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Abstract: Barley leaf rust caused by Puccinia hordei (Ph) is one of the major limiting biotic stresses of
barley production worldwide and causes yield losses of up to 60%. A diversity panel of 316 barley
genotypes (AM2017) composed of released cultivars, advanced breeding lines and landraces was
screened for Ph resistance at the seedling stage using two isolates (SRT-SAT and SRT-MRC), while
the adult plant stage resistance screening was conducted at the disease hotspot location of Sidi Allal
Tazi (SAT) for the cropping seasons of 2017 and 2019. The phenotypic responses were combined with
36,793 single nucleotide polymorphism (SNP) markers in a genome-wide association study (GWAS)
using the general linear model (GLM), mixed linear model (MLM), settlement of MLM under pro-
gressively exclusive relationship (SUPER), multiple-locus MLM (MLMM), fixed and random model
circulating probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium
iteratively nested keyway (BLINK) in GAPIT3, and MLM (K+Q), MLM (K+PCA), and GLM (Q)
models in TASSEL to identify genomic regions linked to Ph resistance. Fourteen barley genotypes
were resistant (R) at the seedling stage to both Ph isolates, SRT-SAT and SRT-MRC, and twelve
genotypes were either resistant (R) or moderately resistant (MR) at the adult plant stage, whereas
only one genotype was resistant at the seedling stage, and moderately resistant at the adult plant
stage. The genome scan revealed 58 significant marker trait associations (MTA) among which 34 were
associated with seedling resistance (SR) and 24 with adult plant resistance (APR). Common genomic
regions conferring resistance to Ph were identified at both stages on chromosome 2H (106.53 cM and
at 107.37 cM), and on chromosome 7H (126.7 cM). Among the 58 MTA identified, 26 loci had been
reported in previous studies, while the remaining 32 loci were regarded as novel. Furthermore, the
functional annotation of candidate genes (CGs) adjacent to 36 SNP markers with proteins involved in
disease resistance further confirms that some of the SNP markers from our study could be associated
with Ph resistance in barley. The resistant barley genotypes and some of the SNP markers from this
study with high R2 and additive effects can be converted into high-throughput functional markers for
accelerated selection and pyramiding of leaf rust resistance genes in North African barley germplasm.

Keywords: barley; Hordeum vulgare; leaf rust; Puccinia hordei; resistance; genome-wide association
study; marker-trait-association

1. Introduction

Barley (Hordeum vulgare L.) ranks fourth among the most important cultivated cereal
crops worldwide for food, feed, and malting purposes [1]. It can tolerate harsh environ-
mental conditions, such as low rainfall, fluctuating temperature, high altitude, and highly
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saline soils, where other cereals grow poorly. In Morocco, barley has been grown on about
2 million hectares in the arid and semi-arid regions with 1.82 t/ha of average grain yield
registered in 2018, which is significantly lower compared to the world’s average grain yield
(2.95 t/h) [1]. In addition, Morocco imported 240.5 thousand tons of barley from France,
Spain, Ukraine, Greece, and Italy in 2018 [2]. Different abiotic and biotic stress factors
contribute to lower barley yield in Morocco. In addition to low input conditions, many
biotic stresses, such as leaf rust, powdery mildew, net form and spot form net blotches,
scald, and spot blotch, limit barley grain and straw yields and quality.

Barley leaf rust (BLR) caused by the fungal pathogen Puccinia hordei is the most
common and geographically widespread disease [3]. BLR causes serious yield losses in
North Africa, Europe, New Zealand, Australia, and the Eastern and Midwestern United
States [4–8]. Under epidemic conditions, up to 62% of yield losses have been reported
in susceptible and late maturing barley cultivars [4]. The use of fungicides is effective
to control BLR, but the deployment of genetically resistant barley cultivars is the most
effective, economical, and environment-friendly control strategy. Genetic resistance is
mostly categorized into qualitative and quantitative resistance. The qualitative resistance
or major gene(s) resistance is often race-specific, governed by one or two resistance genes
and follows the Flor’s gene-for-gene concept [9]. Quantitative resistance, also known as
‘partial or horizontal resistance’ is usually controlled by several minor genes. Quantitative
resistance is considered race non-specific in the field trials and is characterized by low
infection frequency, prolonging latent period, and smaller pustule size to slow down
pathogen infection and reproduction (slow rusting) [10,11]. This resistance is assumed to
be durable because the chances that pathogens may mutate and develop virulence to all
matching minor resistance genes are low.

The availability of sources of BLR resistance and understanding its genetics are crucial
for efficient development of resistant barley cultivars [3]. Since the first genetic study on
BLR resistance [12], 28 resistance genes to P. hordei (Rph) have been mapped on all seven bar-
ley chromosomes. Among them, three Rph genes, namely Rph20, Rph23, and Rph24, mediate
adult plant resistance (APR) [13–15], whereas the remaining 25 Rph genes (Rph1-Rph19,
Rph21, Rph22, and Rph25-Rph28) have been identified for seedling resistance [3,16–19].
However, the excessive use of dominant Rph genes exerts selection pressure on the pathogen
population, which rendered BLR resistance genes ineffective within a few years [20–22].
This emphasizes the need for the identification of new sources of resistance to increase the
genetic diversity of BLR resistance [14].

The majority of quantitative trait loci (QTL) conditioning resistance to BLR have been
identified via traditional bi-parental mapping [7,23–26]. These bi-parental mapping studies
were highly efficient in identifying QTL associated with resistance to P. hordei by map-based
cloning [13,15,27], but they were limited by low allelic diversity and low recombination
events, which affected the mapping resolution [28]. In addition, this approach is time-
consuming as it involves phenotyping of successive generations. These limitations could be
overcome with the use of GWAS, which is a powerful tool to dissect the genetic architecture
of complex traits utilizing pre-existing germplasm [28]. This approach is based on detecting
genomic regions that are in linkage disequilibrium (LD) with genes affecting the trait of
interest. Owing to a large number of available SNP markers, GWAS is faster and more
accurate as it can map QTL at a much higher resolution [29,30]. Furthermore, high efficiency
of GWAS has been demonstrated in barley for genetic mapping of disease resistance to
net form net blotch [31], spot form net blotch [32,33], spot blotch [22,34], leaf rust [35],
stem rust [36], and stripe rust [22,37]. However, GWAS is prone to false-positive QTL
identification due to the population structure [38], which has been circumvented by taking
it as a covariate in the association mapping studies. However, bi-parental mapping is
desirable to validate marker-trait associations (MTA) [39].

The objectives of the present study were to describe the phenotypic variation of the
AM2017 panel for its response to two pure isolates of P. hordei from Morocco at the seedling
stage (SRT) under controlled conditions, as well as in the field for adult plant stage resistance
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(APR). In addition, these phenotypic responses were combined with 50k SNP marker data
in GWAS analyses to identify genomic regions associated with P. hordei resistance.

2. Materials and Methods
2.1. Plant Material

A set of 316 genotypes of spring barley, designated here as the Association Mapping
panel 2017 (AM2017), including landraces from the ICARDA (International Center for
Agriculture Research in the Dry Areas) genebank, released cultivars from different countries,
and advance breeding lines from the spring barley breeding program of ICARDA, was
used in this study. The AM2017 panel has 173 two-row and 143 six-row type barley
genotypes including feed and malting types from Europe, North America, South America,
Africa, Australia, and Asia. The full list of barley genotypes with details is available in
Supplementary Table S1.

2.2. Screening for Seedling Resistance to P. hordei

A seedling resistance test (SRT) was conducted with two pure isolates of P. hordei under
controlled conditions in a growth chamber (Snijder Scientific, Tilburg, The Netherlands)
at the International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat,
Morocco. The leaf rust pure isolates were collected from the experimental stations of Mar-
chouch (LR-MRC) and Sidi Allal Tazi (LR-SAT) in 2017, and were multiplied on susceptible
barley cultivars (Aglou, Baudin, and Bowman) followed by drying of urediniospores on
silica gel and their storage at −80 ◦C until further use.

About 4–5 seeds of each test genotype were sown in peat moss supplemented with
14–14–14 NPK in 14 cm long cones of 3.8 cm diameter (Steuwe & Sons, Inc., Tangent, OR,
USA), and the seedlings were raised under controlled conditions with a photoperiod of
16 h light/8 h dark at 20 ± 1 ◦C. Each tray contained 96-test genotypes along with resistant,
‘Philadelphia’ and susceptible, ‘Lakhan’ checks. About 10–12 days old seedlings with
the first leaf fully extended were used for inoculation. For inoculation of each tray with
98-cones, 15 mg of dried urediniospores were resuspended in 10 mL of mineral oil (Novec
7100, Sigma Aldrich, St. Louis, Missouri, USA). The spore suspension was sprayed as a
fine mist using an airbrush (Revell, Munchen, Germany) and the inoculated seedlings were
left to dry for 30 min at room temperature to avoid phytotoxicity from mineral oil before
placing them in a humid chamber for incubation in the dark for 24 h at 20 ± 1 ◦C. After
24 h of incubation, the seedlings were transferred to the growth chamber under the same
conditions as described earlier. The experiment was conducted with three replications
using a randomized complete block design. After 12–14 days post inoculation (dpi), the
seedlings were classified into infection types according to the 0 to 4 scale developed by
Stakman et al. [40]. The seedlings were classified either as immune (0), resistant (0; and 1),
moderately resistant (2), moderately susceptible (3), or susceptible (4). The mean infection
type of three replications was used for further analysis.

