable lighting conditions and the occlusions of pigs in a
commercial environment; (3) the error pig IDs in the tracking due to the variable farm
environment and overlapping of one pig from another. To tackle these challenges, some
works have proposed to develop the public dataset annotations of group-housed pigs. For
example, the dataset annotations of group-housed pigs were presented [19]; however, it
annotated the keys of pigs and was not suitable for mainstream pig behavior tracking
algorithms. Due to the lack of public dataset annotation of growing pigs similar to MOT20,
there are few studies on tracking pig behavior long-term (over an hour) and avoiding error
IDs in pig tracking by using advanced tracking algorithms, such as DeepSORT, FairMot [33],
and ByteTrack [34]. So, public dataset annotation of group-housed pigs is crucial in tracking
pig behavior analyses tasks.

Based on these works, to void the error switches of pig ID during tracking using the
basic DeepSORT algorithm, an improved DeepSORT algorithm was proposed. Firstly, the
public dataset annotation of group-housed pigs similar to the MOT20 was developed using
the original dataset [17]. Then, the detectors YOLOX-S and YOLO v5s were used to detect
pigs and classify the four behaviors including standing, lying, eating, and other. Finally,
the proposed approach was used to tackle error switches of pig ID in the tracking process
by improving the trajectory processing and data association for the specific pig scenario.
The merits of the improved DeepSORT approach contained two points. One was that we
improved the trajectory processing and data association during tracking procedure for
pig-specific scenarios where the number of pig target objects remained unchanged. This
improvement reduced error switches of pig ID and enhanced the stability of the tracking.
The other was that the behavior classification information from detectors was used in
the tracking algorithm for completing behavior tracking. The comparative experiments
demonstrated that the improved DeepSORT algorithm obtained stabler ID in pig behavior
tracking than the original DeepSORT.

The main contributions of this paper are summarized as follows:

(1) An improved DeepSORT algorithm was proposed to significantly decrease error
switches of pig ID in the pig behavior tracking process.

(2) The public dataset annotation of group-housed pigs similar to MOT20 was established
for the development of advanced pig-tracking algorithms.

(3) Two advanced detectors, YOLOX-S and YOLO v5, were used for pig target detection.
(4) The tracking results of the improved DeepSORT based on YOLOX-S achieved a MOTA

of 98.6%, and its IDs had a significant decrease, with a decline of 80% compared
with DeepSORT.

2. Dataset Annotation of Group-Housed Pigs
2.1. DataSet Description

In this study, the original dataset was selected from the public pig videos [17], which
contained a total of 15 videos of 2688 × 1520 resolution with half an hour. The collection of
videos depicted different animal ages/sizes, variations in housing facilities, basic activity
levels, and lighting scenarios. Due to the camera’s height and focal length, there were items
captured from an overhead camera that did not belong to this pen, so, in the experiment,
we used the video cropping method to remove items that were not in the pen and reduce
the influence of the external environment. We chose 12 videos suitable for pig behavior
tracking algorithms and classified the activity levels for the pigs as high (H), medium (M),
and low (L) according to the classifications of the original dataset. These video sequences
contained pigs lying, eating, drinking, standing, or engaging in other behaviors to meet
the experimental requirements. Our dataset consisted of 12 videos, of which 8 videos were
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used for training and 4 videos were used for testing. Table 1 shows the properties of the
12 videos annotated for pig behavior tracking and performance analysis.

Table 1. Properties of 12 videos annotated for pig behavior tracking and performance analysis.

Early Finisher Late Finisher Nursery

Video# Pig01 Pig02 Pig03 Pig04 Pig05 Pig06 Pig07 Pig08 Pig09 Pig10 Pig12 Pig15

Day
√ √ √ √ √ √ √ √

Night
√ √ √ √

# of Pigs 7 7 15 15 8 16 12 13 14 14 15 16
Activity Level H L M M M H M L M M L H
Sparse/Dense Spare Spare Dense Dense Spare Dense Dense Dense Dense Dense Dense Dense

Train/Test Train Test Test Train Train Train Train Train Train Test Train Test

2.2. The Procedure of Dataset Annotation

The annotation process of the dataset in the experiment consisted of the following steps:
(1) First, all video sequences were cropped by using FFmpeg software for tracking the

pig behaviors in each pen. Part of the cropped dataset is shown in Figure 1. Figure 1a is a
video sequence 02# daytime, sparse; Figure 1b is a video sequence 05# nighttime, sparse;
Figure 1c is a video sequence 07# daytime, dense; and Figure 1d is a video sequence 10#
nighttime, dense. After the videos had been cropped, there were no other irrelevant pigs or
objects in each pen, and we could achieve a better tracking performance.
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Figure 1. Part of the cropped dataset, (a) video sequence 02#, (b) video sequence 05#, (c) video
sequence 07#, and (d) video sequence 10#.

(2) Then, DarkLabel software was used to label all video sequences; each video se-
quence of 1 min (5 frames per second) was 300 frames of images, and there were 3600 images
in a total of 12 videos.

