
Citation: Lenart, A.; Wrona, D.;

Krupa, T. Health—Promoting

Properties of Highbush Blueberries

Depending on Type of Fertilization.

Agriculture 2022, 12, 1741. https://

doi.org/10.3390/agriculture12101741

Academic Editor: Grzegorz Lysiak

Received: 23 September 2022

Accepted: 17 October 2022

Published: 21 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Health—Promoting Properties of Highbush Blueberries
Depending on Type of Fertilization
Agnieszka Lenart *, Dariusz Wrona and Tomasz Krupa

Department of Pomology and Horticultural Economics, Warsaw University of Life Sciences—SGGW,
02-787 Warsaw, Poland
* Correspondence: agnieszka_lenart@sggw.edu.pl

Abstract: The purpose of the experiment was to demonstrate a comparison of fertilization with
and without biostimulation. A study was carried out in an experimental blueberry field in central
Poland (51◦55′42.7” N 20◦59′28.7” E) during the three growing seasons of 2019, 2020 and 2021,
on ‘Bluecrop’ shrubs growing at a distance of 1 × 3 m. The plants were re-planted in the spring
of each year and irrigated using drip irrigation. The experiment was conducted using a random
block design (four fertilizer treatments × five replications × six bushes). The fruits were tested for
antioxidant activity and amount of total polyphenols. Additionally, anthocyanin quantitative and
qualitative analysis was performed. The results indicated a significant effect of fertilizer combinations
on the values of the evaluated parameters. The positive effect of biostimulants on the content of
antioxidant compounds in highbush blueberry fruit was significant. In most of the combinations
in which additional biostimulants were used, higher values of the analyzed indicators (antioxidant
activity and polyphenol content) were observed. The most noteworthy was the T4 fertilization
program, where during treatment, soil and foliar fertilization were carried out with preparations that
contained biostimulants.

Keywords: biostimulation; seaweed extract; blueberries; polyphenols; antioxidants; anthocyanins;
fertilization

1. Introduction

The ever-increasing consumer demand for blueberries means that the cultivation of
this species in Poland, and around the world, rapidly rises each year. In addition to its
health-promoting and flavorsome qualities, blueberry fruit is highly sought after due to the
widespread marketing campaign promoting blueberries as superfoods [1–6]. Blueberries
are considered a natural source of health-promoting substances, containing a diverse
group of bioactive compounds that show positive effects on human health [7]. Beneficial
elements such as fiber, minerals, vitamins, and phenolic compounds with antioxidant
characteristics can be found in abundance in these fruits [8,9]. Blueberry fruits are widely
consumed as a dessert fruit, but they are also commonly used in processing as a dried
or frozen raw material, for juices, purees, jams, and even wine [10–12]. Berry fruits,
distinguished by their antioxidant richness, also include blueberry (Vaccinium myrtillus),
blackberry (Rubus fruticosus), chokeberry (Aronia melanocarpa), black currant (Ribes
nigrum), cranberry (Vaccinium macrocarpon), raspberry (Rubus idaeus), grape (Vitis
vinifera), and strawberry (Fragaria × ananassa) [13]. Antioxidants in the fruit are mainly
represented by vitamin C and polyphenols such as anthocyanins, phenolic acids, flavanols
and tannins [13]. Kęhkönen et al. [14] reported that berries are one of the richest sources of
antioxidants in our diet. According to Prior et al. [15], in particular, the fruits of highbush
blueberries deserve attention due to the high level of plant phenolic compounds which
determines the high antioxidant activity.