2.3. Screening for Adult Plant Resistance (APR) to P. hordei

The field phenotyping was performed at the National Institute for Agricultural Re-
search (INRA) station of Sidi Allal Tazi (34◦31′12.9′′ N 6◦14′30.1′′ W) in the 2016–2017
(APR-SAT17) and 2018–2019 (APR-SAT19) cropping seasons, where the weather conditions
(temperature and humidity) were favorable for leaf rust development. In 2016, planting was
done during the last week of November, and in 2018 the planting was completed during the
first week of December. The monthly average temperature, humidity, and precipitation dur-
ing the cropping seasons of 2016–2017 and 2018–2019 in Sidi Allal Tazi have been described
in Supplementary Table S2. The average temperature and the relative humidity during the
cropping season of 2016–2017 (December–May) ranged from 13.48 to 26.72 ◦C and from
60.8 to 83%, whereas for the cropping season of 2018–2019, the average temperature and
relative humidity ranged from 4.6 to 26.9 ◦C and from 56.3 to 71.7%, respectively.
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In each trial, the test genotypes were sown as paired rows of one-meter length using
an augmented block design with 20-test genotypes per block, and two susceptible checks
(Rihane-03 and VMorales) were planted in each block. To allow the build-up and uniform
distribution of Ph inoculum, each test block was surrounded by a spreader row composed of
a mixture of susceptible cultivars (Rihane-03 and VMorales). The BLR trials were assessed
under natural disease pressure as Sidi Allal Tazi is considered as an LR hot spot, and the
spread of the disease was further favored by the periodic sprinkler irrigation.

In 2017, disease severity was assessed from 5 to 10 randomly chosen plants of each
genotype at Zadok’s growth stage (GS) 73–75 [41] using the modified Cobb’s scale [42] fol-
lowed by another observation after seven days. However, in 2019, only a single observation
was recorded. Disease assessments combined the leaf rust severity (0 to 100%) and host
response (Immune (I), Resistant (R), Moderately resistant (MR), Moderately susceptible
(MS), and Susceptible (S)). The Coefficient of infection (CI) was calculated by multiplying
the infection response value (R = 0.2, MR = 0.4, MS = 0.8, S = 1) with the percent disease
severity (0–100%) [43] and the genotypes with CI of 0–8 were rated as R, 9–16 as MR,
17–24 as MS, and >25 as S. The area under the disease progression curve (AUDPC) was
calculated using the following equation [44].

AUDPC = ∑1
a i = 1n[(LRi+1 + LRi)/2][(ti+1 − ti)]

where LRi = leaf rust severity on ith days, ti = time in days at ith observation, and n is the
total number of observations.

2.4. Phenotypic Data Analysis

The phenotypic data of the LR response were subject to one-way analysis of vari-
ance (ANOVA) using GenStat 21st Edition (Version 21.1.0.25568) at a significance level of
p < 0.001. Standard deviation (SD) and coefficient of variation (CV) of the LR response were
calculated. In addition, GenStat was also used to analyze the differences among genotypes
(G), between years (Y) and genotypes by year (G × Y) interaction.

2.5. Genotyping and Population Structure

The genomic DNA from 316 barley genotypes of AM2017 panel was extracted from
lyophilized young leaf tissue from a single plant at the growth stage 12 [41] at the Ce-
real Crop Research Unit, USDA-ARS, Fargo, North Dakota, USA as described by Slotta
et al. [45]. Genotyping was performed following the manufacturer’s protocol using Illumina
iSelect 50k SNP array [46], comprised of 49,267 mapped loci (https://ics.hutton.ac.uk/50k/
(accessed on 14 December 2017)). The genotyping and population structure of AM2017
has been reported by Verma et al. [47]. Briefly, the SNP markers with known genetic
and physical map position were kept [46], but all monomorphic markers, markers with
minor allele frequency (MAF) of less than 5%, and missing values of more than 10% were
discarded. About 36,793 SNP markers encompassing seven barley chromosomes were used
for further genetic analysis (Figure 3a).

Based on gene diversity (GD) and polymorphic information content (PIC), 2065 highly
informative SNP markers (Table S3) with unique genetic map positions on seven barley
chromosomes were selected for population structure analysis using the admixture model in
STRUCTURE 2.3.4 [48]. The markers with PIC values between 0.10 and 0.25 were classified
as moderately informative, followed by highly informative with PIC values between
<0.25 and 0.375 [49]. The highest PIC value for bi-allelic markers was 0.375 [50]. For
structure analysis, a burn-in period of 100,000 was run and the posterior probabilities were
estimated with the Markov chain Monte Carlo (MCMC) method with 100,000 iterations. The
STRUCTURE HARVESTER tool [51] was used to determine the number of sub-populations
using ∆K [52]. The PCA analysis was computed using PLINK 1.9, and the PCA scatter plot
was visualized using the ggplot2 package in R [53]. In addition, the kinship (K) among
individuals was computed from the filtered set of SNP markers in the Genomic Association
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and Prediction Integrated Tool (GAPIT) [54]. Based on the PCA, genotypes were assigned
to subgroups or declared admixed using 80% membership criterion.

2.6. Genome-Wide Association Study (GWAS) of Leaf Rust Resistance

The GWAS was carried out by combining genotypic data and disease severity scores
from the seedling and the adult plant stages. Marker-trait association(s) (MTA) were
determined using a mixed linear model (MLM) in TASSEL version 5.2.53 [55]. SNP mark-
ers with minor allele frequency (MAF) of <5%, and SNP markers which were missing
in >10% of barley genotypes were discarded from the analysis. The kinship matrix (K)
was generated in TASSEL using filtered SNPs. General linear models GLM (Q) and GLM
(PCA), and mixed linear models MLM (Q + K) and MLM (K + PCA) built in TASSEL
version 5.2.53 were run to know the best fitting models. Both MLM models controlled effec-
tively the false positives compared to the GLM models GLM (Q/PCA). Finally, the MLM
(K + PCA) model was implemented in TASSEL for GWAS analysis. The statistical sig-
nificance of multiple comparisons was tested based on pFDR (q < 0.05), as described by
Storey [56]. In the output, R2 explains the percent of phenotypic variation explained by
the significant SNP marker, and a positive value of allele effect indicates susceptibility by
increasing the disease score, whereas a negative value signifies resistance by reducing the
disease score. Several GAPIT3 [54] models were further used to validate significant SNP
markers/loci associated with LR resistance. In GAPIT3, GWAS was performed using the
general linear model (GLM) [57], mixed linear model (MLM) [58], settlement of MLM un-
der progressively exclusive relationship (SUPER) [59], multiple-locus MLM (MLMM) [60],
fixed and random model circulating probability unification (FarmCPU) [61], and Bayesian-
information and linkage-disequilibrium iteratively nested keyway (BLINK) [62]. The
genetic linkage maps of significant SNP markers associated with the seedling and the adult
plant stage resistance to P. hordei were drawn using MapChart software (v 2.32) [63].

2.7. QTL Alignment and Candidate Genes

To compare the marker-trait-associations (MTA) for BLR resistance from our study
with the QTL reported in previous association mapping studies, marker sequences were
retrieved from the GrainGenes database (https://wheat.pw.usda.gov/GG3/ (accessed on
5 April 2021)), and were aligned on the Morex genome using the Barleymap pipeline [64].

For candidate genes (CGs), the sequences of significant SNP markers were subject to
the BLAST search tool of the IPK barley server [65] to know their homology to annotated
barley gene(s) based on a threshold of BIT score (>200), sequence identity (90–100%), and
an expected value (0–1−40). The CG search considered the presence of functional domains
implicated in plant disease resistance.

3. Results
3.1. Seedling Resistance to P. hordei

In the greenhouse, P. hordei infection’s uniform and diverse infection responses (IR)
were recorded for both isolates, SRT-SAT and SRT-MRC. The frequency distribution of
IR of 316 genotypes of the AM2017 panel seemed to be positively skewed (Figure 1a). In
addition, a detailed IR of the individual genotype has been presented in Supplementary
Table S1. The mean IR of ‘Philadelphia’ (resistant) and ‘Lakhan’ (susceptible) was recorded
as 1 and 4 for both P. hordei isolates tested, respectively. None of the tested genotypes
were immune to both Ph isolates, while 66 genotypes (20.60%) were resistant to Ph isolate
SRT-SAT, and 45 (14.10%) genotypes were resistant to Ph isolate SRT-MRC. Furthermore,
153 (47.81%) and 155 (48.4%) genotypes were moderately resistant to the Ph isolates LR-SAT
and LR-MRC, respectively (Figure 1a and Table S4).
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Figure 1. Frequency distribution of leaf rust resistance in 316 barley genotypes of AM2017 mapping
panel at the seedling stage for Ph isolates, SRT-MRC and SRT-SAT. (a) Venn diagram of infection
responses of 320 barley genotypes at the seedling stage to two Ph isolates under controlled conditions;
(b) here, I, immune; R, resistant; MR, moderately resistant; MS, moderately susceptible; S, susceptible.