(3) Finally, using the annotation files produced by DarkLabel software and video
sequences, we wrote Python script files to convert the annotation files into JASON files suit-
able for detection (COCO dataset) and reidentification (ReID) data suitable for DeepSORT
tracking. Part of the dataset for pig detection and tracking is shown in Figure 2. Figure 2a,b
show the behavior-annotated images of video sequences 09# and 10# for detection and
behavior recognition. Figure 2c is part ReID dataset including 10 different pigs in day and
night scenes. The feature maps of ReID dataset were used for appearance matching of pig
behavior tracking.
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09# for detection, (b) behavior-annotated images of video sequence 10# for detection, and (c) part
ReID dataset including 10 different pigs in day and night scenes for DeepSORT pig tracking.

3. Methods
3.1. Process and Flow Chart

We used the pipeline in Figure 3 to train and validate our system. The pipeline was
divided into two procedures. Firstly, the video dataset annotated using the four postures of
lying, eating, standing, and other was fed to the developed CNN-based behavior detector
for training. The detectors used included YOLOX-S and YOLO v5s due to their optimal
speed and accuracy tradeoff for real-time applications. For both detectors, we used the same
environment, e.g., data augmentation, neck network, and other hyperparameters. Then, the
improved DeepSORT tracking algorithm was used to track detected pig objects between
two successive frames. DeepSORT adopted Kalman filtering (KF), track management, and
data association to preserve the identity of pigs across consecutive frame sequences. To
prevent wrong switches of pig ID numbers due to complex scenarios, e.g., pig overlapping,
occlusion, and illumination change, we improved the strategies of data association of
DeepSORT to achieve stable pig ID numbers according to pig farm characteristics.

The YOLO (YOLOX-S or YOLO v5s) detectors and the improved DeepSORT algo-
rithms together accomplished individual pig behavior recognition and tracking under
natural pig scenarios. In the next section, we described the training process of the detector
and pig-tracking algorithm.

3.2. YOLO v5 and YOLOX-S Target Detection Network

YOLO v5 is the advanced detection model of the YOLO series that uses a single
multilayer network to predict the bounding box and classification probability. In the COCO
dataset, the YOLO v5 algorithm has shown remarkable accuracy and high detection speed;
therefore, the YOLO v5 network was used for group-housed pig detection. According to
different network depths and widths, YOLOv5 can be divided into four basic network
structures: YOLO v5s, YOLOv5m, YOLOv5l, and YOLOv5x. The YOLO v5s model with
the least number of parameters was chosen for target detection.
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YOLOX is a high-performance detector proposed in 2021 that combines excellent
advances in target detection, such as decoupled head, strong data enhancement, anchor-
free, and simOTA with YOLO. YOLOX not only surpasses the AP of YOLOv3, YOLov4,
and YOLOv5, but also achieves extremely competitive inference speeds. According to its
scaling rule, YOLOX mainly includes YOLOX-S, YOLOX-M, YOLOX-L, and YOLOX-X
models. We also chose YOLOX-S with the least number of parameters for comparison with
the YOLO v5s model.

The structures of YOLO v5s and YOLOX-S are mainly divided into four stages [25].
The first stage of the model is called input procedure, which includes scaling transformation,
color space adjustment, and mosaic data enhancement to increase the amount of data for
training to improve the robustness of the model. The second stage is called backbone
network, which uses the CSPDarkNet53 as a basic network for feature extraction. The third
stage is called detection neck (PAFPN) that adopts the feature pyramid network (FPN)
and the path aggregation network (PAN) structure to retain the rich spatial information
from the bottom-up data and semantic information from the top-down data steam. The
fourth stage is called decoupled head (Prediction), which is used for object detection and
classification to improve the converging speed and accuracy.

3.3. DeepSORT for the Group-Housed Pig Tracking Model

DeepSORT is an improved version of the SORT algorithm, which includes data as-
sociation, KF estimation, and track management for multi-object tracking. It enhances
the matching effect of targets by combing appearance and motion information to reduce
the number of ID switches under an occlusion environment. Moreover, DeepSORT is the
method of TBD, which first uses the detector to detect and classify objects, then performs
the data association over consecutive frames, and then outputs the classification, location,
and track ID information. The DeepSORT tracking algorithm is represented in Algorithm 1.
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Algorithm 1: DeepSORT algorithm

1: Define DeepSORT configurations as cfg
2: Initialize DeepSORT (DeepSORT, cfg)
3: Initialize device(gpu)
4: Model = load(detection model, device = gpu)
5: Dataset = loadimgaes(input videos)
6: For i, img in enumerate(dataset):
7: pred = model(img)
8: pred = non_max_suppression(pred)
9: for i, detections enumerate(pred):
10: xyxy, conf, cls = detections
11: Pass detection results to DeepSORT
12: features = get_features(xyxy, img)
13: Predict track by using Kalman filter
14: Compute cost matrix using features, track, detections
15: matches, unmatched_tracks, unmatched_detections = match(cost matrix)
16: Update track set by using match results
17: Save results

In the DeepSORT algorithm, there are two state vectors named detection and track.
Detections are used to store the detected bounding boxes (BB) (Di, i ∈ {1 . . . N}) from the
current frame by the object detector, and tracks are regarded as the correctly matched tracks
(Ti, i ∈ {1 . . . M}), which include the position, state, and speed information of the targets
before the current frame, respectively. Among them,

Di = {(top, le f t, width, height), con f , f eature, classes} (1)

where top, le f t, width, and height denote coordinates of the upper left point, the width and
height of the bounding box. con f denotes the confidence; f eature and classes denote reidentifi-
cation features of the detected object used for cascade matching and classification information.