Rashidinejad [7] described the beneficial effects of highbush blueberry fruit for the
prevention of chronic diseases, including cancer, cardiovascular disorders, diabetes, and
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neurodegenerative diseases. Häkkinen and Törrönen [16] and Rimando et al. [17] reported
on the antioxidant and anti-cancer effects of phenolic compounds contained in berries.
Blueberry extracts reduce age-related decline in neurons and cognitive function, common
in disorders such as Alzheimer’s disease [18]. Bioactive substances with antioxidant
properties have hydroxyl groups (-OH) on aromatic rings. These are components produced
by secondary metabolism in plants. In addition to their health-promoting properties,
they have an important physiological function in plants. They are known to protect
plants from pests, pathogens and ultraviolet radiation, to regulate metabolic pathways
and impart to color and flavor to the plant [19]. According to Piątkowska et al. [20] and
Khoo et al. [21], anthocyanins are a group of phenolic compounds of very high health-
promoting importance. A study by Lee et al. [22] indicated that the following anthocyanins
are found in highbush blueberry fruit: cyanidins, delphinidins, malvinidins, peonidins, and
petunidins. According to Khoo et al. [21], anthocyanins are used as an appetite-stimulating
phytopharmaceutical, a cholagogue, and the highly bioavailable anthocyanin effectively
reduces cellular lipid peroxidation. Tsuda et al. [23] indicated that anthocyanins extracted
from beans (Phaseolus vulgaris) have antioxidant properties. The authors showed that a
‘purple corn color’ (PCC) diet rich in cyanidin 3-O-β-D-glucoside significantly inhibited
the development of obesity and alleviated hyperglycemia in mice induced by a high fat
(HF) diet. The PCC diet reduced mRNA levels of enzymes involved in fatty acid and
triacylglycerol synthesis. The decrease in enzyme levels as a result of the PCC diet may
contribute to a decrease in triacylglycerol accumulation in WAT (white adipose tissue).
Tsuda et al. [23] also pointed to the use of anthocyanins as a functional food factor, which
may have important implications in the prevention of obesity and diabetes. Numerous
scientific studies have proved the anticancer effects of anthocyanins [24]. Anthocyanins
and anthocyanin–pyruvic acids exhibit anticancer properties by inhibiting tumor cell
proliferation and act as anti-cell invasion agents and chemo-inhibitors [25]. A study by
Buena et al. [26] confirmed that the anthocyanin-rich fraction obtained from the Toro variety
had the highest anthocyanin content and antioxidant activity, and inhibited melanoma
cell proliferation in mice. The results of [26] indicated that anthocyanins from highbush
blueberry fruit could be used as a chemopreventive or adjuvant agent in controlling the
spread of cancer cells. Miyake et al. [27] confirmed that berries of the Vaccinium genus
are rich in anthocyanins that have beneficial effects in the treatment of eye diseases. They
showed that oral administration of blueberry extract to six-week-old mice prevented
photoreceptor cell dysfunction during retinitis pigmentosa.

The purpose of this study was to evaluate the effect of different fertilizer and biostim-
ulant combinations on the level of antioxidant activity, and polyphenol and anthocyanin
content in highbush blueberry fruit.

2. Materials and Methods
2.1. Location and Layout of the Study

This work was completed as part of a Ministry of Science and Higher Education
program “Doktorat Wdrożeniowy” no. um. 0060/DW/2018/02. The program’s goal is to
introduce, as part of doctoral studies, the possibility of developing cooperation between
the scientific and socioeconomic communities by introducing the possibility of educating a
doctoral student in collaboration with the entrepreneur (or other entity) employing them.
The experiment was conducted at the Warsaw University of Life Sciences’ Experimental
Blueberry Field in Bonie, central Poland (51◦55′42.7′ ′ N 20◦59′28.7′ ′ E), over a three-year
period from 2019 to 2021.

In the experimental field, the ‘Bluecrop’ shrub cultivar was spread out in a 1 × 3 m
spacing, and the quarters were drip-irrigated. The highest average monthly air tempera-
tures and total rainfall, throughout the three-year field experiment, were noted in 2019 and
2021, respectively (Table 1).
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Table 1. Average air temperature and total rainfall recorded during the described experiment.

2019 2020 2021

Month Total Rainfall
(mm·m−2)

Average Temp.
(◦C)

Total Rainfall
(mm·m−2)

Average Temp.
(◦C)

Total Rainfall
(mm·m−2)

Average Temp.
(◦C)

March 25.1 6.8 13.2 5 18.3 4

April 2.2 10.7 7.4 9 55.3 6.5

May 77.8 14.1 65.2 11.9 62.3 12.4

June 16 22.7 140.9 19.6 69.2 19.7

July 34.8 19.5 45.9 19.1 118.8 21.7

August 34.4 21.1 83.1 20.7 140.1 17.2

A Davis Vantage Pro weather station was used at the experimental field to conduct the
measurements. The substrate’s pH during the experiment ranged from 4.5 to 4.8. In order
to conduct the experiment, the soil was examined in a licensed laboratory of the Regional
Chemical and Agricultural Station in Łódź (Table 2), and based on the findings, nutrients
were added to the soil at the proper levels (Table 3).