Among the tested genotypes, 14 genotypes were resistant to both Ph isolates, namely
Philadelphia, Conchita, Orria, Frontier, Poet, SJ056089, SJ056576, UMBRELLA, Petu-
nia1//Atahualpa/IraqiBlack, K 508, J02006004-09/2T0095, IG 144149, IG 17007, and
Katara//SLB34-65/Arar. Whereas, 74 barley genotypes were moderately resistant to
both Ph isolates (Figure 1b). The mean IR of Ph isolates SRT-MRC and SRT-SAT was
recorded as 2.10 ± 0.69 and 2.00 ± 0.77, respectively. No difference was observed between
the average IR of two-row genotypes to both Ph isolates, 2.00 ± 0.68 for SRT-MRC and
2.16 ± 0.75 for SRT-SAT. However, six-row genotypes were more susceptible (2.30 ± 0.68)
to Ph isolate SRT-MRC than SRT-SAT isolate (1.94 ± 0.76).

3.2. Phenotyping for Adult Plant Stage Resistance

The frequency distribution of the adult plant stage reaction of 316 genotypes of the
AM2017 panel to Ph at Sidi Allal Tazi in 2017 (APR-SAT17) and in 2019 (APR-SAT19) has
been presented in Figure 2, where the disease severity seems to be negatively skewed
towards resistance. Disease severity and the AUDPC of each genotype for 2017 and 2019
has been presented in Supplementary Table S1. The coefficient of infection of leaf rust at
the adult plant stage ranged from 0 to 90 in 2017, and from 8 to 70 in 2019 (Table S4). Both
susceptible checks, Rihane-03 and VMorales, scored a disease severity of 80S and 60S in
APR-SAT17 and in APR-SAT19, respectively.
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In 2017 (APR-SAT17) and 2019 (APR-SAT19), the overall values of AUDPC
262.20 ± 143.73, and of CI 36.87 ± 14.85 were observed. Among the genotypes tested,
46 (15%) genotypes were found resistant, and 17 (5.5%) genotypes were moderately resis-
tant in APR-SAT17 (Figure 2 and Table S4), while only six genotypes (2%) were resistant and
40 (13.60%) genotypes were moderately resistant at APR-SAT19. Twelve barley genotypes
were either resistant or moderately resistant during the two cropping seasons, namely
Alanda 01, TR05671, SVANHALS-BAR/MSEL//AZAF/GOB24DH/3/NE167/CLE176,
Cocktail, AZAF/SCARLETT, BRS195/ND19098-1, BREA/DL70//3*TOCTE/3/6B89.2027/
CHAMICO, 15UCM9, 15UCM 92, IG 144107, RABAT 071, and Alanda//Lignee527/Arar/3/
BF891M-617. Only one genotype AM164 (BREA/DL70//3*TOCTE/3/6B89.2027/CHAMICO)
showed R-MR reaction at APR and SRT.

The ANOVA revealed significant differences (p < 0.001) in responses to Ph across
genotypes at both growth stages, between genotypes (G), and in G × Y interactions, but
the correlation among years (Y) was not significant (p > 0.001).

3.3. Population Structure

The population structure of AM2017 was analyzed with 2065 highly informative
SNP markers (Table S3) using the STRUCTURE package [47]. Out of 2065 SNP markers,
86.8% (1794) were highly informative with PIC values ranging from 0.3 to 0.375, and 7.8%
(161) were moderately informative with PIC values of <0.25 to 0.3. Furthermore, an average
gene diversity of 0.44 was observed with 83% (1716) of the SNP markers with GD values
between 0.4 and 0.5 (Table S3). Based on ∆K and K = 2 approaches [51,52], the AM2017
panel was categorized into two major clusters based on row types (Figure 3b,c). One
cluster contained 40.18% of two-row genotypes, and the other cluster had 59.81% of six-row
barley genotypes. The results were validated by principal component analysis (PCA),
which clearly showed two distinct clusters using a filtered set of 36,793 SNP markers.
Clusters 1 and 2 explained 21.10% and 9.29% of the total variation (30.4%) in the PCA
scatter plot (Figure 3b).
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3.4. GWAS of Seedling Stage Resistance to P. hordei

Performing GWAS for the assessment of resistance to two Ph isolates, SRT-MRC and
SRT-SAT at SRT, the best fitting model in Tassel was the MLM procedure using PCA
(K), accounting for population structure (Q) and relatedness (Figure 4). In addition, the
GWAS analysis using the six models of GAPIT3 identified the common SNPs related to
the resistance to LR especially from the three models MLMM, BLINK, and FarmCPU. The
genome scan for the isolate SRT-MRC detected 10 MTA (p < 0.001) on chromosomes 1H,
2H, 3H, 5H, 6H, and 7H (Figures 4 and 5). The marker R2 and additive effect for the
isolate SRT-MRC ranged from 3.33% to 4.66%, and from −0.484 to 0.371, respectively. The
total phenotypic variance explained by the 10 MTA was 37.86% (Table 1). For the isolate
SRT-SAT, 24 MTA were detected on chromosomes 1H, 3H, 5H, 6H, and 7H (Figures 4 and 5)
with marker R2 and additive effect ranging from 3.3% to 13.67%, and from −1.14 to 1.14,
respectively, and explained 48.41% of the total phenotypic variation (Table 1). The highest
R2 of 13.65% and the highest additive effect of −1.14 were caused by the two markers
JHI-Hv50k-2016-111647 and JHI-Hv50k-2016-111819 on 2H (89.77 cM and 91.01 cM).
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Table 1. Summary of SNP markers associated with Puccinia hordei resistance at the seedling stage of 
the barley AM2017 panel. 
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Effect GAPIT and TASSEL Models 

SCRI_RS_118785 SRT-MRC 1 56.44 1.30 × 10−03 1.36 × 10−03 3.34 53 A (−0.400) 
MLM (K + Q), MLM (K + PCA), 
MLMM, BLINK, FarmCPU 

JHI-Hv50k-2016-51304 SRT-MRC 1 116.78 3.30 × 10−04 8.58 × 10−04 4.19 234 C (−0.382) 
MLM (K + Q), MLM (K + PCA), 
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Figure 4. Genome-wide association mapping of barley leaf rust resistance at the seedling (SRT-MRC,
SRT-SAT) and adult plant stages (APR-SAT17, APR-SAT19). (a) Quantile-Quantile (Q-Q) plots of
marker-trait association at the seedling stage for P. hordei isolates SRT-MRC and SRT-SAT, and at
the adult plant stage in Sidi Allal Tazi station in 2017 (APR-SAT17) and 2019 (APR-SAT19) using the
MLM (PCA+K) model in Tassel; (b) the Manhattan plots shows –l0g10 of p-values from genome-wide
association mapping against the positions of SNPs on all chromosomes of barley. The red horizontal
line indicates the significance threshold (p < 0.001 [−log10(p) = 3]).
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Figure 5. Genetic linkage map of significant SNP markers associated with the seedling and the adult
plant stage resistance to P. hordei in barley association mapping panel AM2017. Markers are shown
on the right and genetic distances (cM) are shown on the left. Markers in bold represent markers
detected at seedling resistance.

3.5. GWAS of Adult Plant Stage Resistance to P. hordei

For GWAS of Ph resistance at the adult plant stage, the best fitting model in Tassel was
the MLM procedure using PCA + K, accounting for population structure and relatedness (Q-
Q plots are shown in Figure 4). For APR-SAT17, 10 MTA were detected on chromosomes 1H,
2H, 4H, 5H, and 6H explaining 50.52% of the total phenotypic variation (Figures 4 and 5).
The marker R2 and additive effect ranged from 3.62 to 5.25% and from -113.86 to 68, re-
spectively. Among the MTA detected, peak marker JHI-Hv50k-2016-277557on 5H (1.11 cM)
had the highest marker R2 (5.25) and the lowest p-value. For APR-SAT19, a total of
16 MTA were detected on chromosomes 2H, 3H, 4H, 5H, and 7H, explaining 67.73% of the
total phenotypic variation (Table 2 and Figures 4 and 5). The marker R2 explained by these
MTA ranged from 3.63 to 5.73%, and the additive effect from −14.27 to 13.85 with the peak
marker BOPA2_12_31536 on 4H (63.39 cM) with marker R2 of 5.73%.

Two SNP markers were associated with Ph resistance at both stages. On chromosome
2H, the seedling resistance SNP markers JHI-Hv50k-2016-119586 (107.37 cM), associated
with SRT-SAT isolate, and JHI-Hv50k-2016-117483 (106.53 cM), associated with SRT-MRC
isolate, overlapped with the APR SNP marker SCRI_RS_153420 located on the same chro-
mosome at 107.26 cM for APR-SAT17. Similarly, SRT SNP marker JHI-Hv50k-2016-511500
on chromosome 7H at 126.7 cM for Ph isolate SRT-MRC was co-located with APR SNP
marker JHI-Hv50k-2016-510780 on chromosome 7H at 126.7 cM for APR-SAT19.

