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Abstract: Parthenium weed (Parthenium hysterophorus L. (Asteraceae)), native to the Americas, is in 

the top 100 most invasive plant species in the world. In Australia, it is an annual weed (herb/shrub) 

of national significance, especially in the state of Queensland where it has infested both agricultural 

and conservation lands, including riparian corridors. Effective control strategies for this weed 

(pasture management, biological control, and herbicide usage) require populations to be detected 

and mapped. However, the mapping is made difficult due to varying nature of the infested 

landscapes (e.g., uneven terrain). This paper proposes a novel method to detect and map 

parthenium populations in simulated pastoral environments using Red-Green-Blue (RGB) and/or 

hyperspectral imagery aided by artificial intelligence. Two datasets were collected in a control 

environment using a series of parthenium and naturally co-occurring, non-parthenium (monocot) 

plants. RGB images were processed with a YOLOv4 Convolutional Neural Network (CNN) 

implementation, achieving an overall accuracy of 95% for detection, and 86% for classification of 

flowering and non-flowering stages of the weed. An XGBoost classifier was used for the pixel 

classification of the hyperspectral dataset—achieving a classification accuracy of 99% for each 

parthenium weed growth stage class; all materials received a discernible colour mask. When 

parthenium and non-parthenium plants were artificially combined in various permutations, the 

pixel classification accuracy was 99% for each parthenium and non-parthenium class, again with all 

materials receiving an accurate and discernible colour mask. Performance metrics indicate that our 

proposed processing pipeline can be used in the preliminary design of parthenium weed detection 

strategies, and can be extended for automated processing of collected RGB and hyperspectral 

airborne unmanned aerial vehicle (UAV) data. The findings also demonstrate the potential for 

images collected in a controlled, glasshouse environment to be used in the preliminary design of 

invasive weed detection strategies in the field. 
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1. Introduction 

Biological invasion is a global environmental change phenomenon, often leading to 

disruptions of ecosystem goods and services. Biological invasion begins with the 

introduction of organisms from their native range into a new environment followed by 

periods of sequential adjustments of colonisation/extinction/recolonisation, establishment 

and naturalisation [1–5]. Where conditions are favourable the exotic species will increase 

dramatically in abundance and geographical distribution to become invaders with 

significant impact on nature conservation and agriculture. In Australia, like most regions 
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around the world ~30,000 species have been introduced of which ~10% have become 

invaders [2,5]. One of such invaders, with its origin in the Americas, is the annual plant, 

(Parthenium hysterophorus L.) (henceforth referred to as parthenium weed) 

In Australia, parthenium weed grows as an annual, herbaceous/shrubby invasive 

species plant of national significance [1,2]. Parthenium weed has a deep-penetrating 

taproot system and an erect shoot system [1]. Young plants form a rosette of leaves close 

to the soil surface. Mature stems are greenish and longitudinally grooved, covered in 

small stiff hairs (hirsute), and become much-branched at maturity. The alternately 

arranged leaves are simple with stalks (petioles) up to 2 cm long and form a basal rosette 

during the early stages of growth. The lower leaves are relatively large (3–30 cm long and 

2–12 cm wide) and are deeply divided (bi-pinnatifid or bi-pinnatisect) [3]. Leaves on the 

upper branches decrease in size and are also less divided than the lower leaves. As 

parthenium weed matures, the plant develops many branches on its upper half, and may 

eventually grow up to two metres. With sufficient rainfall and warm temperature, 

parthenium weed has the ability to germinate and establish at any time of the year. 

Flowering usually commences 4–6 weeks after germination and soil moisture seems to be 

the major contributing factor to flowering [3]. Parthenium weed is a prolific seed producer 

and a fully grown plant can produce up to 157,000 seeds in its lifetime, though the majority 

of plants produce less than 4000 seeds [3]. Seeds persist and remain viable in the soil for 

reasonably long periods. The prolonged longevity of seeds of parthenium weed in the soil, 

coupled with allelopathy effect of varying growth stages of the plant on native plants, 

efficient dispersal via water (especially during flood) contribute to its spread and hence 

high invasiveness [2,4,5]. Parthenium weed has an economic impact on Australia’s 

agriculture and landscape of ~A$129 million a year [1]. This includes control costs and 

production losses to the agricultural sector. Control options such as pasture management, 

use of biological control agents, and herbicides exist for managing the weed [6]. However, 

many of these tactics are limited by their potential environmental impact and the sheer 

scale of the infestations [1,7]. Blanket herbicide spraying has been shown to adversely 

affect non-target plant species, and can reduce soil fertility; such chemicals also have the 

potential to migrate into the surrounding environment, impacting animal species and 

disrupting food chains [7]. This method of control is also economically unfeasible. Site-

specific weed management (SSWM) options using Unmanned Aerial Vehicle (UAV) 

imagery for weed detection and control have been shown to reduce herbicide use by 14 to 

39.2% in Maize fields when compared to conventional uniform blanket spraying [8]. In 

this example, an accurate weed map was necessary for efficient SSWM which highlights 

the importance of an accurate and robust detection method. Autonomous detection 

methods using red, green, blue (RGB), and hyperspectral imagery (HSI) for weed 

detection have shown very promising results in both crop and pastoral environments [9-

13]. 

Attaining significant accuracy in automated weed recognition is challenging, but is 

gaining wide currency [9–12]. Some work has been done and reported on automated 

parthenium weed identification and mapping in natural and agricultural settings. In 

South Africa, at the landscape level, the spatial and temporal distribution of parthenium 

weed in response to rainfall using multi-year SPOT (Satellite Pour l’Observation de la 

Terre) data and random forest classification algorithm (one of several machine learning 

approaches) was explored with the general finding that the satellite images should be 

combined with UAV to provide higher spatial resolution data for improved detection 

accuracy [10]. The use and importance of TPOT (Tree-Based Pipeline Optimization Tool) 

and other Convolutional Neural Network (CNN) as effective machine learning tools for 

selecting and fine-tuning algorithms for parthenium weed discrimination and monitoring 

in pastoral field has also been demonstrated [9]. Similarly, the use of hyperspectral data 

for identification of optimal wavelength that are sensitive to discrimination of parthenium 

weed have been explored [9,10]. In most of the above cited cases, overall identification 

and classification accuracies varied between 68–86%, implying that approaches that may 

https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/glossary.htm#hirsute
https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/glossary.htm#alternately%20arranged
https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/glossary.htm#alternately%20arranged
https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/glossary.htm#petioles
https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/glossary.htm#basal
https://keys.lucidcentral.org/keys/v3/eafrinet/weeds/key/weeds/Media/Html/glossary.htm#rosette
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yield higher classification accuracies are still necessary [see also 9] for parthenium weed. 