Table 2. Soil testing report no. GO/502/18.

Salinity pH Content in mg/L

g NaCl/L in H2O N-NO3 N-NH4 P K Ca Mg Cl

0.08 4.9 <10.0 * <10.0 * <20.0 * <20.0 * 245 20 <10.0 *

PB 02 ed.3
from 1 March

2018 **

PB 01 ed.2
from 1 March

2018 **

PB 06 ed.1
from 28

May 2004 **

PB 69 ed.1
from 3 April

2017 **

PB 03 ed.2
from 19

March 2007 **

PB 04
ed.1 from

21 May
2004 **

PB 04
ed.1 from

21 May
2004 **

PB 05
ed.1 from

28 May
2004 **

PB 07
ed.1 from

28 May
2004 **

*/—result below the lower range of the method. **/—Research standard.

Table 3. Sum of nutrients used in the experiment in all assessed treatments (T1,T2,T3,T4).

N (kg/ha−1) P2O5 (kg/ha−1) K2O (kg/ha−1) SO3 (kg/ha−1) CaCO3
(kg/ha−1)

100 30 92.5 142 64

All study/experimental protocols involving plant materials were carried out in ac-
cordance with institutional, national, and international rules and regulations, and with
permission from the Warsaw University of Life Sciences.

The research subject was ‘Bluecrop’ highbush cultivar blueberries, using a random
block mechanism to conduct the experiment. Five repetitions of each of the four fertilizer
treatments were examined. Six plants were present in each replicate. The harvest was
conducted in 2019 from 1 July to 10 August; in 2020 from 5 July to 5 August; and in 2021
from 10 July to 10 August, respectively. Harvested fruit samples were averaged-out. The
experiment evaluated how biostimulation affected antioxidant activity, polyphenol content,
and quantitative and qualitative anthocyanin analyses. The following treatment scenarios
were used:

- ‘Treatment T1’—consisted of standard fertilization and foliar sprinkling without the
use of bioactive components (control treatment);

- ‘Treatment T2’—included foliar fertilization and typical sprinkling in addition to a
solution containing phytohormone precursors and biostimulants;
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- ‘Treatment T3’—comprised traditional foliar fertilizing and sprinkling, with a new
method of biostimulation based on extracts from various plants and sea algae, with
bioactive qualities intended to improve the physiological processes in crops;

- ‘Treatment T4’—biostimulant-containing formulations were used to fertilize the soil
and the leaves.

In their study, Lenart et al. [28] provided a thorough explanation of the combination of
nutrients provided in each treatment option used in their study; the amount of nutrients (N,
K, P, Mg, etc.) given to plants in each treatment of our experiment was equal or very close
to it. Our study evaluated the impact of several fertilization methods on plants’ capacity to
promote health and how the bioactive substances employed in biostimulant formulations
affected the nutritive value of the plants.

2.2. Research Methods

All reagents used for HPLC were of HPLC grade and purchased at Sigma-Aldrich
(Poznan, Poland) and Merck (Warsaw, Poland). Other chemicals were of analytical purity
grade and purchased at Alchem (Warsaw, Poland).