3.6. QTL Alignment and Candidate Genes

Most of the MTA were located in genomic regions enriched with functional proteins
involved in plant disease resistance and defense mechanism based on their annotation
in the barley reference genome. Out of the 58 MTA detected in this study at the seedling
and the adult plant stages, a BLAST search of query sequences of 36 SNP markers showed
homologies with functional proteins/enzymes related to disease resistance, such as RPP13-
like protein 4, receptor-like protein kinase, disease resistance RPP8-like protein 3, disease
resistance protein (CC-NBS-LRR class), cyclic nucleotide-gated channel 14, ankyrin re-
peat family protein, B3 domain-containing protein, pentatricopeptide repeat-containing
protein, alcohol dehydrogenase 1, glycine-rich domain-containing protein 2, leucine-rich
repeat protein kinase family protein, ROP guanine nucleotide exchange factor 5, and UDP-
Glycosyltransferase superfamily protein (Table 3). Furthermore, our sequence alignments
showed that 25 of 58 SNP markers overlapped with the previously described QTL/gene
involved in resistance to Ph (Table 3).



Agriculture 2022, 12, 1829 10 of 26

Table 1. Summary of SNP markers associated with Puccinia hordei resistance at the seedling stage of the barley AM2017 panel.

Marker a Isolate b Chr c cM p-Value FDR R2(%)
Allele

Frequency

d Allele
Effect

GAPIT and TASSEL Models

SCRI_RS_118785 SRT-MRC 1 56.44 1.30 × 10−03 1.36 × 10−03 3.34 53 A (−0.400) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

JHI-Hv50k-2016-51304 SRT-MRC 1 116.78 3.30 × 10−04 8.58 × 10−04 4.19 234 C (−0.382) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

JHI-Hv50k-2016-51989 SRT-MRC 1 118.13 1.31 × 10−03 1.36 × 10−03 3.33 211 C (−0.309) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

** JHI-Hv50k-2016-117483 SRT-MRC 2 106.53 5.50 × 10−04 1.14 × 10−03 3.86 286 A (−0.484) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

JHI-Hv50k-2016-191945 SRT-MRC 3 66.69 7.90 × 10−04 1.14 × 10−03 3.67 127 A (−0.309) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-195152 SRT-MRC 3 75.21 5.30 × 10−04 1.14 × 10−03 3.91 135 C (0.355) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

JHI-Hv50k-2016-353355 SRT-MRC 5 151.88 1..21 × 10−03 1..33 × 10−03 3.52 81 C (−0.374) MLM (K + Q), MLM (K + PCA),
BLINK, FarmCPU

JHI-Hv50k-2016-409979 SRT-MRC 6 66.08 4.20 × 10−04 1.05 × 10−03 4.03 263 A (−0.477) MLM (K + Q), MLM (K + PCA)
** JHI-Hv50k-2016-511500 SRT-MRC 7 126.7 1.32 × 10−03 1.36 × 10−03 3.35 181 C (0.312) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-515270 SRT-MRC 7 132.22 2.00 × 10−04 7.74 × 10−04 4.66 229 C (0.371) MLM (K + Q, MLM (K + PCA),
MLMM, BLINK, FarmCPU

JHI-Hv50k-2016-5369 SRT-SAT 1 4.96 2.50 × 10−04 7.74 × 10−04 4.39 231 A (0.409) MLM (K + Q), MLM (K + PCA),
FarmCPU

JHI-Hv50k-2016-41795 SRT-SAT 1 89.31 7.10 × 10−04 1.14 × 10−03 3.7 297 A (0.691) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-107670 SRT-SAT 2 80.03 7.30 × 10−04 1.14 × 10−03 3.71 79 C (0.407) MLM (K + Q), MLM (K + PCA),
BLINK

JHI-Hv50k-2016-109913 SRT-SAT 2 88.39 4.50 × 10−04 1.08 × 10−03 3.99 223 A (−0.386) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK

JHI-Hv50k-2016-111647 SRT-SAT 2 89.77 2.23 × 10−10 3.74 × 10−09 13.65 30 A (−1.14) MLM (K + Q), MLM (K + PCA),
BLINK, FarmCPU

JHI-Hv50k-2016-110777 SRT-SAT 2 90.16 2.23 × 10−10 3.74 × 10−09 13.65 286 C (1.14) MLM (K + Q), MLM (K + PCA),
MLMM
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Table 1. Cont.

Marker a Isolate b Chr c cM p-Value FDR R2(%)
Allele

Frequency

d Allele
Effect

GAPIT and TASSEL Models

JHI-Hv50k-2016-111042 SRT-SAT 2 90.72 9.51 × 10−07 8.83 × 10−06 7.94 55 A (−0.693) MLM (K +Q), MLM (K + PCA),
BLINK, FarmCPU

JHI-Hv50k-2016-111819 SRT-SAT 2 91.01 2.23 × 10−10 3.74 × 10−09 13.65 30 C (−1.14) MLM (K +Q), MLM (K + PCA)

JHI-Hv50k-2016-112041 SRT-SAT 2 91.15 6.97 × 10−10 9.06 × 10−09 12.85 29 C (−1.13) MLM (K + Q), MLM (K + PCA),
MLMM

JHI-Hv50k-2016-113615 SRT-SAT 2 92.71 7.70 × 10−04 1.14 × 10−03 3,66 276 C (0.53029) MLM (K + Q), MLM (K + PCA)
JHI-Hv50k-2016-111864 SRT-SAT 2 92.78 2.30 × 10−10 3.74 × 10−09 13.67 283 C (1.14) MLM (K + Q), MLM (K + PCA)
JHI-Hv50k-2016-113653 SRT-SAT 2 95.16 3.00 × 10−05 2.44 × 10−04 5.69 261 C (0.584) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-113742 SRT-SAT 2 97.8 6.00 × 10−05 3.90 × 10−04 5.24 292 C (0.802) MLM (K + Q), MLM (K + PCA),
BLINK

** JHI-Hv50k-2016-119586 SRT-SAT 2 107.37 1.21 × 10−03 1.33 × 10−03 3.38 154 A (−0.336) MLM (K + Q), MLM (K + PCA)

SCRI_RS_14819 SRT-SAT 3 2.69 9.10 × 10−04 1.15 × 10−03 3.6 21 A (−0.634) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK

JHI-Hv50k-2016-189928 SRT-SAT 3 63.39 6.20 × 10−04 1.14 × 10−03 3.79 74 C (−0.469) MLM (K + Q), MLM (K + PCA)
JHI-Hv50k-2016-338772 SRT-SAT 5 130.69 1.25 × 10−03 1.35 × 10−03 3.44 282 C (−0.534) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-310432 SRT-SAT 5 66.69 1.10 × 10−04 5.50 × 10−04 4.85 156 A (−0.373) MLM (K + Q), MLM (K + PCA),
MLMM

JHI-Hv50k-2016-318662 SRT-SAT 5 90.03 7.90 × 10−04 1.14 × 10−03 3.64 95 A (−0.422) MLM (K + Q), MLM (K + PCA)
JHI-Hv50k-2016-430648 SRT-SAT 6 118.98 2.70 × 10−04 7.98 × 10−04 4.3 292 A (−0.677) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-431728 SRT-SAT 6 121.68 6.50 × 10−04 1.14 × 10−03 3.77 32 A (0.541) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK

JHI-Hv50k-2016-435962 SRT-SAT 7 0.21 1.39 × 10−03 1.39 × 10−03 3.3 235 A (−0.354) MLM (K + Q), MLM (K + PCA),
MLMM, FarmCPU

JHI-Hv50k-2016-465087 SRT-SAT 7 48.73 2.50 × 10−04 7.74 × 10−04 4.36 299 G (−0.767) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK

JHI-Hv50k-2016-466598 SRT-SAT 7 50.71 3.20 × 10−04 8.58 × 10−04 4.19 235 C (0.391) MLM (K + Q), MLM (K + PCA)

** Common genomic regions between SRT and APR. a P. hordei isolates, SRT-SAT and SRT-MRC, used seedling stage screening b Chromosome c Genetic position of SNPs anchored using
POPSEQ2017 d Allele effect contributed by the respective marker on a 0–4 scale at the seedling stage. The negative allele effect decreases the diseases severity (resistance) and the
positive allele effect increases the diseases severity (susceptibility).
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Table 2. Summary of SNP markers associated with P. hordei resistance at the adult plant stage of barley AM2017 panel.

Marker a Env b Chr c cM p-Value FDR R2(%)
Allele

Frequency

d Allele
Effect

Best-Fit TASSEL and
GAPIT Models

BOPA2_12_30298 APR-SAT17 1 66.29 9.23 × 10−04 1.15 × 10−03 3.7 78 A (−63.43) GLM (Q), MLM (K + Q), MLM
(K + /PCA)

JHI-Hv50k-2016-80368 APR-SAT17 2 43.84 9.57 × 10−04 1.17 × 10−03 3.65 19 A (−113.86)
GLM (Q), MLM (K + Q). MLM
(K + PCA), MLMM, BLINK,
FarmCPU

JHI-Hv50k-2016-80601 APR-SAT17 2 50.92 1.01 × 10−03 1.22 × 10−03 3.62 62 C (−68.16) GLM (Q), MLM (K + Q), MLM
(K + PCA), FarmCPU

SCRI_RS_126890 APR-SAT17 2 105.56 1.22 × 10−04 5.66 × 10−04 5.03 204 A (−69.22)
GLM (Q), MLM (K + Q), MLM
(K + PCA), MLMM, BLINK,
FarmCPU

** SCRI_RS_153420 APR-SAT17 2 107.26 6.90 × 10−04 1.14 × 10−03 3.89 194 C (−59.36)
GLM (Q), MLM (K + Q), MLM
(K + PCA), MLMM, BLINK,
FarmCPU