Ti = {m, c, Track_ID, hits, time, state, f eatures, classes} (2)

where m, c denote tracks’ mean (including location) and variance for KF prediction and up-
date; Track_ID, hits, time, and state denote tracking ID number, number of matches, plus 1
if successful, number of recent KF updates, tracks’ state including tentative, confirmed, and
deleted. f eatures and classes are similar to the corresponding detection.

The key three modules of DeepSORT in Figure 3 are described: (1) The data association
module is responsible for matching the KF’s predicted bounding boxes with detections on
the image. The association of detections to tracks is solved by the Hungarian algorithm,
using cascade and IOU matching. Firstly, the DeepSORT method uses cascade matching
including motion and appearance metrics to associate valid tracks. The second part uses
intersection over union (IoU) to associate unmatched and tentative tracks (recently created)
with unmatched detections.

(2) The KF estimation module uses a linear constant velocity model to represent each
track motion model. When a detection is associated with a tracked object (track), its BB is
used to update the track state. If no detection is associated with the track, then the track’s
state is only predicted.

(3) The track management module is used for the creation and deletion of tracks.
New tracks are created when detections do not overlap or overlap with tracks below a
minimum IoU threshold. The BB of the detection is used to initialize the KF state. If a new
track does not receive updates because it does not receive associations or if tracks stop
receiving associations, they are deleted to avoid maintaining a high number of tracks to
false positives or objects that left the scene.

3.4. Improved DeepSORT Method

In the group-housed pig tracking application, as the video frames grow, DeepSORT
will assign different ID to the same pig target, and the maximum ID value of the pig will
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significantly exceed the number of real pig targets. In addition, the pig ID are changed
wrongly in tracking; the main reason is that the detection results cannot match to the
original tracks when the target pigs are moving or overlapping due to occlusion, resulting
in new tracks generated from unmatched detection results. To overcome these problems, we
proposed an improved DeepSORT, which was used to limit the target object ID growth for
pig-specific scenarios and improve matching process and track generation in the tracking
process. Figure 4 shows the flow chart of tracking process of the improved DeepSORT.
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The improved DeepSORT includes two parts:
(1) Limiting the target object ID growth for pig-specific scenarios.
In Figure 4, the improvement 1 of limiting the target object ID growth contains two

subpoints. Firstly, the number of detections (n) in each pen obtained through the detector
was stored in a one-dimensional array with a length equal to 3, which was called the
target number array (TNA). If the video frame was the first frame, all the values of the
array were set to the number of detected targets (n1 = n2, n2 = n3) in the first frame. In
consecutive frame sequences, the number of detection targets in the current frame sequence
was inserted into the end of the array, and the number of targets stored in the head of the
array was deleted. The process of initialization and updating the target number array is
shown in Figure 5.
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Secondly, because the detection result had a certain probability of false and missed
detection, we created the tracks for the detections after the second round IOU match failure
according to the TNA. The process of a new track creation contained three steps:

(a) For frame T − 1, the TNA dynamically stored the total number of targets in the
detection result across consecutive frame sequence (Length = 3, in this study), and the ID
maximum value was determined by the rounded value of the average of the TNT. Suppose
the TNT was set to [15,15,15], then the ID maximum value was 15.

(b) For frame T, the detector detected a new target, and the ID of the unmatched
detection box was 16; the TNT was set to [15,15,16] according to the rule of Figure 5, and
then the ID maximum value was 15. If the current generated unmatched detection ID



Agriculture 2022, 12, 1907 9 of 20

value (16) exceeded the ID maximum value (15), it was considered a false positive and no
new track is created.

(c) For frame T + 1, the detector detected a new target in two consecutive frames; the
ID of the unmatched detection box was 16; the TNT was set to [15,16,16], and then the ID
maximum value was 16. If the current generated unmatched detection ID value (16) did
not exceed the maximum ID value (16), it was considered a false negative and a new track
was created.

(2) Adding the second round of IOU matching to associate the unmatched detections
and tracks.

Because the pigsty was a specific and closed scene, usually no pig target was added or
reduced. To improve the matching effect during the data association process, after the first
round of IOU matching was finished for initial matching, we added the second round of
IOU matching to deal with the unmatched detections. Figure 4 shows the improvement
2 for the process of the second round of IOU matching. Meanwhile, the second round of
IOU matching set the IOU to a larger value, and it was possible to achieve better results in
associating unmatched detections with tracks.