In addition, there are no reported studies that have attempted to use machine learning to 

identify and classify the discernable growth stages (seedling, rosette, and reproductive 

adults) of parthenium weed. 

RGB imagery, captured using a digital camera, imitates the way the human eye 

perceives colour [14]. A typical digital single-lens reflex (DSLR) camera is equipped with 

a Bayer filter system consisting of a mosaic of red, green, and blue filters embedded on 

the image sensor [15]. Spatial resolution is another important factor for RGB imagery, 

particularly for object identification, and refers to the area where individual 

measurements can be made [11]. This is measured by ground sampling distance (GSD) 

which is the area in the real reference plane that is covered by a single pixel in the image. 

By combining an image sensor with a high number of pixels and a small scene size (often 

in millimeters), several features of interest can be easily discerned [16]. 

Object detection is the procedure of determining the instance of the class to which 

the object belongs and estimating the location of the object by outputting the bounding 

box around the object [17]. This means an object detector needs to distinguish objects of 

certain target classes from backgrounds in the image with precise localization and correct 

categorical label prediction to each object instance [18]. Convolutional Neural Networks 

(CNNs) have the capacity to learn very complex functions from data with minimal 

domain knowledge. Combined with large-scale labeled data and graphic processing units 

(GPUs) with high computational capacity, CNNs have been particularly successful for 

object detection [19]. 

Hyperspectral imaging is an analytical technique based on the study of the chemical 

and physical behaviour of the reflected or scattered light coming from a specific surface 

[20]. This type of imaging goes beyond the conventional image processing and 

spectroscopy because of its capability to obtain spatially resolved spectra from an object 

[21]. 

The objective of image classification is to recognize and characterize the classes, as a 

unique colour or gray level, which represents some features. These dissimilar colour 

classes can also be used to show the spectral characteristics of every unique pixel within 

the class [22]. This analysis obtains a colour map that distinguishes materials with 

different spectral profiles. 

In this study, deep-learning algorithms and decision-tree-based protocols are applied 

to the challenges of automated detection and growth stage classification of invasive alien 

plants, in our case, to parthenium weed. In this context, we explore the viability of RGB 

and HSI data of parthenium weed captured in a control environment to aid in its field 

mapping procedure. Thus, our aim is to provide a platform for more efficient and accurate 

detection and mapping of parthenium weed using its captured images (in various growth 

stages: seedlings, rosettes, and reproductive adults) and subjected them to artificial 

intelligence (AI) algorithms. If the trial is successful, it will lead potentially to the 

optimisation of management protocols as the weed control cost can be minimised and 

efficacy improved simultaneously. The findings also have application potential in more 

complicated pasture and cropping environments where parthenium weed (and other 

invasive alien plants) are causing significant problems. 

2. Materials and Methods 

2.1. Preamble 

It is hypothesized that deep-learning algorithm of Yolov4 (You Only Look Once 

version 4) and decision-tree machine learning of XGBoost (Extreme Gradient Boosting 

version 1.3.3) protocols when applied to their respective data types (RBG and HIS, 

respectively) will allow for highly accurate detection and growth stage classification of 

parthenium weed in a controlled environment, and that if successful each technique has 

the potential to extend to farm-scale and landscape scenarios. In this context, parthenium 
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weed of different growth stages and non-parthenium plants (grasses) were imaged using 

RGB and HSI cameras. Non-parthenium plants that occur naturally with the weed in the 

field, including mature kangaroo grass (Themeda triandra Forssk.), and desert bluegrass 

(Bothriochloa ewartiana (Domin) C.E. Hubb.) were either interspersed with weed and 

photographed (RGB case) or photographed individually and interspersed digitally (HSI 

case). Plants were interspersed in this way to simulate how these images would look if 

captured in the field. There were 665 unique RGB images captured in this process, and 

these images were labeled with a class (a unique designation for a group of objects) for 

parthenium plants and a class for parthenium flowers. The combined HSI image was 

generated and digitally combined to create a combined image, and this was labeled with 

six classes (so as to separate unique materials)—three for the parthenium weed growth 

stages of seedling, rosette, and flowering adult, one for the non-parthenium plants 

(grasses), and two classes for the soil in the pots and concrete ground the pots sat on. 

Respective datasets were then used to train a Yolov4 detector and an XGBoost classifier (a 

decision-tree-based ensemble machine learning algorithm that uses a gradient boosting 

framework). The procedures for the capture and analysis of the RBG and HSI datasets are 

given below. 

2.2. RGB Dataset Preparation 

The RGB dataset was created with the aim of simulating what is obtainable in a 

pastoral environment as closely as possible. Plants were grown from seeds inside a secure 

temperature-controlled (27/22 ± 2 °C, day/night) glasshouse at the Ecosciences Precinct, 

Dutton Park (ESP), Brisbane, Australia by Biosecurity Queensland (BQ) staff of the 

Queensland Department of Agriculture and Fisheries. The plants included parthenium 

weed at three distinct growth stages, and control plants consisting of several growth 

stages of kangaroo grass (Themeda triandra), and desert bluegrass (Bothriochloa ewartiana). 