The phenolics were isolated by solid-phase extraction as described by Latocha et al. [29].
The total phenols content (TPC) was determined by the spectrophotometric method de-
scribed by Singleton et al. [30] by applying Folin & Ciocalteu’s reagent. The absorbance of
the solution was measured using a Marcel 330S PRO spectrophotometer (Marcel, Zielonka,
Poland) at the wavelength λ = 700 nm. The result was expressed in milligrams of gal-
lic acid equivalent (GAE) per 100 g of fresh weight (FW). The antioxidant activity (AA)
was determined according to Saint Criq de Gaulejac et al. [31] using DPPH free radical
(1,1-diphenyl-2-picrylhydrazine). The AA was calculated on the basis of absorbance mea-
surements for the sample (0.75 mL diluted fruit extract + 0.75 mL DPPH) performed after
10 min at λ = 517 nm in relation to the control sample (0.75 mL H2O + 0.75 mL DPPH).
The results were expressed in milligrams of ascorbic acid equivalent (AAE) per gram of
FW. The identification and quantitative analysis of anthocyanins were conducted sepa-
rately using the HPLC technique described by Szpadzik et al. [32], performed by means
of a PerkinElmer series 200 HPLC with a diode array detector (Perkin Elmer, Krakow,
Poland), using a LiChroCART® 125-3 (Merck KGaA, Darmstadt, Germany) column with a
1.0 mL/min flow rate, detected at 520 nm. The mobile phase was a mixture of water (A),
20% formic acid (B), and acetonitrile (C), with variable parameters of the gradient (A) and
(C). The anthocyanin content was given as milligrams per 100 g of fresh weight of fruit as
cyanidin-3-glucoside equivalent.

2.3. Statistical Analysis

The results were analyzed statistically in Statistica 13.3 (StatSoft Polska, Krakow,
Poland), using the two-way analysis of variance. Tukey test was used for evaluation of the
significance of differences between the means, accepting the significance level as 5%.

3. Results

The fertilizer combinations used in the experiment influenced the level of antioxidant
activity (DPPH) in the fruits studied. Fruits from the control combination, where fertilizers
with bioactive substances were not applied, showed significantly lower levels of antioxidant
activity (Table 4). In the combinations in which additional biostimulants were applied, a
higher value of the analyzed index was observed, and the T4 and T3 fertilization programs
deserve special mention (Figure 1).
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Table 4. Influence of fertilization technology on antioxidant activity—data averaged over the years of
the study. * Data followed by the same letter are not significantly different.

Combination Year Antioxidant Activity
[µM Trolox·100 g−1]

3 Years Average
Antioxidant Activity
[µM Trolox·100 g−1]

T1
2019 0.356 ab *

0.375 a2020 0.356 ab
2021 0.414 bc

T2
2019 0.241 a

0.381 a2020 0.430 bc
2021 0.472 c

T3
2019 0.481 c

0.437 ab2020 0.413 bc
2021 0.416 bc

T4
2019 0.517 c

0.489 b2020 0.487 c
2021 0.463 bc

p-value <0.01 <0.01
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Figure 1. Influence of fertilization technology on antioxidant activity—average per harvest year, and
three year average.

The antioxidant capacity in each year of the study ranged from the lowest in the T1
combination in 2019 and 2020 at 0.356 µM Trolox·100 g−1 FW, to the highest at 0.517 µM
Trolox·100 g−1 FW in the T4 combination in 2019 (Table 1).

The fertilizer combinations used in the experiment influenced the polyphenol content
of the fruits studied (Table 5). Fruits from the control combination, where products with
biostimulants were not used, had a significantly lower content of total polyphenols. In
most of the combinations in which additional biostimulants were applied, a higher value
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of the analyzed index was observed, and the most noteworthy was the T4 fertilization
program (Figure 2). Fertilization with the several biostimulants used in the T4 combination
caused a significantly higher content of total polyphenols in the fruit. The application of
biostimulation increased the content of total polyphenols by 13% in blueberry fruit, on
average, for the year of the study.

Table 5. Influence of fertilization technology on amount of polyphenols—data averaged over the
years of the study. * Data followed by the same letter are not significantly different.