SCRI_RS_135365 APR-SAT17 4 59.99 8.39 × 10−04 1.14 × 10−03 3.85 263 C (−84.34) GLM (Q), MLM (K + Q), MLM
(K + PCA), BLINK, FarmCPU

JHI-Hv50k-2016-277557 APR-SAT17 5 1.11 9.20 × 10−05 4.98 × 10−04 5.25 162 A (−66.16)
GLM (Q), MLM (K + Q), MLM
(K + PCA), MLMM, BLINK,
FarmCPU

JHI-Hv50k-2016-277561 APR-SAT17 5 1.45 4.96 × 10−04 1.14 × 10−03 4.22 143 C (59.30)
GLM (Q), MLM (K + Q), MLM
(K + PCA), MLMM, BLINK,
FarmCPU

JHI-Hv50k-2016-286440 APR-SAT17 5 38.12 2.46 × 10−04 7.74 × 10−04 4.71 78 A (−70.43)
GLM (Q), MLM (K + Q), MLM
(K + PCA), MLMM, BLINK,
FarmCPU

JHI-Hv50k-2016-415383 APR-SAT17 6 75.78 8.41 × 10−04 1.14 × 10−03 3.76 43 A (−79.99) GLM (Q), MLM (K + Q), MLM
(K + PCA), BLINK

JHI-Hv50k-2016-65232 APR-SAT19 2 7.44 1.14 × 10−03 1.32 × 10−03 3.72 273 C (12.87) MLM (K + Q), MLM (K + PCA),
MLMM

JHI-Hv50k-2016-201579 APR-SAT19 2 57.01 7.72 × 10−04 1.14 × 10−03 3.98 104 A (7.31) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU
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Table 2. Cont.

Marker a Env b Chr c cM p-Value FDR R2(%)
Allele

Frequency

d Allele
Effect

Best-Fit TASSEL and
GAPIT Models

JHI-Hv50k-2016-201394 APR-SAT19 3 91.22 8.84 × 10−04 1.15 × 10−03 3.89 169 C (−7.33) MLM (K + Q), MLM (K + PCA),
MLMM

JHI-Hv50k-2016-201622 APR-SAT19 3 93.81 7.17 × 10−04 1.14 × 10−03 4.03 194 A (−7.64) MLM (K + Q), MLM (K + PCA)
JHI-Hv50k-2016-202076 APR-SAT19 3 97.8 1.19 × 10−03 1.33 × 10−03 3.69 107 A (−7.21) MLM (K + Q), MLM (K + PCA)

BOPA2_12_31536 APR-SAT19 4 63.39 5.88 × 10−05 3.90 × 10−04 5.73 142 C (−8.31) MLM (K + Q), MLM (K + PCA),
MLMM„ BLINK, FarmCPU

JHI-Hv50k-2016-320334 APR-SAT19 5 94.72 3.20 × 10−04 8.58 × 10−04 4.6 188 A (−7.27) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

JHI-Hv50k-2016-342925 APR-SAT19 5 136.6 8.23 × 10−04 1.14 × 10−03 3.94 21 C (−12.89) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-364245 APR-SAT19 5 168.12 8.04 × 10−04 1.14 × 10−03 4.12 15 C (13.85) MLM (K + Q), MLM (K + PCA),
MLMM

JHI-Hv50k-2016-366258 APR-SAT19 5 169.38 6.92 × 10−04 1.14 × 10−03 4.05 17 C (−14.27) MLM (K + Q), MLM (K + PCA)

JHI-Hv50k-2016-201456 APR-SAT19 7 76.84 8.84 × 10−04 1.15 × 10−03 3.89 122 C (7.33) MLM (K + Q), MLM (K + PCA),
MLMM

JHI-Hv50k-2016-496331 APR-SAT19 7 97.31 1.36 × 10−03 1.38 × 10−03 3.63 262 C (−10.70) MLM, (K + Q), MLM (K + PCA)
MLMM, BLINK, FarmCPU

SCRI_RS_150401 APR-SAT19 7 110.27 7.06 × 10−05 4.17 × 10−04 5.64 38 C (11.35) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

** JHI-Hv50k-2016-510780 APR-SAT19 7 126.7 1.06 × 10−03 1.25 × 10−03 3.77 261 C (−11.12) MLM (K + Q), MLM (K + PCA),
MLMM, BLINK, FarmCPU

** Common genomic regions between SRT and APR. a Environment and cropping season. b Chromosome c Genetic position of SNPs anchored using POPSEQ2017 d Allel effect
contributed by the respective marker in terms of disease severity (0–100%) at the adult plant stage. The negative allele effect decreases the diseases severity (resistance) and the positive
allele effect increases the disease severity (susceptibility).



Agriculture 2022, 12, 1829 14 of 26

Table 3. QTL alignment and candidate genes identified for the seedling and the adult plant stage resistance to Puccinia hordei in barley AM2017 panel.

Associated Marker a Chr b cM Gene Identifier Homology
c Previously Mapped LR

QTL/Genes

Seedling resistance (SRT)
SRT-MRC
SCRI_RS_118785 1 56.44 HORVU1Hr1G059300 Receptor-like protein kinase _
JHI-Hv50k-2016-51304 1 116.78 HORVU1Hr1G086590 ROP guanine nucleotide exchange factor 5 RphQ3 [35]
JHI-Hv50k-2016-51989 1 118.13 HORVU1Hr1G087340 Guanylate-binding family protein RphQ18 (RphQ3) [35,66]
** JHI-Hv50k-2016-117483 2 106.53 HORVU2Hr1G103180 Terpene synthase 04 _
JHI-Hv50k-2016-191945 3 66.69 HORVU3Hr1G074330 Nucleic acid binding Rph10.o [67]
JHI-Hv50k-2016-195152 3 75.21 HORVU3Hr1G079230 Leucine-rich repeat protein kinase family protein _

JHI-Hv50k-2016-353355 5 151.88 HORVU5Hr1G114220 Late embryogenesis abundant (LEA)
hydroxyproline-rich glycoprotein family Rph9.z [67]

JHI-Hv50k-2016-409979 6 66.08 HORVU6Hr1G070350 Undescribed protein _

** JHI-Hv50k-2016-511500 7 126.7 HORVU7Hr1G115100 RphQ14 (Rph3/19); Rph3.c;
RphQ28 [35,66,67]

JHI-Hv50k-2016-515270 7 132.22 HORVU7Hr1G118430 Disease resistance RPP13-like protein 4 _
SRT-SAT
JHI-Hv50k-2016-5369 1 4.96 HORVU1Hr1G002310 50S ribosomal protein L2 Rphq14 [68]
JHI-Hv50k-2016-41795 1 89.31 HORVU1Hr1G075680 Receptor-like protein kinase 5 _

JHI-Hv50k-2016-107670 2 80.03 HORVU2Hr1G092270 Lactoylglutathione lyase/glyoxalase I family
protein _

JHI-Hv50k-2016-109913 2 88.39 HORVU2Hr1G096190 Disease resistance protein RPP13 _
JHI-Hv50k-2016-111647 2 89.77 HORVU2Hr1G097860 Integrase-type DNA-binding superfamily protein Rphq11 [68]
JHI-Hv50k-2016-110777 2 90.16 HORVU2Hr1G096910 UDP-Glycosyltransferase superfamily protein Rphq11 [68]
JHI-Hv50k-2016-111042 2 90.72 HORVU2Hr1G097140 Zinc finger CCHC domain-containing protein 9 _
JHI-Hv50k-2016-111819 2 91.01 HORVU2Hr1G097940 Homeobox-leucine zipper protein 4 _
JHI-Hv50k-2016-112041 2 91.15 HORVU2Hr1G098100 Disease resistance protein _
JHI-Hv50k-2016-113615 2 92.71 HORVU2Hr1G099350 Alcohol dehydrogenase 1 _

JHI-Hv50k-2016-111864 2 92.78 HORVU2Hr1G097980 Serine/arginine repetitive matrix protein 1 isoform
X1 _

JHI-Hv50k-2016-113653 2 95.16 HORVU2Hr1G099440 Terpene synthase 04 _

JHI-Hv50k-2016-113742 2 97.8 HORVU2Hr1G099470 Bifunctional inhibitor/lipid-transfer protein/seed
storage 2S albumin superfamily protein _

** JHI-Hv50k-2016-119586 2 107.37 HORVU2Hr1G105090 Protein of unknown function (DUF581) _

SCRI_RS_14819 3 2.69 HORVU3Hr1G002010 Pentatricopeptide repeat-containing protein QRph-3H.6; Rph5; Rph7.g
[67,69,70]
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Table 3. Cont.