The parthenium weed growth stages used were seedling (<1-month-old), rosette (1–2 

months old), and flowering (2–4 months old; see Figure 1). Seedlings are parthenium weed 

plants that had not developed the rosette structure, rosette included established 

parthenium weeds without flowers, and flowering plants included established 

reproductive parthenium weeds with flowers and/or seeds. In total 8 seedling plants, 6 

rosette plants, and 12 flowering plants made up the dataset as well as the 12 individual 

plants of the grass species mentioned above. 
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(a) (b) (c) 

  
(d) (e) 

Figure 1. Aerial photos of the three parthenium weed growth stages of (a) seedling, (b) rosette, (c) 

flowering adult plant, and co-occurring monocot plants of (d) desert bluegrass (Bothriochloa 

ewartiana) and (e) kangaroo grass (Themeda triandra). 

On 4 March 2021, a 1.5 m × 2.25 m area was set up with direct sun exposure outside 

the glass-house area of ESP, Dutton Park, Brisbane, Australia. Images were captured using 

a Nikon D2 with a 24–70 mm lens and a focal length of 70 mm. Seedling and rosette plants 

were imaged first, beginning with no plants in the arrangement and gradually increasing 

up to five plants per growth stage for imaging. This step was then repeated, first with two 

non-parthenium or control plants (grasses) up to five control plants. This process was then 

repeated for flowering plants and finally for a combination of seedlings, rosettes, and 

flowering plants of the parthenium weed. After these structured arrangements were 

captured, more complicated arrangements with higher numbers of parthenium weeds of 

each growth stage and higher numbers of non-parthenium plants were imaged. These 

complicated arrangements also included high plant occlusion to mimic overlapping 

which is common in pastoral environments. The resulting dataset contained 665 unique 

images with parthenium weed and non-parthenium plants in unique arrangements. On 

18 March the same process as above was used again to capture another RGB dataset that 

is completely unique to the training and validation dataset. This resulted in a unique test 

dataset of 94 images. 

2.3. RGB Image Processing 

Processing of the RGB images first required the images to be accurately labeled. 

Labeling was applied to only parthenium weeds with control plants remaining unlabeled. 

The label convention used was one that grouped flowering and non-flowering 

parthenium weeds into a single class and a second class for individual flowers. Plants of 

each growth stage were combined in this way due to their visually similar characteristics 

while the flower class was used to detect the presence of flowers which was then used to 

classify flowering and non-flowering plants. Parthenium seedlings remained unlabeled 

due to their visually indistinct features and very small size (see Figure 1). 

Once labeled, the images were tiled or broken up into smaller images of 1024 × 1024 

pixels so they could be used to train a Yolov4 detection network. This size was chosen to 

reduce the effect of down-sampling done by the detection network whilst ensuring the 

largest objects could still be represented in a single image, as shown in Figure 2. 
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Consecutive rows and columns, seen below (Figure 2b), also have a 50% overlap. This was 

done so that each plant would be more likely to fall towards the center of the tile and so 

entire plants could be represented with a single bounding box. This also allowed for the 

removal of bounding boxes that fall on small fractions of a plant as a result of the tiling 

process. 

 
(a) 

 

  

  

  

 
(b) 

Figure 2. Example of a raw image captured (a), and the resulting 1024 × 1024 tiles with 50% overlap 

between consecutive rows and columns (b). 

After tiling each image, all tiles were checked to remove any inaccurate labels created 

during the tiling process. Augmentation- a technique of alternating the existing data to 

create more, unique data for the model training process- was implemented as it provides 
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two benefits in the training stage: (1) it reduces overfitting probabilities by increasing the 

variability of the features used to make detections; and (2) it increases the size of the 

training dataset and hence the number of unique objects labeled. Geometric and 

radiometric augmentations (techniques that can be used to artificially expand the size of 

a training dataset by creating modified versions of images in the dataset) were applied 

randomly within predetermined bounds so that all augmented images do not 

misrepresent how the parthenium weed plants naturally occurs. The augmentation 

parameters and examples can be seen in Table 1 and Figure 3, respectively. The tiling 

process resulted in a dataset of 27,230 images. This set of images was randomly split using 

a ratio of 8:2 resulting in a training set of 21,784 images and a validation set of 5446 images. 

The training set of 21,784 images was then augmented which doubled the size of the 

training set to 43,568 images. This gives a training to validation ratio of 0.875:0.125, 

respectively. The second set of independent RBG images taken two weeks after the initial 

image capture (see above, i.e., RBG data preparation section) served as the test dataset (a 

total of 4230 once the images were tiled) and were used to benchmark the performance of 

the trained detector using images the detector has never seen before. 

Table 1. A list of image augmentations applied to the dataset and their descriptions. 

Augmentation Description 

Brightness Changes in how reflective each pixel appears. 

Contrast Changes in brightness between pixels. 

Saturation Changes in intensity and purity of a pixel. 

Hue Changes in the actual colour of a pixel. 

Rotation Changes in the angle of the image. 

Reflection 
Reflection of one half of the image to the other half about the 

horizontal or vertical axis. 

Scale Changes in image size. 

Shear Slants the shape of the image either in the x or y direction 

Translation Moves the image in the x and/or y direction. 
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Figure 3. Examples of augmented images with all augmentation types applied randomly within 

preset bounds. 

2.4. Yolov4 Modelling 

To test the performance of current state-of-the-art (SOTA) detectors, several 

benchmark datasets have been created. Of these, the Microsoft common objects in context 

(MS COCO) dataset was designed for the detection and segmentation of objects occurring 

in their natural context [23]. Yolov4 is a single-stage detector that boasts a mean average 

precision (mAP) of 65.7% at a detection speed of ~65 frames per second (FPS) when 

benchmarked on the MS COCO dataset [24]. Yolov4 is one of the few high-performing 

detectors capable of real-time object detection which is above 20fps and hence was used 

in this study [18]. 

YOLOv4 is a one-stage detector consisting of a CSPDarknet53 backbone, SPP 

additional block, and PANet path-aggregation neck with YOLOv3 dense predictor for the 

head as its architecture [24]. The structure of Yolov4 can be seen below in Figure 4. 

 

Figure 4. Yolov4 structure (adapted from [24]: Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-J.M. 

YOLOv4 Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934, with 

permission from Cornell University). 