Finally, the tracking process of the improved DeepSORT in Figure 4 is listed as follows:
(1) The target number array was dynamically created according to the results of the

detection of video sequences.
(2) Cascade matching was used for the first matching of detections and confirmed

tracks during consecutive frame sequence, and the matching tracks were updated with KF
based on assigned detections.

(3) Unconfirmed tracks (before frame), unassigned tracks in cascade matching, and un-
matched detections were matched for the first round of IOU matching using the Hungarian
assignment algorithm.

(4) The unmatched tracks and unmatched detections produced after the first round of
IOU matching were used for the second round of IOU matching operations. For unmatched
detections, we used the rule of the improvement 1 to create the new tracks. For unassigned
tracks, we removed the tracks that met the conditions to be deleted.

3.5. The Evaluation Metrics

The following evaluation criteria were used to evaluate the results of multiobject
tracking model.

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 =
2× Precision× Recall

Precision + Recall
(3)

where True Positive (TP) is the number of pixels correctly predicted to the pig category;
False Positive (FP) is the number of pixels incorrectly predicted to the pig category; False
Negative (FN) is the number of pixels predicted to the pig category as the background, and
F1 is a comprehensive evaluation index of precision and recall rate.

Multi-object tracking accuracy (MOTA) measures the performance of tracking in
detecting objects and maintaining trajectories, and it was calculated as follows:

MOTA = 1− ∑ (FN + FP + IDs)
∑ GT

∈ (−∞, 1] (4)

where IDs is the ID switch, and GT is the number of all objects.
Multiple object tracking precision (MOTP) indicates the positioning accuracy of the

detector, and it was calculated as follows:

MOTP =
∑t,i dt,i

ct
(5)

where d is the average metric distance, and c denotes the number of successful matches for
the current frame.
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ID switch (IDs) refers to the total number of ID switches in the video. The lower the
value, the better the performance.

Mostly tracked (MT) denotes the number of successful tracking results that matched
the true value at least 80% of the time.

Identification precision (IDP), Identification recall (IDP), and Identification F1(IDF1)
denote ID precision, ID recall, and IDF1 score similar to the precision, recall, and F1 score
of the metrics in the detection model, and the main role of these metrics was to evaluate
the performance of ID switches. The higher their values, the better their performance.

4. Experimental Section
4.1. Experiments Configuration

In this study, the experiments of five types were conducted for behavioral track-ing
of group-housed pigs: (1) Object detection experiments using YOLOX-S or YOLO v5s
detectors; (2) The pig behavior tracking experiments using the improved and orig-inal
DeepSORT algorithm based on YOLOX-S; (3) The comparative tracking experi-ments of
improvedand original DeepSORT model based onYOLO v5s; (4) The com-parative tracking
results for day and night conditions between the improved and original DeepSORT based
on YOLOX-S and YOLO v5s models; (5) The compara-tive experiments between the
improved DeepSORT+YOLOX-S model and other two advanced MOT methods. The
YOLOX-S and YOLO v5s were running combined with improved DeepSORT using the
same configuration parameters.

For the detection model, the origin image’s resolution was 2688 × 1520 pixels, and
after the preprocessing process of the input part of the detection model, its resolution
was uniformly adjusted to 640 × 640 pixels to achieve faster processing speed. A total of
4620 images of group-housed pigs were used totally for training. The number of output
categories of the network was set to 4 (lying, eating, standing, and other). The initial
learning rate was set to 0.01, while the IoU, epoch, confidence, training batch, and batch
size were set to 0.45, 200, 0.4, 64, and 16, respectively. The optimizer was SGD.

For the ReID model, the dataset contained 137 different pigs with an average of
300 images per pig, randomly divided into training and testing sets according to a 7:3 ratio.

For the tracking model, the annotated images from 12 videos were used for training
and testing according to Section 2.2. Among them, 8 videos were used for training of the
DeepSORT model. The remaining four video sequences were used for the test, and they
were called Pig02, Pig03, Pig10, and Pig15, where the number of pigs in Pig02 was less
than 10 and Pig02 was obtained at day. The number of pigs in Pig03, Pig10, and Pig15
was more than 10, where Pig10 and Pig15 were obtained at night and Pig03 was obtained
at day. Table 1 shows the detailed information on the training and test dataset in the
tracking model.

4.2. Results and Analysis of Pig Detection and Behavior Classification

To judge the model training process and the effectiveness of object detection in these
experiments, precision and recall, P–R curve, mAP@0.5, and mAP@0.5:0.95 [35] of the test
dataset were used as the main parameters to judge the performance of detection model.