Associated Marker a Chr b cM Gene Identifier Homology
c Previously Mapped LR

QTL/Genes

JHI-Hv50k-2016-189928 3 63.39 _ _ Rph10.o [67]
JHI-Hv50k-2016-310432 5 66.69 ADQ48070.1 bZIP transcription factor 27 _
JHI-Hv50k-2016-318662 5 90.03 HORVU5Hr1G078310 Protein FLOWERING LOCUST 11_11473 [22]

JHI-Hv50k-2016-338772 5 130.69 EKC/KEOPS complex subunit bud32 RphQ25; QLr.S42-5H.a (Rph9;
Rph12) [66,71,72]

JHI-Hv50k-2016-430648 6 118.98 HORVU6Hr1G092660 Disease resistance RPP8-like protein 3 QPh.6H-3 (QTL_Backes)
[73,74]

JHI-Hv50k-2016-431728 6 121.68 HORVU6Hr1G093310 dTDP-4-dehydrorhamnose reductase _

JHI-Hv50k-2016-435962 7 0.21 HORVU7Hr1G000040 Disease resistance protein (CC-NBS-LRR class)
family RphQ12 [35]

JHI-Hv50k-2016-465087 7 48.73 HORVU7Hr1G030310 Formin Homology 14 _
JHI-Hv50k-2016-466598 7 50.71 HORVU7Hr1G031610 Protein tesmin/TSO1-like CXC 5 _

Adult Plant Resistance (APR)
APR-SAT17
BOPA2_12_30298 1 66.29 HORVU1Hr1G066050 Cyclic nucleotide-gated channel 14 _
JHI-Hv50k-2016-80368 2 43.84 HORVU2Hr1G022560 ABC transporter C family member 10 Rph16. RphQ20 [66,75]
JHI-Hv50k-2016-80601 2 50.92 HORVU2Hr1G022900 Ankyrin repeat family protein RphQ7 [35]
SCRI_RS_126890 2 105.56 HORVU2Hr1G102880 Protein of unknown function (DUF760) _
** SCRI_RS_153420 2 107.26 HORVU2Hr1G102930 High mobility group B protein 6 _
SCRI_RS_135365 4 59.99 HORVU4Hr1G064860 LisH and RanBPM domains containing protein MQTL9 (Rphq19) [26,76,77]
JHI-Hv50k-2016-277557 5 1.11 AAV49984.1 Nodulin-like/Major Facilitator Superfamily protein _
JHI-Hv50k-2016-277561 5 1.45 AAV49985.1 Hordoindoline-B1 _
JHI-Hv50k-2016-286440 5 38.12 HORVU5Hr1G010930 Unknown function/putative serine protease do-like

htrA
Rph2.t; Rph2 (Rph2.b) [67,78]

JHI-Hv50k-2016-415383 6 75.78 HORVU6Hr1G077750 Phosphate-responsive 1 family protein _
APR-SAT19
JHI-Hv50k-2016-65232 2 7.44 HORVU2Hr1G005650 Cullin-associated NEDD8-dissociated protein 1 Rph1.a; RphQ19 (RphQ5/6)

[66,67]
JHI-Hv50k-2016-201579 2 57.01 _ _ _
JHI-Hv50k-2016-201394 3 91.22 HORVU3Hr1G086030 Eukaryotic aspartyl protease family protein _
JHI-Hv50k-2016-201622 3 93.81 HORVU3Hr1G086290 Pentatricopeptide repeat-containing protein _
JHI-Hv50k-2016-202076 3 97.8 ACB56486.1 Respiratory burst oxidase protein F MQTL7C (Rphq20) [26,77]
BOPA2_12_31536 4 63.39 HORVU4Hr1G068990 Nodulin-related protein 1, putative MQTL9; Rphq19 [26,76,77]
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Table 3. Cont.

Associated Marker a Chr b cM Gene Identifier Homology
c Previously Mapped LR

QTL/Genes

JHI-Hv50k-2016-320334 5 94.72 HORVU5Hr1G080280 ATPase ASNA1 homolog _
JHI-Hv50k-2016-342925 5 136.6 HORVU5Hr1G103380 Mitochondrial transcription termination factor

family protein
Rph9.i [67]

JHI-Hv50k-2016-364245 5 168.12 HORVU5Hr1G123050 Chromatin accessibility complex protein 1 QLr.HEB-5-5H.b5H MQTL13
(Rphq7), MQTL14 (Rphq16)
[26,76,77]

JHI-Hv50k-2016-366258 5 169.38 HORVU5Hr1G124630 Glutathione S-transferase T1 _
JHI-Hv50k-2016-201456 7 76.84 HORVU3Hr1G086080 S-acyltransferase _
JHI-Hv50k-2016-496331 7 97.31 HORVU7Hr1G100300 Disease resistance protein RphQ13, Rphq9 [23,35]
SCRI_RS_150401 7 110.27 HORVU7Hr1G106860 Glycine-rich domain-containing protein 2 QPh.7H-3 (Rphq9),

QTL_Castro,
“Ris44-Bmac156” [26,73,79]

** JHI-Hv50k-2016-510780 7 126.7 HORVU7Hr1G114330 Homogentisate phytyltransferase 1 RphQ14 (Rph3/19) Rph3.c;
RphQ28 [35,66,67]

** Common genomic regions between SRT and APR. a Chromosome. b Genetic position of SNPs anchored using POPSEQ2017 c Previously QTL mapped in the same position for barley
leaf rust.
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4. Discussion

Recently, an increased incidence and prevalence of barley leaf rust has been observed
in most barley growing regions, and the deployment of resistant cultivars is considered
an important component of its integrated management. In this study, we have reported
sources of resistance to P. hordei at the seedling and at the adult plant stages in a panel
constructed by barley breeders to provide sources of valuable traits needed. Furthermore,
GWAS analyses identified 58 marker-trait associations on all barley chromosomes, and
common genomic regions were identified on chromosomes 2H and 7H for both growth
stages. Our genome-wide scan had verified 26 already reported genomic loci in addition
to the identification of 32 novel loci associated with P. hordei resistance, thus verifying our
approach. To our knowledge, this is the first study on GWAS of leaf rust (LR) resistance in
spring barley from North Africa.

The slow progress on LR resistance research in Morocco has been hampered partly by
the lack of information on the Moroccan P. hordei pathotypes. Determination of pathogen
population diversity and screening the germplasm with representative pathotypes is a key
for the success of any resistance breeding program. Our results showed a large phenotypic
diversity within the genotypes of AM2017 at the seedling stage to the Moroccan Ph isolates
(SRT-SAT, SRT-MRC). More resistant genotypes (66) were noted when tested with the Ph
isolate SRT-SAT compared to the Ph isolate SRT-MRC (45), which could be due to the
differences in their virulence spectrum. This notion was supported by the race analysis
of the two tested Ph isolates using 19-Bowman near isogenic lines (NILs). Among the
19 differentials tested, 11 (58%) showed differential interaction between both isolates
(Amouzoune et al. unpublished data), and hence their differential response to AM2017 can
be attributed to their diverse virulence spectrum (Figure 1b). The Ph isolate SRT-MRC was
virulent on NILs carrying Rph2.b, Rph3.c, Rph4.d, Rph5.e, Rph6.f Rph5, Rph7.g, Rph8.h, Rph9.i,
Rph10.o, Rph11.p, Rph9.z Rph12, Rph2.j, Rph2.y, and Rph2.t, whereas the Ph isolate SRT-SAT
was virulent on NILs carrying Rph1.a, Rph3.c, Rph4.d, Rph8.h, and Rph9. Interestingly two
alleles, Rph15.ad and Rph13.x, were found effective against both Ph isolates. Therefore,
fourteen barley genotypes resistant to both Ph isolates might possess these two known Rph
genes or have novel, but yet uncharacterized, Rph genes individually or in combinations.
Park et al. [3] described seedling resistance (qualitative resistance) being effective at all
growth stages of plants, and governed by a major or dominant resistance gene which
recognizes directly or indirectly a dominant avirulence gene (effector) of the pathogen in
a gene-for-gene interaction. A single loss or gain of functional mutation in a pathogen
avirulence gene can render the deployed resistance gene ineffective within a short period
of time due to selection pressure imposed by it on the pathogen population. The Australian
barley breeding program deployed Rph12 in cultivars such as Franklin (1989) in Tasmania,
Tallon (1991) and Lindwall (1997) in the Eastern growing regions, and Fitzgerald and
Gairdner (1997) in Western Australia, but a virulent pathotype (4610P+) on Rph12 was
observed in Tasmania in 1991, followed by two virulent pathotypes (5610P+ and 5453P−)
in the Western Australia in 1997 and 2001, respectively. This demonstrates a rapid selection
of virulent pathotypes of Ph once a single dominant resistance gene has been deployed
in different varieties being grown on a large acreage [3]. Similarly, another dominant
gene (Rph3) was deployed in Western Australia in the cultivar Bass (2012) and a virulent
pathotype (5457P+) was detected in September 2013. These dominant resistance genes,
however, are ineffective in providing adequate levels of protection at the post seedling
stages. The variability in Ph could occur via simple mutation, exotic genotype introduction,
asexual recombination, and via sexual hybridization [80].

Contrary to seedling resistance, APR or race-nonspecific resistance is considered a
more durable and effective strategy for disease control. In this study, the phenotypic
response to Ph at the adult plant stage was performed at Sidi Allal Tazi, which is considered
the hot spot for LR screening of both wheat and barley in Morocco. During two cropping
seasons (2016–2017 and 2018–2019), good natural infections with high disease pressure
were recorded; however, late and light infection during the 2017–2018 cropping season
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did not allow for good screening (data not presented). Out of the 316 genotypes tested
for APR, 46 (15%) and 17 (5.5%) genotypes were resistant and moderately resistant in
APR-SAT17, respectively. While only 6 (2%) and 40 (13.60%) genotypes were resistant and
moderately resistant in APR-SAT19, respectively. In addition, ANOVA analysis revealed
that correlation between years (Y) was not significant (p > 0.001). This can be due to the
environmental conditions and changes in virulence of the pathogen population over the
years. Based on the reaction of 19 Bowman differentials to LR at the adult plant stage in
2017, only one differential line carrying Rph2 was moderately resistant. So far only three
barley APR genes, Rph20 on chromosome 5H, Rph23 on 7H, and Rph24 on 6H, against Ph
have been characterized [13–15].