The CSPDarknet53 backbone involves applying a cross-stage partial network of 

Wang et al. on the Darknet-53 network developed by Redmon & Farhadi [25,26]. Darknet-

53 performed on par or even better in terms of accuracy, took fewer floating-point 

operations to train, and performed faster when compared to ResNet-101 and ResNet-153. 

CSPNet reduced computations by up to 20% with equivalent or higher accuracies when 

applied to backbones such as ResNet, ResNeXt, and DenseNet. 
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For the neck, the spatial pyramid pooling (SPP) additional block developed by He et 

al. eliminates the need for a fixed-size input image [27]. It does this by computing feature 

maps from entire images once and generating fixed-length representations for training. 

SPP has been shown to improve the accuracy of detection networks such as R-CNN and 

vastly improve processing speed when generating detections. The other part of the Yolov4 

neck is PANet path-aggregation developed by Liu et al. [28]. This works by shortening 

the information path between lower layers and topmost feature levels. It does this by 

linking feature grids and all feature levels to make useful information in each level 

propagate directly to following proposal subnetworks. PANet path-aggregation boasts 

higher mean average precisions than Mask R-CNN on COCO datasets and ResNet-50 on 

the MVD dataset. 

Finally, the head or dense predictor uses Yolov3 to produce bounding boxes based 

on dimension clusters as anchor boxes and thus predicts four coordinates for each box 

[26]. These predicted bounding boxes are compared to the ground truth bounding boxes 

and the sum of the squared error loss is used to determine the gradient for regression. 

Using logistic regression, the predicted bounding box that overlaps with the ground truth 

the most is chosen. Classes are then predicted using independent logistic classifiers and 

binary cross-entropy loss. This allows for more accurate class predictions when objects of 

different classes overlap. Three different scales are used when predicting bounding boxes 

so that features at different scales can be extracted and combined for a robust feature map. 

This approach allows for more meaningful semantic information from unsampled 

features and finer-grained information from earlier feature maps. Lastly, Darknet-53, 

consisting of 53 convolutional layers is used for the feature extractor. The convolutional 

layers are successive 3 × 3 and 1 × 1 layers with shortcut connections. 

2.5. HSI Dataset Preparation 

For the present study, a Headwall Nano-Hyperspec visible and near-infrared (VNIR) 

image sensor which is a type of push-broom or line scanner, optimized for UAVs, was 

used. With this scanner, the hyperspectral information is obtained from contiguous lines 

of the sample by relative movement between the sample and the scanner [21]. From this, 

hyperspectral reflectance information is obtained and can be used to determine the 

structural and biochemical properties of the sample [29]. The scanner machine was set up 

inside the ESP glasshouse with some filtering of ultraviolet light (UV) and a bright light 

source on one side of the scanner to increase the light available to the scanner. The same 

parthenium weed and non-parthenium plants (grasses) from the RGB dataset were used 

to create this hyperspectral dataset as well as another monocot (Navua sedge—Cyperus 

aromaticus (Ridley) Mattf. & Kukenth) that was not included in the RGB dataset. One or 

two parthenium weed plants of the same growth stage were scanned at a time until all 

individual parthenium weed of each growth stage had been scanned (Figure 5). Each 

control plant (bluegrass [B. ewartiana], kangaroo grass [T. triandra] or Navua sedge [C. 

aromaticus]) was also scanned individually. 
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(a) (b) (c) 

Figure 5. Hypercubes of the three parthenium weed growth stages (a) seedling (b) rosette (c) 

flowering adult. 

2.6. HSI Image Processing 

The hypercubes generated from the line scanner include 274 spectral bands from 

395.794 nm to 1002.02 nm. The first processing step was to convert the raw pixel radiance 

values to reflectance. This is necessary to account for variations in 

available/reflective/impinging/absorbed light when capturing the hyperspectral image 

[30]. This is done by including a material with a known reflectance in the hypercube and 

using this to generate a ratio between the illuminating light power and the reflected light 

power (Figure 5). This can then be applied to the spectral measurements of each pixel in 

the hypercube following the equation. 

𝑅(𝑥, 𝜆) =  
𝑃𝑟(𝑥,𝜆)

𝑃𝑖(𝑥,𝜆)
  (1) 

where 𝑅(𝑥, 𝜆)  is the reflectance at wavelength 𝜆  for the location 𝑥 , 𝑃𝑟(𝑥, 𝜆)  is the 

reflected light power from the object, and 𝑃𝑖(𝑥, 𝜆) is the illuminating light power. 

Upon inspection, there were some bands that included significant noise, so it was 

necessary to remove these bands to ensure these bands did not degrade the analysis of the 

hypercube. These bands included 395.794 nm–426.883 nm and 999.798 nm–1002.02 nm. 

The hypercubes were then reduced to their regions of interest (ROI) which correspond 

with the plants in those images. This adjustment procedure eliminates unnecessary pixels 

that do not include plant samples, reducing the size of the hypercube file and unnecessary 

complexity. Filtering was performed to remove unwanted noise and generate a more 

accurate spectral measurement. Filtering methods include Savitzky-Golay spectral 

filtering with a window length of 25, a polynomial order of 9, and Gaussian filtering with 

a kernel size of 61. Spectral measurements are represented in the OKLAB colour space. 

Some examples of the filtered ROIs of parthenium weed plants are seen in Figure 6. 



Agriculture 2022, 12, 1838 11 of 26 
 

 

 

 

 
(a) (b) (c) 

Figure 6. Filtered regions of interest (ROI) of the three parthenium growth stages: (a) seedling, (b) 

rosette, and (c) flowering adult. 

Using custom python code developed by one of the authors (Juan Sandino), the 

filtered and reduced hypercubes of parthenium weed plants and non-parthenium plants 

were combined into a larger image in a similar way that the RGB images were manually 

combined. Non-parthenium plants made up the background of these combined images 

and the parthenium weeds were superimposed on top. This means that there is no natural 

plant occlusion which impacts how closely these images mimic a real field. A combined 

image can be seen in Figure 7. 