Figure 6 shows the P–R curves of the four classes of lying, standing, eating, and other
and their average precision values (mAP) at IoU with 0.5 using five different colored curves
for the YOLO v5s (Figure 6a) and YOLOX-S (Figure 6b) models. The area of the P–R curve
of YOLO v5s was larger than that of YOLOX-S, which indicated that the YOLO v5s model
had better performance than the YOLOX-S model. Meanwhile, both models had a high
precision and recall for all four categories and a low false detection rate, so the two models
could be used as the detection models for all animal behaviors.
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The experimental results of the different methods on object detection are shown in
Table 2. The number of test images was 660 in Table 2, and the total number of labeled
pigs was 8047, of which the percentage of lying, standing, eating, and other were 56.77%
(4568/8047), 22.52% (1812/8047), 15.63% (1258/8047), and 5.08% (409/8047), respectively.
YOLO v5s and YOLOX-S both achieved a precision rate of over 97% and a recall rate of
over 98% in all categories, with a mAP (IoU = 0.5) rate of over 98.4%, while the IoU was set
at 0.5, and there was an average mAP@0.5:0.95 rate of over 87%, while the mAP@0.5:0.95
rate was the average value of the APs with the IoU thresholds from 0.5 to 0.95 with an
interval of 0.05. The average inference time of YOLOX-S and YOLO v5s was 0.012s and
0.017s, respectively. According to experimental results, we found that YOLO v5s achieved
a better performance in precision, mAP@0.5, and mAP@0.5:0.95 compared to YOLOX-S.

Table 2. Experimental results of YOLOX-S and YOLO v5s models.

Method Class Labels Precision
(%)

Recall
(%)

F1
(%) mAP@0.5 mAP@0.5:0.95

YOLO v5s

lying 4568 100 98.1 99.0 98.9 94.9
standing 1812 99.6 99.2 99.4 99.7 87.4

eating 1258 99.7 99.5 99.6 99.8 86.9
other 409 98.2 99.3 98.7 99.5 88.1

all 8047 99.4 99.0 99.2 99.5 89.3

YOLOX-S

lying 4568 98.0 98.6 98.3 98.0 94.0
standing 1812 99.0 99.7 99.3 99.0 85.0

eating 1258 98.8 99.8 99.3 98.8 83.1
other 409 97.9 98.8 98.3 97.9 85.8

all 8047 98.4 99.2 98.8 98.4 87.0

Figure 7 shows the detection performance of different algorithms on the same data.
Figure 2a,b show the GT (Ground Truth) information for all behavior classes of videos 09#
and 10#. The left and right columns of Figure 7 are the detected results under day and
night illustrations. Both models detected all pigs under complex scenes compared with the
information of the GT.
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4.3. The Tracking Results of Improved and Original DeepSORT Based on YOLOX-S

Based on the eight metrics of MOT (Section 3.5), the tracking results of the improved
and original DeepSORT based on YOLOX-S are listed in Table 3. In Table 3, the GT denoted
the number of pigs in each pen, and the GT and MT in all test videos were equal meaning
that there was no lost target during video tracking. The IDF1, IDP, IDR, and MOTA values
of the original DeepSORT were 88.9%, 88.5%,96.8%, and 95.1%, respectively. Meanwhile,
the improved DeepSORT based on YOLOX-S obtained MOTA of 98.6%, MOTP of 95.5%,
IDP of 96.2%, IDR of 95.3%, and IDF1 of 95.7%. Compared with the original DeepSORT
(Table 3, the last row), the values of MOTA, MOTP, IDP, IDR, and IDF1 of the improved
DeepSORT increased by 1.8%, 0.4%, 7.7%, 7%, and 6.8%, respectively. In addition, the
FP and IDs values of the improved algorithms were only 21 and 15, while they reached
266 and 75 using the original DeepSORT algorithm, which further demonstrated that the
improved DeepSORT algorithm effectively reduced the frequent error switches of pig ID
and improved the accuracy of the tracker.

Table 3. Tracking results of improved and original DeepSORT based on YOLOX-S.

Method Name GT MT↑ FP↓ IDs↓ IDF1↑ IDP↑ IDR↑ MOTA↑ MOTP↑

YOLOX-S + Improved
DeepSORT

Pig02 7 7 0 0 99.7% 100% 99.3% 99.3% 97.3%
Pig03 15 15 21 13 88.7% 89.5% 88.0% 97.1% 93.8%
Pig10 14 14 0 2 96.7% 97.1% 96.3% 99.1% 96.1%
Pig15 16 16 0 0 99.7% 100% 99.3% 99.3% 95.9%

All 52 52 21 15 95.7% 96.2% 95.3% 98.6% 95.5%

YOLOX-S + Original
DeepSORT

Pig02 7 7 2 1 99.1% 99.4% 98.8% 99.2% 97.3%
Pig03 15 15 222 38 80.0% 78.7% 81.3% 92.6% 92.5%
Pig10 14 14 27 27 90.6% 90.6% 90.5% 98.0% 96.0%
Pig15 16 16 15 9 91.4% 91.5% 91.2% 98.8% 95.9%

All 52 52 266 75 88.9% 88.5% 89.2% 96.8% 95.1%

Figures 8 and 9 show the tracking comparison results for Pig03 and Pig15 using the
original and improved DeepSORT based on YOLOX-S. In Figure 8c,d, the maximum ID
value remained at 17, while it reached 25 and 34 using the original DeepSORT in Figure 8a,b.
The ID value of 15 (shown in Figure 8c,d) was stabilized at 15 from frame 50 to frame 150,
and no further changes were produced using the improved DeepSORT. The experimental
results demonstrate that the improved DeepSORT outperformed DeepSORT in the ID
switches under heavy pig overlapping conditions.
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Figure 8. Tracking results of original and improved DeepSORT based on YOLOX-S model of Pig03.
(a) Frame 50, original DeepSORT; (b) Frame 150, original DeepSORT; (c) Frame 50, improved Deep-
SORT; and (d) Frame 150, improved DeepSORT.
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Figure 9. Tracking results of original and improved DeepSORT based on YOLOX-S model of Pig15.
(a) Frame 50, original DeepSORT; (b) Frame 150, original DeepSORT; (c) Frame 50, improved Deep-
SORT; and (d) Frame 150, improved DeepSORT.