Barley is planted in Morocco in November–December under low input conditions, and
LR is the last disease which affects the grain filling period in March–April by colonizing
the flag leaf. Therefore, in the context of Morocco, APR to LR should be incorporated in the
newly developed barley cultivars, and in our study, we have identified barley genotypes
with good level of APR, which could be used in hybridization schemes to combat LR.
However, their efficient utilization through MAS is hampered by the absence of tightly
linked reliable diagnostic markers.

The AM2017 panel encompasses global genetic diversity, consisting of 134 advanced
breeding lines from ICARDA’s barley breeding program, 161 registered cultivars from Asia,
Africa, Europe, the America, and 21 landraces. A total of 36,793 high quality SNPs were
used to identify MTA associated with LR resistance at the seedling and at the adult plant
stages in Morocco. An average SNP density of 37.09 SNPs/cM was observed in AM2017,
whereas previous GWAS studies were successful with 5 SNP/cM [31], 1 DArT marker per
1.5 cM [81], and 1 SNP marker per 0.72 cM [82–84]. Therefore, the use of high SNP density
per cM of AM2017 in GWAS was effective and resulted in higher resolution mapping of
SNPs associated with Ph resistance. Furthermore, population structure was accounted for
using PCA and kinship as covariates in MLM to avoid spurious MTA in this study.

Our genome scan identified 58 MTA associated with LR resistance at the seedling
and adult plant stages (Tables 1 and 2). About 34 MTA were associated with SR (10 for
isolate SRT-MRC, and 24 for isolate SRT-SAT), and 24 MTA were associated with APR
(10 for APR-SAT17, and 14 MTA for APR-SAT19). Furthermore, at the seedling stage, 21 out
of 34 MTA had negative allele effect, allowing a decrease in disease severity. For example,
the SNP marker JHI-Hv50k-2016-111819 (91.01 cM) on 2H can reduce the disease severity
by 28% (−1.14 units). Likewise, 18 out of 24 MTA associated with the adult plant stage
resistance had negative allele effect and could reduce disease severity.

Interestingly, our study could verify 26 loci involved in LR resistance, which were
mapped in previous mapping studies using different sets of genotypes (Table 3). However,
32 MTA were novel and had not been implicated previously in resistance against Ph.
Historically, LR resistance loci have been mapped on all barley chromosomes [3,85], but
we did not detect any SNP marker associated with LR resistance on chromosome 4H at
SRT. The detection of various novel genomic regions in this study hints towards a complex
interaction between Ph and barley.

Among the 34 MTA associated with the seedling resistance, 14 aligned with re-
ported BLR loci and 20 were novel (Table 3). Among the five MTA on the chromosome
1H, two SNP markers, JHI-Hv50k-2016-51304 (116.78 cM) and JHI-Hv50k-2016-51989
(118.13 cM) associated with resistance to Ph isolate LR-MRC, were also reported from the
Australian barley germplasm [35,66]. In addition, the SNP marker JHI-Hv50k-2016-5369
(4.96 cM) overlapped with the QTL Rphq14 for LR resistance [86]. Similarly, two SR SNP
markers associated with Ph isolate LR-SAT on 2H, JHI-Hv50k-2016-111647 (89.77 cM) and
JHI-Hv50k-2016-110777 (90.16 cM), were reported in the double haploid mapping popula-
tion Steptoe x Morex [26,68]. Interestingly, the novel SNP markers JHI-Hv50k-2016-111819
(91.01 cM), JHI-Hv50k-2016-112041 (91.15 cM), and JHI-Hv50k-2016-111864 (92.78 cM)
explained 12.85–13.67% of total phenotypic variation to Ph isolate SRT-SAT and can reduce
the disease severity by −1.14 (28%) on a disease rating scale of 0–4. Owing to their close
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proximity, identical marker R2, and allele effect, they may be linked to the same QTL
(Table 1).

On chromosome 3H, two SNP markers, JHI-Hv50k-2016-191945 (66.69 cM; LR-MRC)
and JHI-Hv50k-2016-189928 (63.39 cM; LR-SAT), were co-located with the genomic region
of catalogued seedling resistance gene Rph10 [67]. The genomic region in the proximity
of SNP marker SCRI_RS_14819 (2.69 cM) on 3HS has been reported in several mapping
studies, for example Berger et al. [69] mapped QRph-3H.6 in the vicinity of this marker and
it coincided with two mapped resistance genes Rph5 [70] and Rph7.g [67].

On chromosome 5H, the SNP marker JHI-Hv50k-2016-318662 (90.03 cM), associated
with Ph isolate SRT-SAT, overlapped with the SNP marker 11_11473 (89 cM) detected at
APR to LR in the Latin American germplasm [22]. Another SNP marker, JHI-Hv50k-2016-
338772 (130.69 cM), was co-located with Rph12 [66,71,72] and it also coincides with SNP
markers i_SCRI_RS_175848 and 11_11532 implicated in YR resistance [22,73]. Among three
MTA on chromosome 6H, the SNP marker JHI-Hv50k-2016-430648 (118.98 cM) against Ph
isolate LR-SAT was associated with a QPh.6H-3, which was reported by Bakes et al. [74]
and confirmed later by Vatter et al. [73]. Likewise on chromosome 7H, the SNP marker
JHI-Hv50k-2016-511500 (126.7 cM) against Ph isolate LR-MRC overlapped with Rph3 and
with RphQ14 [67]. Interestingly, this locus was also aligned with a DarT marker 11_20847
linked to YR resistance [37]. In addition, the SNP marker on 7H (0.21 cM) against Ph isolate
LR-SAT, JHI-Hv50k-2016-435962, overlapped with an APR QTL (RphQ12) effective against
the two Australian Ph pathotypes, 5453 P+ and 5457 P+ [35].

Among the 24 MTA associated with APR, 12 MTA were aligned with the reported
BLR loci and 12 were novel (Table 3). On chromosome 2H, four and two MTA were
associated with Ph resistance at APR-SAT17 and SAT18-19, respectively. The SNP marker
JHI-Hv50k-2016-80368 (43.84 cM) co-located with the resistance gene Rph16 and a QTL
RphQ20 [66,75]. Interestingly, it reduced the disease severity by −113.86 AUDPC units and
seems to be associated with a major non-host resistance gene. In addition, the SNP marker
JHI-Hv50k-2016-80601 (APR-SAT17; 50.92 cM) was co-located with RphQ7 reported from
an association mapping study of the Australian barley breeding germplasm at both growth
stages [35]. Likewise, the SNP marker JHI-Hv50k-2016-6523 2 (APR-SAT19; 7.44 cM) was
co-located with Ph loci in two different studies [66,67].

On chromosome 3H, three MTA were detected for APR-SAT19. One SNP marker
JHI-Hv50k-2016-202076 (97.8 cM) overlapped with Rphq20 [26] and to the meta-QTL
MQTL7C [77], whereas the other two MTA were novel. Similarly on chromosome 4H, two
SNP markers, SCRI_RS_135365 (APR-SAT17) at 59.99 cM, and BOPA2_12_31536 (SAT18-19)
at 63.39 cM, were associated with known Ph resistance locus [26,76,77].

On chromosome 5H, seven MTA were associated with APR. For APR-SAT17, the SNP
marker JHI-Hv50k-2016-286440 (38.12 cM) was co-located with Rph2 [67,78], while the
other two markers were novel. For APR-SAT19, the SNP marker JHI-Hv50k-2016-342925
(136.6 cM) overlapped with Rph9.i [67], and the other SNP marker JHI-Hv50k-2016-364245
(168.12 cM) was found proximal to the QTL QLr.HEB-5-5H.b5H [76]. Likewise, four MTA
were detected on chromosome 7H for SAT18-19, explaining a total phenotypic variation
of 16.93%. The two SNP markers JHI-Hv50k-2016-496331 (97.31 cM) and SCRI_RS_150401
(110.27 cM) coincided with the reported Ph resistance loci [23,26,35,73,79].

Common genomic regions were detected for SRT and at APR. Two common loci
associated with SRT were detected on the chromosome 2H, the SNP markers JHI-Hv50k-
2016-117483 (SRT-MRC; 106.53 cM), JHI-Hv50k-2016-119586 (SRT-SAT; 107.37 cM), and
SCRI_RS_153420 (APR-SAT17; 107.26 cM) may represent the same loci. Similar analogies
can be drawn for the SNP markers JHI-Hv50k-2016-511500 (SRT-MRC) and JHI-Hv50k-2016-
510780 (APR-SAT19) due to their common shared chromosomal location (7H; 126.7 cM).

To establish a link between the significant SNP markers and leaf rust resistance, the
functional annotation of candidate genes (CGs) adjacent to SNP markers was obtained
either using the BLAST search tool of the barley genome [65], or the Barleymap [64,87]. The
identification of resistance genes and understanding their molecular mechanism will shed
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more light on disease resistance signaling in barley to diverse biotrophic and necrotrophic
pathogens to accelerate candidate gene-based resistance breeding via allele mining and
genome editing. In the case of SRT, 21 putative CGs, and 15 in the case of APR, were
involved in disease resistance (Table 3). The presence of CGs with putative functions in
disease resistance further confirms that some of the SNP markers in our study could be
associated with Ph resistance in barley.