 

Figure 7. Combined hypercube with seedling, rosette, and flowering parthenium weed plants over 

non-parthenium plants. 
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RGB representations of the combined hypercubes were then generated so that label 

masks could be made. These masks provided the classifier with training and validation 

data so that it could generate a trained model. This process involved creating an 

individual colour mask for each material in the hypercube. Six distinct colour masks were 

created consisting of flowering (red), rosette (cyan), seedling (magenta), background grass 

(yellow), concrete (blue), and soil (grey). Effort was made to label as little as possible 

whilst achieving accurate pixel classifications so that significant test pixels were available 

to demonstrate classifier performance. The labeled counterpart of Figure 7 can be seen in 

Figure 8. At this point, the XGBoost classifier could be trained and evaluated. 

 

Figure 8. Combined hypercube with label mask. 

2.7. XGBoost Modelling 

Many different classification methods have been applied to hyperspectral image 

(HSI) classification with very good results, e.g., [31–33]. XGBoost (version 1.3.3), 

developed by Chen & Guestrin, is a scalable tree boosting system that boasts impressive 

performance in many machine learning benchmarking competitions [34]. Based on tree 

boosting, which has been shown to give state of the art (SOTA) results on many 

classification benchmarks, XGBoost’s scalability allows it to be applied to large datasets 

without significant computer hardware [35]. 

This is made possible by XGBoost’s unified approach to gradient tree boosting, 

exploiting several well-developed and novel systems to fit a variety of problem types. 

These include a novel tree learning algorithm for handling sparse data, a weighted 

quantile sketch procedure for handling instance weights in approximate tree learning, 
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parallel and distributed computing, enabling quicker model exploration and out-of-core 

computation allowing hundreds of millions of examples to be processed efficiently [35]. 

2.8. Performance Metrics 

The metrics used to evaluate the performance of the Yolov4 algorithm include true 

positives (TP), false positives (FP), true negative (TN), false negatives (FN), precision, 

recall, F1-score, and accuracy. True negatives are excluded as a performance metric for 

parthenium weed detection as they are not relevant in object detection problems; 

however, they are relevant for the classification of the flowering/non-flowering and so 

have been included in the latter. As for the XGBoost classifier, precision, recall and F1-

score are the metrics used. 

True positives are simply the number of correct detections; similarly, false positives 

are incorrect detections. False negatives are the number of objects not detected; however 

true negatives are unique. True negatives apply when an object, for example, a detected 

parthenium weed can either be one class or another; in this case flowering or not 

flowering. True negatives do not apply to object detection as this includes location 

information and so becomes infinite. They do apply to classification which is the case 

when determining flowering and non-flowering status as the location of the parthenium 

weed plants has already been determined. In this case, a true negative is a plant correctly 

identified as non-flowering, or having no flowers detected, and a true positive is a 

flowering plant with detected flowers. 

“Precision” describes the proportion of positive identifications that are correct. A 

high precision value says that of the detections made, very few of them are wrong. If all 

detections made were correct the precision score would be 1.0. “Recall” describes the 

proportion of actual objects, in this case parthenium weed plants, that were identified. A 

high recall value suggests that of the detectable parthenium weed plants in the data, 

almost all of them were identified. If all parthenium weed plants in the dataset were 

detected, the recall score would be 1.0. “F-1 score” is the harmonic mean of precision and 

recall; it is a good measure of accuracy as it describes the relationship between precision 

and recall. If one is high and the other is low, the F-1 score will be negatively impacted. A 

high F-1 score implies high precision and recall scores, which suggest there are high TP 

and TN and low FP and FN. Lastly, accuracy represents the number of correctly classified 

or detected objects over the total number of correct and incorrect detections/ 

classifications. The equations for each of these metrics can be seen in Table 2. 

Table 2. A list of performance metrics used to evaluate the Yolov4 and XGBoost algorithm 

performance with as well as the equations to calculate each. 

Performance Metric Equation 

Precision 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Recall 
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

F1-score 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

Accuracy (object detection) 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  

Accuracy (classification) 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
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2.9. Ordination 

Another method of analysis used specifically for the hyperspectral data is ordination 

[36–38]. The primary purpose of this technique is the reduction of a high number of 

variables (in this case, the spectra bands) that could differentiate parthenium weed from 

co-occurring plant species; these reduced but unique set of variables represent as many 

characteristics as possible of the phenomenon analysed in some latent variables [38]. This 

occurs through a linear transformation of the variables that projects the original ones into 

a new Cartesian system in which the variables are sorted in decreasing order of variance: 

therefore, the variable with the greatest variance is projected on the first axis, the second 

greatest variance on the second axis, and so on. The reduction of complexity occurs by 

limiting itself to analysing the main (by variance) new variables. Unlike other (linear) 

transformations of variables practiced in the field of statistics, in this ordination technique 

it is the same data that determine the transformation vectors [36]. 

We normalised that spectra data and used common parametric analyses (ANOVA 

and generalised linear modelling) and multivariate ordination technique of metric 

multidimensional scaling (MDS) to detect differences in individual and mean spectra 

signature of each of the three parthenium weed growth stages and non-parthenium 

(control) plant species (Navua sedge, kangaroo grass and desert bluegrass). For mean 

spectral signatures, data were grouped into bands of blue (400–500 nm), green (501–600 

nm), red (601–700 nm), near infra-red (700–900) and infrared (>900 nm) bands. All 

ordination analyses were performed on PRIMER version 7.0. software (PRIMER-E Ltd. 

Plymouth, UK). 

3. Results 

3.1. RGB—Yolov4 

Parthenium weed detection accuracy was determined by the number of parthenium 

weed plants with and without a parthenium weed class bounding box on any part of the 

plant. Additionally, considered was the number of parthenium weed class bounding 

boxes with no parthenium weed plants inside. A parthenium weed with at least one 

parthenium weed class bounding box on any part of the plant was considered a true 

positive. Similarly, a parthenium weed with no bounding box on any part of the plant was 

considered a false negative. Finally, a parthenium weed class box with no part of a 

parthenium weed inside was considered a false positive. Growth stage classification was 

determined using a flower class detector. It was decided that this would be a classification 

problem as the goal was not to detect all flowers but to detect any flowers on a given 

flowering plant. If a flowering plant had at least one or more of its flowers detected, it was 

considered a true positive. If in that same group of correctly detected flowers, there were 

objects miss-classified as flowers this was still considered a true positive as the miss-

classifications will not add any confusion in determining the flower status of that plant. 