From Figure 9a,c, in frame 50, the improved DeepSORT and DeepSORT achieved the
same tracking results with the same maximum ID value of 16. However, in frame 150, the
maximum ID value of DeepSORT reached 17 (as shown in Figure 9b), while that of the
improved DeepSORT remained at 16 in Figure 9d.

4.4. The Tracking Results of Improved and Original DeepSORT Based on YOLOXv5s

This improved algorithm achieved significant tracking performance gains not only
using the YOLOX-S detector, but also using the YOLO v5s detector. Table 4 shows the
tracking results of the improved DeepSORT algorithm based on the YOLO v5s model. The
IDF1, IDP, IDRm, and MOTA values of the improved algorithm were 94.6%, 96.1%,93.2%,
and 96%, respectively, while using the original DeepSORT algorithm, the values of IDF1,
IDP, IDR, and MOTA were 80.8%, 81.0%, 80.5%, and 94.6%, respectively. Moreover, the
FP and IDs values of the improved algorithms were only 73 and 12, while they reached
319 and 111 using the original DeepSORT, which further demonstrated that the improved
DeepSORT algorithm effectively improved the frequent error switches of ID and the
accuracy of the tracker.
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Table 4. Tracking results of improved and original DeepSORT based on YOLO v5s.

Method Name GT MT↑ FP↓ IDs↓ IDF1↑ IDP↑ IDR↑ MOTA↑ MOTP↑

YOLO v5s + Improved
DeepSORT

Pig02 7 7 0 0 99.7% 100% 99.3% 99.3% 97.3%
Pig03 15 13 71 7 84.6% 87.8% 81.6% 89.6% 90.0%
Pig10 14 14 2 5 96.9% 97.9% 95.9% 97.7% 95.9%
Pig15 16 16 0 0 99.6% 100% 99.1% 99.1% 96.6%

All 52 50 73 12 94.6% 96.1% 93.2% 96.0% 94.7%

YOLO v5s + Original
DeepSORT

Pig02 7 7 6 4 91.8% 92.0% 91.6% 98.9% 97.3%
Pig03 15 14 178 38 79.1% 80.4% 77.7% 87.9% 91.9%
Pig10 14 14 49 40 80.1% 79.9% 80.2% 97.0% 96.2%
Pig15 16 16 86 29 78.2% 77.8% 78.6% 96.9% 96.7%

All 52 51 319 111 80.8% 81.0% 80.5% 94.6% 95.3%

Figure 10 shows the tracking comparison results for video Pig03 using the improved
and original DeepSORT based on the YOLO v5s detector. The number of pigs in the video
Pig03 was 15. At frames 50, 100, and 150, DeepSORT (Figure 10a, left column) achieved
the maximum ID values of 19, 25, and 33, respectively, while the improved DeepSORT
(Figure 10b, right column) obtained the maximum ID values of 14, 15, and 15. So, we found
that the improved DeepSORT avoided the error switches of ID values and maintained
stable ID values compared to DeepSORT.
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4.5. The Comparative Tracking Results for Day and Night Conditions

Figures 11 and 12 show the tracking results for the day and night conditions using the
improved and original DeepSORT based on YOLOX-S and YOLO v5s models, respectively.
For the day, Pig02 was selected for comparison. In Figure 11a–c, the maximum ID remained
7 at frames 50, 100, and 150 of Pig02, and the ID value did not switch as in Figure 11b,c
when the pigs walked.
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Figure 12. Tracking results of Pig 10 using improved and original DeepSORT based on YOLO v5s
model for night condition. (a–c) show the results of improved DeepSORT, and (d–f) show the results
of original DeepSORT. (a) Improved model, frame 50; (b) Improved model, frame 100; (c) Improved
model, frame 150; (d) Frame 50, Pig10; (e) Frame 100, Pig10; and (f) Frame 150, Pig10.

For night, Pig 10 was selected for comparison. In Figure 12a–c, ID8 (standing) of
Pig10 still kept its ID value during walking, unlike in Figure 12f where many ID exchanges
occurred when the pigs were crowded together at frame 150, and ID1 (lying) in Pig 10 did
not change from frame 50 to frame 150, while the same pig (ID1) in Figure 12d grew to ID18
(lying) at frame 100 to frame 150 as shown in Figure 12e, f. In the top left corner of Figure 12,
the unshown behavior and IDs of the three pigs of Pig 10 were lie2, lie3, and lie5. The
tracking results show that the improved DeepSORT model achieved better performance
than the original DeepSORT model.