A plant immune system is multilayered and is triggered upon pathogen recognition.
PTI (pattern triggered immunity) constitutes the first layer of defense and is triggered by
plasma membrane anchored extra-cellular pattern recognition receptors (PTT) upon recog-
nition of conserved pathogen-associated molecular patterns (PAMPs). The second layer
of defense constitutes the intracellular receptors (NLR), which directly or indirectly recog-
nize pathogen secreted avirulence gene products (effectors) and trigger effector triggered
immunity (ETI), which often culminates into hypersensitive response to halt a pathogen’s
invasion. The vast majority of the known NLR have a modular structure composed of a
central nucleotide-binding (NBS) and C-terminal leucine-rich repeat (LRR) domain, where
the LRR domain directly/indirectly interacts with the pathogen’s effectors to initiate a
plant defense response [88,89]. The sequence of eight SRT SNP markers showed homology
with RLK and NLR (Table 3). On chromosome 1, two SRT SNP markers, SCRI_RS_118785
(56.44 cM) and JHI-Hv50k-2016-41795 (89.31 cM), encode the receptor-like protein kinase
(RLK). RLKs contain an ectodomain, a transmembrane spanning region, and an intracel-
lular cytoplasmic kinase domain to relay the pathogen recognition signal [88]. In barley,
Rph22 encodes a lectin receptor-like kinase and may possibly be involved in basal de-
fense if an analogy is to be drawn with other extracellular pattern recognition receptors.
Marcel et al. [26] reported the defense gene homologue, LR10 resistance-like protein (RLK),
as a candidate gene associated with Rphq9 on chromosome 7H. Similarly, in rice, RLK Xa21
confers resistance to bacterial blast caused by Xanthomonas oryzae pv. oryzae [88,90].

Likewise, the sequences of five SRT SNP markers encoded disease resistance proteins
belonging to the CC-NB-LRR family (Table 3). On chromosome 3H the SNP marker JHI-
Hv50k-2016-195152 (75.21 cM) encoded leucine-rich repeat protein kinase family protein
(HORVU3Hr1G079230) [73], JHI-Hv50k-2016-515270 (7H, 132.22 cM) shared homology with
a disease resistance RPP13-like protein 4 (HORVU7Hr1G118430), JHI-Hv50k-2016-109913
(2H, 88.39 cM) encoded disease resistance protein RPP13 (HORVU2Hr1G096190), JHI-
Hv50k-2016-112041 (2H, 91.15 cM) encoded a disease resistance protein (HORVU2Hr1G098
100), JHI-Hv50k-2016-430648 (118.98 cM) shared homology with disease resistance RPP8-
like protein 3 (HORVU6Hr1G092660), and JHI-Hv50k-2016-435962 (7H, 0.21 cM) shared
homology with a disease resistance protein (CC-NBS-LRR class; HORVU7Hr1G000040).
Interestingly, a disease resistance protein (HORVU2Hr1G098100) had the lowest p-value
(6.97 × 10−10), and a higher additive value (−1.13), which alone can reduce the disease
severity by 23% at the seedling stage. In Arabidopsis, RPP13 has been implicated exclusively
in resistance to Pseudomonas syringae pathovars [91–94]. Similarly, RPP8 was induced in
response to an oomycete fungus Hyaloperonospora arabidopsidis in Arabidopsidis thaliana [95].
It is important to note that four wheat leaf rust resistance genes, namely Lr1 [96], Lr10 [97],
Lr21 [98], and Lr22a [99], and one barley leaf rust resistance gene, Rph1 [100], encode
the CC-NBS-LRR class of disease resistance proteins. Recently, [101] mapped a new leaf
rust resistance gene Lr82 on chromosome 2H, and two of the putative candidate genes
(TraesCS2B01G608500 and TraesCS2B01G608800) encoded NLR disease resistance proteins.
In this study, we also found that the sequences of five SNPs on the chromosome 1, 2, 6, and
7H encode NLR proteins (Table 3), and the analysis of bi-parental mapping populations
will help in cloning and validation of these putative resistance genes.

Another SNP marker, JHI-Hv50k-2016-110777 (2H, 90.16 cM), sequence was homolo-
gous to the UDP-Glycosyltransferase (UGT) superfamily protein (HORVU2Hr1G096910).
Vatter et al. [73] also reported this candidate gene on chromosome 2H at 3.66 Mb. Gly-
cosylation is the last step in the triterpenoid pathway to produce many plant defense-
related compounds: phenolics, glucosinolates, salicylates, and anthocyanins. The glyco-
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syltransferase gene family is ubiquitous in the plant genome, and Arabidopsis thaliana has
107 putative UGTs [102]. The UGT74F1 mutant A. thaliana was deficient in salicylic acid
(SA) production with lower levels of resistance to P. syringae. Whereas, the UGT74F2
mutant produced higher levels of SA and was associated with resistance to P. syringae;
however, overexpression of UGT74F2 rendered Arabidopsis highly susceptible to P. syringae
infection [103,104]. Interestingly, the additive value of the UGT family member in this
study is positive (1.14), and it can promote susceptibility to Ph.

Adult plant resistance and partial resistance have been used interchangeably in the
literature, but Parlevliet and van Ommeren [105] differentiated partial resistance from SRT
and APR. In partial resistance, the host plant remains susceptible to LR at all growth stages,
but differences in infection frequency, latency period, and rate of spore production can
be observed in barley genotypes. In addition, partial resistance is controlled by many
minor genes that are additive in nature [106]. During field screening, barley genotypes are
exposed to field populations of Ph, which may be constituted of different races. Therefore,
adult plant stage resistance needs to be race-nonspecific in nature unlike SRT, which is
conditioned by a dominant resistance gene. One APR SNP marker, JHI-Hv50k-2016-80368
(APR-SAT17) on chromosome 2H (43.84 cM), encoded an ATP-binding cassette transporter
C (ABC) family member10 (HORVU2Hr1G022560). The ABC transporter proteins are
involved in disease resistance by secreting the anti-fungal products into the apoplast, such
as PEN3 in Arabidopsis against B. cinerea [107]. Interestingly, the wheat leaf rust resistance
gene Lr34 on chromosome 7H encodes an ABC transporter [108]. Owing to its non-specific
nature, it is believed that Lr34 improves the durability of other major genes when used in
combination. It provided resistance against stem rust, stipe rust, and powdery mildew of
wheat [109], in addition to powdery mildew and rust resistance in barley [110], and against
rice blast [111]. Interestingly, the marker allele of the SNP marker JHI-Hv50k-2016-80368
reduced the disease severity by −113.86 AUDPC units, and based on an analogy with
Lr34, this ABC transporter could be a strong marker target for non-race specific resistance
against Ph.

Two SNP markers, JHI-Hv50k-2016-277557 (5H, 1.11 cM) and BOPA2_12_31536 (4H,
63.39 cM), encoded nodulin-like proteins (AAV49984.1 and HORVU4Hr1G068990, respec-
tively). The nodulin-like proteins have an important role in the transport of various solutes
throughout plant development, and they are also involved in the interaction of plants
with pathogenic microbes, highlighting the implication of solute transport in plant innate
immunity [112]. In barley, the SNP marker 11_20162 was associated with a spot blotch
resistance QTL (Rcs-qtl-7H-32.81) and encoded an early nodulin-93 (HORVU7Hr1G020770)-
like protein [113]. Likewise, the wheat leaf rust resistance gene Lr67 also encodes a hexose
transporter, and a single amino acid substitution (Arg144Gly) in this hexose transporter,
which conferred resistance to wheat LR. Furthermore, transgenic expression of Lr67 in
barley conferred seedling and adult plant resistance to Ph [114,115]. Moreover, the newly
cloned BLR resistance gene Rph3 encodes a transmembrane protein, and it showed simi-
larity with various transport proteins [116]. Orthologues of existing known LR resistance
genes could be sought as potential gene editing targets for broad spectrum resistance to LR.

Many of the SNPs identified in this study encode functional proteins which have been
involved in plant defense against diverse fungal pathogens. Our study provides detailed
information for GWAS of Ph resistance in the barley AM2017 panel that could be efficiently
employed by barley breeders for fine mapping, gene cloning, and for MAS targeted at
improving resistance to Ph.

5. Conclusions

We have reported effective sources of resistance to P. hordei at the seedling and adult
plant stages in a diverse panel of barley genotypes (AM2017) supporting the potential of
this breeder-constructed panel to supply sources of valuable traits sought by breeders. In
addition, high density genotyping with 50k SNPs was combined with phenotypic data
to detect genomic regions associated with the seedling as well as the adult plant stage
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resistance in barley. This is the first comprehensive study published on the interaction of P.
hordei with a unique collection of barley genotypes, and subsequent GWAS analyses. We
have reported many of the previously identified QTL in addition to novel genomic loci
against P. hordei, which will be of particular importance in improving leaf rust resistance in
North African barley germplasm. Furthermore, SNP markers with high R2 and additive
effects can be converted into high-throughput functional markers for accelerated selection
and pyramiding of LR resistance for their deployment at both growth stages using speed
breeding and MAS.
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