Similarly, a non-flowering plant with no flower detections on or near the plant that could 

not be associated with a flowering plant was considered a true negative. If a flowering 

plant had none of its flowers detected it was considered a false negative. If a non-flowering 

plant had flower detections on or near it that could not be associated with a flowering 

plant, it was considered a false positive. Some flower detections were made on non-flower 

objects, but they were sufficiently far away from any plants to not cause any confusion 

when determining flower status and so were ignored. Examples of the detections made 

can be seen in Figure 9. 
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Figure 9. Examples of a simulated orthorectified image with parthenium weed detections in red and 

flower detections in blue. 

The performance of the Yolov4 detector can be seen in Figures 10 and 11. The Yolov4 

detector included a class for parthenium weed plants and a class for individual flowers 

with the parthenium weed class being an object detection problem and the flowering class 

being a classification problem. The Yolov4 detector achieved a detection accuracy of 94% 

for parthenium weed plants and a classification accuracy of 86% for flowering or non-

flowering plants. All these detections were made on images unique to both the training 

and validation sets using the same plants. These plants had undergone two weeks of 

growth before being imaged for the test set and so were effectively unique to the plants 

used in the training and validation sets. 

 

Figure 10. Confusion matrix depicting predicted parthenium weed/background class numbers vs. 

true parthenium weed/ background class numbers. The background includes control plants and no 

plants. The resulting performance metrics are indicated in Table 3. 
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Figure 11. Confusion matrix depicting predicted flowering/non-flowering class numbers vs. true 

flowering/non-flowering class numbers. The resulting performance metrics are indicated in Table 

3. 

Table 3. Performance metrics of the Yolov4 algorithm as a parthenium weed detector and as a 

classifier of the weed into flowering vs. non-flowering status. 

 Metric 

Detection Task Precision Recall F1-Score TP FP TN FN Accuracy 

Object detection         

Parthenium weed 0.95 0.99 0.97 549 27 N/A 3 0.95 

Object classification         

Parthenium Flower vs. 

Non-flower 
0.83 0.77 0.8 151 32 315 45 0.86 

3.2. Hyperspectral—XGBoost 

To evaluate the performance of the XGBoost classifier, a combined hypercube was 

made with four parthenium flowering plants, six rosettes, and four seedlings as well as 

all non-parthenium hypercubes included in it. The pixel classification performance can be 

seen in Table 4. The associated labels can be seen again in Figure 12, and the predicted 

pixels of the combined hypercube can be seen in Figure 13. For the hypercube, the 

classifier achieved a performance of 99–100% on the validation subset of labeled training 

data, represented by the colour masks. This translated to a significant amount of all 

labeled and unlabeled pixels in each hypercube receiving a correct classification. In the 

combined hypercube, all parthenium weed plants across the three growth stages can be 

easily identified. 

Table 4. Performance metrics of the XGBoost as a hyperspectral pixel classifier. 

Object Class Precision Recall F1-Score 
No. of  

Labeled Pixels 

Parthenium weed-Flowering 1.00 1.00 1.00 5556 

Parthenium weed- Rosette 0.99 0.99 0.99 1806 

Parthenium weed-Seedling 1.00 1.00 1.00 4580 

Grass 1.00 1.00 1.00 3510 

Concrete 0.99 0.99 0.99 3916 

Soil 0.99 0.98 0.99 911 



Agriculture 2022, 12, 1838 17 of 26 
 

 

 

Figure 12. Combined hypercube with label masks. 

 

Figure 13. Output of combined hypercube with predicted colour masks. 

3.3. Parthenium Weed Hyperspectral Signatures 

In order for the XGBoost algorithm to differentiate each growth stage of parthenium 

weed from each other and from the control plants (grasses and a sedge), the spectral 

signatures of the parthenium weed and non-parthenium (control) plants were captured. 
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Figure 14 shows all of the parthenium weed spectral signatures across the three growth 

stages. While the signatures are certainly quite similar, which is expected of plants of the 

same species, there are subtle differences between the growth stages that are enough to 

differentiate them from each other using the XGBoost algorithm. 

 

Figure 14. Spectral signature of all parthenium weed plants used in this investigation grouped in 

their respective growth stages. 

Figure 15 shows the spectral signatures of the parthenium weed seedlings compared 

to the control plants that commonly co-occur with the weed in a grazing (pasture) 

landscape. Spectra differences are much more pronounced than that depicted in Figure 

14, and clearly show differences in the spectral signatures of parthenium weed seedlings 

and non-parthenium plants. These differences exist across the signature from 400 nm to 

1000 nm. 

 

Figure 15. Spectral signature of the seedling stage of parthenium weed compared to the non-

parthenium/control plants (Plant 1–Plant 5). 

Figure 16 shows the spectral signatures of the parthenium weed rosettes compared 

to the control plants. Similar to the seedlings, there are obvious differences between 

parthenium weed rosettes and the spectral signatures of the control plants. While the 
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signatures are similar between 700 nm and 900 nm, between 400 nm and 700 nm and 

between 900 nm and 1000 nm, the differences are obvious. 

 

Figure 16. Spectral signature of the rosette stage of parthenium weed compared to the non-

parthenium/control plants (Plant 1–Plant 5). 

Finally, Figure 17 shows the spectral signatures of the flowering parthenium weed 

plants compared to the control plants. The differences between flowering parthenium 

weed and control plants are less pronounced than that depicted in Figure 16 above (i.e., 

parthenium weed rosette and control plants), however there are significant differences, 

particularly between 900 nm and 1000 nm. 