4.6. Results Comparison with Other Advanced MOT Methods

As the YOLOX-S + Improved DeepSORT model (Table 3) achieved better performance
than the YOLO v5s + Improved DeepSORT model (Table 4) during pig tracking, we used
the improved YOLOX-S + Improved DeepSORT model to conduct comparison experiments
with the two advanced MOT methods including JDE and TrasnTrack on the same dataset.
The JDE [27] proposed by Wang et al. is an MOT system that allows target detection and
appearance embedding to be learned in a single-shot deep network, which is the first
(near) real-time MOT system, with a running speed of 22 to 40 FPS depending on the input
resolution. TrasnTrack [28] builds up a novel joint detection-and-tracking paradigm by
accomplishing object detection and object association in a single shot, which leverages the
transformer architecture.
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Table 5 shows the experimental results of the comparison by using our approach and
the other two methods. Our approach achieved the best performance on the eight metrics of
MOT (Section 3.5). The IDF1, IDP, IDR, IDs, and MOTA values of our approach were 95.7%,
96.2%,95.3%,15, and 98.6%, respectively. Compared with the JDE method, our approach
improved by 10.6% and 18% in MOTA and IDF1, respectively, and decreased by 150 in the
IDs value. Compare with TransTrack, the values on the MOTA and IDF1 metrics of our
approach were also significantly improved by 7.1% and 14.3%, respectively. In addition,
the FP and IDs values of TransTrack were 439 and 142 higher than that of our approach.
These comparison results further demonstrate that our approach can effectively reduce the
frequent error switches of pig ID and improved the tracking performance.

Table 5. Experimental results of the comparison with the other two methods.

Method Name GT MT↑ FP↓ IDs↓ IDF1↑ IDP↑ IDR↑ MOTA↑ MOTP↑

JDE

Pig02 7 6 21 14 77.0% 78.2% 75.9% 97.4% 99.2%
Pig03 15 14 41 10 90.4% 93.9% 87.1% 90.7% 80.1%
Pig10 14 10 79 67 70.5% 75.4% 66.2% 82.5% 87.1%
Pig15 16 14 136 74 72.2% 74.3% 70.2% 87.3% 84.6%

All 52 44 277 165 77.7% 80.8% 74.8% 88.0% 88.4%

TransTrack

Pig02 7 7 12 2 91.9% 92.5% 91.3% 97.4% 91.5%
Pig03 15 14 55 16 94.4% 94.9% 94.0% 96.3% 93.1%
Pig10 14 13 135 58 67.3% 68.1% 68.1% 89.9% 89.2%
Pig15 16 14 237 66 76.7% 77.8% 76.7% 85.9% 82.4%

All 52 48 439 142 81.4% 82.2% 80.6% 91.5% 88.6%

YOLOX-S + Improved
DeepSORT (our ap-proach)

Pig02 7 7 0 0 99.7% 100% 99.3% 99.3% 97.3%
Pig03 15 15 21 13 88.7% 89.5% 88.0% 97.1% 93.8%
Pig10 14 14 0 2 96.7% 97.1% 96.3% 99.1% 96.1%
Pig15 16 16 0 0 99.7% 100% 99.3% 99.3% 95.9%

All 52 52 21 15 95.7% 96.2% 95.3% 98.6% 95.5%

5. Discussion

In real farming scenarios, the identity of pigs is hard to track due to dense overlapping
and occlusion, which still make it challenging to automatically track the behavior of
group-housed pigs using computer vision techniques. To improve the problem, this study
proposed an improved DeepSORT algorithm of behavior tracking based on the YOLOX-S
and YOLO v5s detectors.

The improved DeepSORT contained two innovation points. An innovative point
was limiting the target object ID growth. For the specific group-housed pig farms, where
the number of pigs in each pen did not change, we proposed improving the trajectory
processing to create tracks. Pig targets in each pen were detected, and the total number of
targets in the detection result was stored dynamically, and then the numbers of detected
targets in the last three consecutive frames were saved as the target number array and
used for improving the trajectory management. The created track ID numbers did not
exceed the maximum number. Another innovative point was adding the second round
of IOU matching to associate the unmatched detections and tracks. Thus, the improved
DeepSORT algorithm avoided the error switches of every pig ID in each pen and improved
the accuracy of the tracker. In the tracking process, the pig behavior category was added to
the track of target tracking, which accomplished the tracking of the pig behavior category.
In addition, it could automatically count the different behavior times of each pig every day
in each pen and was used to identify whether the pig was abnormal in health.

In terms of behavior tracking, Alameer et al. (2020) adopted the Faster R-CNN and
YOLOv2 as the detectors and DeepSORT as the tracker to overcome illumination changes
and the occlusions of pigs in the commercial environment. In addition, a deep-learning-
based pig posture and locomotion activity detection and DeepSORT tracking algorithms
were designed to measure pig behavior changes in an experimental pig barn at different



Agriculture 2022, 12, 1907 17 of 20

greenhouse gas (GHG) levels [18]. These approaches were good at detection and tracking
behaviors. However, as the video frames grew and there were error pigs IDs in tracking
due to dense overlapping and occlusion, so the DeepSORT algorithm could hardly be used
to track different pig behaviors over a long period. Our proposed improved DeepSORT
could avoid the error changes of ID, which is suitable for monitoring the different behaviors
of pigs in long-time tracking.

Moreover, the dataset [16] for tracking was specifically annotated. Instead of anno-
tating pig postures in each frame, unique identification numbers were given to each pig
across the frames to avoid error ID switches. The annotated dataset was not suitable for
target detection and tracking by the public tracking frameworks. However, our dataset
annotation of group-housed pigs was established similarly to MOT20 using DarkLabel
software, which can be used for the development of many advanced tracking algorithms
for pig behavior tracking.

Our proposed method still has some limitations. Compared with JDE methods [27],
the improved DeepSORT is still a TBD paradigm, which runs slowly and cannot achieve
real-time performance; Furthermore, in long-time tracking, detections with a low score in
the detector are removed, which will lead to the erroneous deletion of some tracks. The
reason is that low confidence detection boxes sometimes indicate the existence of objects,
e.g., the occluded objects. Filtering out these objects causes irreversible errors for MOT and
brings non-negligible missing detection and fragmented trajectories.

With significant improvements in the performance of target detectors based on deep
learning, YOLOX-S, or YOLO v5s, the combined tracker achieved advanced detection
and tracking performance for pig behavior tracking in complex scenes. The improved
tracking algorithm significantly reduced IDs errors and achieved stable individual pig
tracking according to real farming scenarios. Thus, the proposed algorithm is an effective
solution for automatically detecting and tracking multiple pigs, and it will qualify the
current application for tracking pig behavior quickly and accurately.

6. Conclusions and Future Directions

This paper proposed an improved DeepSORT algorithm for automated behavior
recognition and tracking of group-housed pigs based on the YOLOX-S or YOLO v5s
detectors. The DeepSORT was improved to reduce the error pig IDs significantly in
tracking due to dense overlapping and occlusion and enhance the quality of tracking for
pig-specific scenarios. In the detection experiments, the YOLO v5s network model was
superior to the YOLOX-S network, Compared with YOLOX-S, the detection mAP@0.50:0.95
of YOLO v5s increased by 2.3%. However, in the tracking experiments, the YOLOX-S
+ DeepSORT model outperformed the YOLO v5s + DeepSORT model. Compared with
YOLO v5s + DeepSORT, its MOTA, IDP, IDR, and IDF1 increased by 2.2%, 7.5%, 8.7%,
and 8.1%, respectively, and the average detection and tracking time decreased by 0.005 s.
Moreover, using the improved DeepSORT based on the YOLOX-S or YOLO v5s detectors,
we found that the values of IDF1, IDP, and IDR achieved a very significant improvement,
and the error switches of pig ID were effectively avoided for obtaining stable tracking
of individual pigs. So, the improved behavior tracking algorithm can meet the needs in
the actual farming environment and provide technical support for the contactless and
automated monitoring of pigs, which has good engineering application prospects for the
development of smart pig management. Further work consists mainly of the following
two points:

(1) The daily behavior of each pig per pen can be automatically obtained by using an
improved tracking algorithm, which can be used to analyze and find abnormal pig behavior.
Therefore, we will conduct pig behavior analyses that assist the manual observations and
improve pig farm automation management.

(2) Long-time tracking requires more resources and time, which is not sufficient
for practical application. In the future, to achieve better speeds, we will utilize smaller
detectors and the JDE trackers to complete pig behavior tracking. Moreover, to reduce
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storage capacities, we will probably use lightweight real-time object detectors, such as
YOLOX-Tiny and fast-tracking methods to implement pig behavior tracking.

(3) MOT technologies have a wide range of applications, including intelligent video
surveillance, military, automated driving, virtual reality, medical, health, and other fields.
For example, in the auto drive system, the MOT algorithm tracks the movement of moving
vehicles and pedestrians and predicts their future position, speed, and other information
to accomplish automated driving. In the field of virtual reality, MOT technology uses the
information, including human actions and continuous tracks captured by the camera, to
achieve human–computer interaction. In the medical and health fields, with the help of
medical auxiliary technologies, such as nuclear magnetic resonance and drug-targeting
technology, the patient’s lesion location is tracked to observe whether the lesion location
has spread by using advanced MOT technology.

Further improvements will be considered by exploring a more effective detection
model, such as YOLOv7 for detecting objects with fewer misses and less error detection due
to influences related to occlusion, small target, and illumination changes. The strategies to
mitigate the detection errors of detectors can improve the tracking performance. At present,
to make the MOT method run in real time, a lot of work on designing the lightweight
network structure of MOT system has been performed for embedded applications. Fur-
thermore, designing and using efficient data association algorithm are also an effective
strategy to improve target tracking in single cameras and multiple cameras. For example,
the approaches of multilevel dynamic matching are designed for similarity matching and
data association, which can effectively reduce the impact of the unstable factors of the
detector on the tracker.
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