 

Figure 17. Spectral signature of the flowering adult stage of parthenium weed compared to the non-

parthenium/control plants (Plant 1–Plant 5). 

3.4. Hyperspectral Ordination 

Results from ordination are shown in Figure 18. Two axes were enough to capture 

the majority (90.5%) of the variation in the dataset (Axis I—60.8%, Axis II–29.7%). Like 

Figures 14—16, wavelengths responsible for major differentiation of parthenium weed 

plants from control plants (grasses and sedges) are mainly in the blue (400–500 nm) and 

the infrared (>900 nm) ranges (F-ratio between plant species = 14.21, 3.67, 3.90, 1.71 and 
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10.35 for blue, green, red, near infra-red and infra-red bands, respectively; all with p < 0.05, 

except NIR (700–900 nm)) which was non-significant). However, note that while Axis I 

indeed captured the majority of the variation in the dataset, the distribution along this 

axis of the three parthenium weed growth stages was wide (i.e., scattered) rather than 

concentrated, especially for flowering parthenium weed and the seedlings. 

 

Figure 18. Results of ordination performed on the spectral signatures of each plant, showing 

separate groupings of each plant species (circled). Within the parthenium grouping, plants in the 

rosette stage are highly aggregated (asterisks), while those of flowering plants appeared in two 

subgroups (open triangles). 

4. Discussion 

The findings from the current study suggest that machine learning techniques can be 

applied effectively and efficiently to invasive weed detection in managed and pastoral 

environments. We have used hyperspectral and RGB imaging techniques to create two 

distinct datasets with the same sample plants, and hence estimate the effectiveness of two 

machine learning algorithms. Object detection using Yolov4 was applied to the RGB 

dataset, while pixel classification using XGBoost was applied to the hyperspectral dataset. 

Yolov4 achieved a detection accuracy for the invasive parthenium weed of 95% and was 

able to classify flowering and non-flowering growth stages of the weed with an accuracy 

of 86%. XGBoost achieved a pixel classification accuracy of 99% with 100% of the seedling, 

rosette, and flowering plants being identified with a colour mask over the body of the 

plant. 

As well as a detection accuracy of 95%, seen in Table 3, the precision and recall for 

parthenium weed detection is 95% and 99%, respectively. While both scores are high, a 

very high recall suggests that there are very few false negatives which is the case with 

only three false negatives in the test dataset. In this case, a high recall is very desirable as 

false negatives mean undetected and potentially uncontrolled plants that may remain in 

an affected area targeted for local eradication, reach reproductive maturity and continue 

to add to the parthenium weed seed bank [1,39]. Low numbers of false positives, whilst 

also desirable, are comparatively less so. False positives (4.7% in this study) may trigger 

parthenium weed control methods to be applied when in reality, it is not necessary, 

though this may be a reasonable compromise when eradication of the weed is the goal 

(see Regan et al. (2011) andPanetta (2015). for in-depth analysis of this treatise [40,41]). 

The precision and recall for flowering/non-flowering classification (83%) are lower 

than the actual parthenium weed detection (95%), but this is also a more difficult problem. 

The approach taken for this classification is centered around object detection with the 
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objects being parthenium weed flowers. A single flower detection on a parthenium weed 

is enough to classify that parthenium weed as a flowering plant. Thus, the problem is one 

of both classification and object detection. Because flowers still need to be detected by the 

Yolov4 algorithm they need to be treated as a unique class like the parthenium weed class. 

However, the flowers are much smaller and so have much less information from which 

the algorithm can extract relationships. An accuracy score of 86% reported in this work is 

not insignificant but does not achieve the goal of a very accurate flowering/non-flowering 

differentiation. The results do suggest that this higher accuracy is achievable, and this will 

likely be done with data of a lower GSD, affording this class much more detail from which 

to extract relationships. This would also improve the parthenium weed detection ability. 

Precision and recall scores achieved by XGBoost for classes in the hyperspectral 

dataset are all between 98% and 100% (Table 4). These are for pixel classification, not for 

object detection; however, if all the pixels of an object are classified in the correct class, 

then the object is effectively detected. The colour masks achieved by XGBoost for each 

object are also more useful than a bounding box as it gives the true size and structure of 

the plant. What XGBoost does particularly well is to differentiate all three growth stages 

of parthenium weed- seedling, rosette, and flowering plants. Growth stages were 

differentiated in the RGB dataset using the presence of flowers. However, Yolov4 could 

not determine enough of a difference when flowering, rosette, and seedling plants were 

split into unique classes; there just wasn’t enough unique relationships in the RGB data. 

XGBoost on the other hand looks at the spectral signatures of each growth stage and has 

reliably determined unique relationships between each stage. It was interesting to note 

that using metric MDS ordination, though Axis I captured the majority of the variation in 

the spectra dataset, however the distribution along this axis of the three parthenium weed 

growth stages was wide (i.e., scattered) rather than concentrated, especially for flowering 

parthenium weed plants and the seedlings. While we lack enough replicates for the 

seedlings (only two individuals were scanned), and as such it is safe to remove/discount 

this growth stage from our analyses for lack of power, the display of two discrete groups 

seen for the flowering (adult) plant stage might not be unexpected. Flowering parthenium 

weed plants (adults) that we used are probably in different phenological stages of 

reproduction and/or leaf retention/shedding, and this might have led to the variation in 

spectral signature captured and seen. Hyperspectral reflectance curves are often affected 

by plant phenological stage [42-43]. We are left with the rosette growth stage having 

consistent spectral signature, suggesting that this growth stage might have the greatest 

utility in terms of differentiation (i.e., maximum separability) from other plants (be it 

native or other weeds) under field conditions. 

In sum, the comparatively better results using hyperspectral data were not 

unexpected, but our findings will suggest this method is preferred to achieve the best 

accuracy. Note however that the XGBoost method is limited by the much more expensive 

equipment necessary to capture this kind of data, thus likely putting it out of reach of the 

average consumer. 

Machine learning techniques are increasingly being effectively applied to weed 

detection in row-cropping and pastoral environments (e.g., [12,44–48]). This present 

investigation further strengthens the latter body of work, especially for Parthenium weed 

in the field (see also [49–51]). No doubt natural environments can be protected if weed 

populations are reduced through proper weed management options [52]. Often proper 

weed management involves significant inputs of herbicides, but its use can be 

dramatically reduced if herbicide applications are optimized using SSWM techniques, 

including the use of aerial imagery to map weed distribution at varying scales that will 

assist in management optimization [53]. This paper provides a preliminary indication that 

the above machine learning methods can detect parthenium weed to a significant accuracy 

in pastoral environments and thus can be used for SSWM. This work reported herein also 

further strengthens the potential of using Yolov4 (including its more recent versions of 

Yolov7) and XGBoost for identification and classification of weed 
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4.1. Caveats 

The data used for this study was developed in a controlled (glasshouse) environment 

to model pasture field environments as closely as possible. Thus, the methods have not 

been applied to real-world environments and so any generalization to real-world 

environments must be tentative and treated with caution. Parthenium weed was the only 

weed investigated in this study and while efficient management of this weed alone would 

be of significant benefit, it cannot be said that the same methods could be applied 

successfully to other species of weeds (but see [54]). Problems were also encountered 

when trying to detect parthenium weed in its seedling stage using RGB images and during 

object detection; consequently, it is likely to be difficult to detect weeds of this size in real 

field environments. This same problem was somewhat encountered in the hyperspectral 

data, albeit to a lesser extent. This may be due, in part to the quality of data capture 

technology used, pre- and post-processing methods utilized, and training hardware 

employed, all of which could be improved further upon. Yolov4 was the only machine 

learning method used for each data type, and while this method answers the question 

posed for this study, our investigation does not determine that these methods are the only 

methods or the best methods. Several other machine learning algorithms, including 

Region-based CNN, single-shot-Detection (SSD), random forest (RF), support vector 

machine (SVM) and k-nearest neighbours (KNN), might need to be comparatively tested 

[55,56]. 

Data quality is consistently an issue for the task reported in this work. Previous 

attempts to train RGB detectors in the field have yielded very limited performance and 

detection accuracy (P. Trotter, Osunkoya OO, pers. Observation and Communication). 

These attempts involved capturing data in the field using a drone (UAV) and following 

pre-processing and training protocols similar to what was done in this investigation. The 

main difference between our reported work (in a control environment and which gave 

high accuracy (95%) and the previous ones (in pastoral fields, which gave lower accuracy 

of 35%) is the quality of the data. Previous attempts involved data with GSDs that are far 

greater than what was used herein, amplified and complicated by the fact that the 

previous work used data derived from the field which, by nature, is a more heterogeneous 

environment of fast changing atmospheric condition (especially solar illumination, cloud, 

and shadow), with notable variation in terrain (slope and aspect) and soil quality. Hence, 

field image data captured via UAV can be less reliable and more challenging for training 

[57,58]. This highlights the importance of data quality, specifically the GSD of the images. 

Despite these field challenges, this study provides strong evidence that parthenium 

weed can potentially be detected in both RGB and hyperspectral imagery using machine 

learning methods in a real pastoral environment. Because the simulated environment 

used in this study was developed to imitate natural/human-made landscapes as closely 

as possible, our promising findings suggest that with further work and refinements, these 

methods might be applicable to field environments. Future work should also expand the 

list of target weeds to determine how broad and applicable our techniques and findings 

are. There are many more machine learning algorithms that exist other than the ones 

involved in this study (e.g., RF, SVN, and KNN), and so increasing the number of AI 

algorithms should be encouraged in future research to potentially provide a greater 

number of solutions and detection accuracy [55,56]. Lastly, with time better hardware and 

software technology will evolve in the AI environment and should be used to improve 

detection success. 

5. Conclusions 

The present work adds to the growing literature on machine learning towards 

optimising the discrimination, mapping, and monitoring of invasive alien plants [9,10, 

,47,51,54,59]. We have shown that RGB images of Parthenium weed obtained in simulated 

pastoral environments can be processed successfully with a YOLOv4-CNN classification 
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protocol- achieving an overall accuracy of 95% for detection, and 86% for differentiation 

of flowering and non-flowering stages of the weed. Using an XGBoost classifier for the 

pixel classification of the hyperspectral dataset, we achieved a classification accuracy of 

99% for parthenium weed growth stages. Our ordination of the hyperspectral signatures 

suggested that the wavelengths responsible for major differentiation of parthenium weed 

from co-occurring control plants (grasses and sedges) are mainly in the blue (400–500 nm) 

and the infrared (>900 nm) ranges- a finding similar to that reported by Ullah et al. (2021) 

for the same weed in Pakistan [51]. It is worthwhile noting that ML discrimination of 

growth stages of the focal weed has rarely been reported, but the work reported herein 

indicates that it is achievable. 

For scalability of our findings to the field, improvements need to be made in use of 

UAV and deployment of high specification (e.g., HS/MS) cameras that can achieve low 

ground sampling distances (GSDs) while maintaining flight heights; this will allow a more 

efficient, high resolution spatial image capture [59]. A detector must also be trained on 

data that are captured in the field. The performance of this detector in terms of training 

and testing vastly depends on the capability of available computer system; thus, in future 

applications, computer systems specifically designed for object detection and AI should 

be used. Image and data augmentation techniques for generation of training data could 

be optimised as this may also likely improve performance. Better image annotation 

techniques, such as Semantic Segmentation [59], should be used because in natural fields, 

established Parthenium weed and co-occurring plants present a much more complicated 

scenarios that can make bounding box annotations inefficient and limit performance. 

Lastly, and overall, with further improvement in image processing (e.g., using 

Mask/faster R-CNN) and ML protocols (e.g., transitioning from YOLOv4 [the version 

available in the course of this work] to more recent YOLOv7 or even YOLO-R [You Only 

Learn One Representation]), the findings reported herein have the potential for extension 

and application in real-world pastoral and cropping environments to manage better many 

more weeds and revolutionize how people deal with the ever-growing problem of 

invasive alien species (see [60]). 
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