Combination Year Amount of Polyphenols
[mg 100 g−1 FW]

3-Year Average
[mg 100 g−1 FW]

T1
2019 659 a *

742 a2020 766 ab
2021 801 bc

T2
2019 759 ab

802 ab2020 845 bc
2021 802 bc

T3
2019 859 bc

820 ab2020 752 ab
2021 848 bc

T4
2019 759 ab

837 b2020 878 c
2021 875 c

p-value <0.01 <0.01
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As a result of qualitative studies, ten compounds from the anthocyanin group were de-
termined in highbush blueberry fruit, including compounds from the delphinidin, petunidin,
peonidin and malvinidin groups. The applied fertilization combinations had a significant
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effect on the content of individual compounds isolated during the study (Table 6). In the del-
phinidin group, delphinidin-3-glucoside (Dp-3-glu), delphinidin-3-galactoside (Dp-3-gal) and
delphinidin-3-arabinoside (Dp-3-ara) were identified. Of the three delphinidins mentioned,
only Dp-3-ara was not determined by the biostimulants used in the fertilization programs.
Fruit from the T4 combination, in which fertilization with a range of different complementary
biostimulants was applied, recorded higher contents of Dp-3-glu and Dp-3-gal than the other
combinations. For the other combinations, the effect of the applied preparations was similar,
and there were no significant differences between the evaluated fertilization programs on the
content of anthocyanins of the group in question (Table 6).

Table 6. Content of anthocyanin group active compounds in relation to fertilizer combination
(mg·100 g−1 FW). * Data followed by the same letter are not significantly different.

Dp-3-glu Dp-3-gal Dp-3-ara Pt-3-glu Pt-3-gal Pt-3-ara Pn-3-glu Mv-3-glu Mv-3-gal Mv-3-ara

C
om

bi
na

ti
on

s T1 19.83 ab * 10.58 a 18.53 a 10.76 a 7.36 a 6.42 a 1.88 b 26.5 a 26.08 a 19.00 a

T2 18.88 ab 11.18 a 20.22 a 10.98 a 7.56 a 6.50 a 2.0 ab 36.73 b 26.40 a 19.09 a

T3 17.19 a 10.38 a 21.10 a 11.36 a 7.90 a 7.51 a 2.36 b 28.62 a 27.52 a 22.79 a

T4 21.78 b 12.96 b 22.88 a 12.74 a 10.31 a 8.04 a 1.38 a 26.16 a 28.84 a 23.43 a

p-value <0.0001 <0.0001 0.0816 0.0816 0.0816 0.0816 <0.0001 <0.0001 0.0816 0.0816

The preparations and biostimulants used in the study had no significant effect on the
content of anthocyanins from the petunidin group. The study isolated petunidin-3-glucoside
(Pt-3-glu), petunidin-3-galactoside (Pt-3-gal) and petunidin-3-arabidoside (Pt-3-ara). Although
no significant correlations were shown when evaluating petunidins, it was notable that, as
in the case of delphinidins, the content of individual petunidins was higher in fruit from the
T4 fertilization combination (in which the full range of products with biostimulation was
applied), compared with T1, T2 or T3. The control combination in which no biostimulants
were applied (T1) had a slightly lower petunidin content in the fruit. The study highlighted
the significant effect of the tested fertilizer combinations on peonidin-3-glucoside (Pn-3-glu)
content. Its content ranged from 1.38 mg cy-3-gl -100 g-1 FW in the T4 combination, to 1.88 mg
cy-3-gl-100 g-1 FW in the T1 control combination, and significantly depended on the type of
fertilization used. Unexpectedly, statistical evaluation proved a significantly higher content
of Pn-3-glu in fruit from the control combination, where only conventional fertilization was
applied, compared to T2, T3 or T4. In the fruits studied, malvinidins were the largest group
and also the least active, and the fertilization combinations used slightly determined the
content of these anthocyanins. Malvinidin-3-glucoside (Mv-3-glu), malvinidin-3-galactoside
(Mv-3-gal) and malvinidin-3-arabidoside (Mv-3-ara) were identified; the Mv-3-glu content in
blueberry fruits was highest using the T2 combination, while the other combinations showed
no significant effect. The other two anthocyanins, Mv-3-gal and Mv-3-ara, also showed no
significant effect of the treatment combinations.

4. Discussion

Growing consumer demand for highbush blueberry fruit causes producers to look
for modern agrotechnical solutions to ensure high yields and high quality of the obtained
fruits [33,34]. Information campaigns promoting the health-promoting qualities of berries
determine not only an increased awareness of consumers on this topic, but also the deci-
sions of producers to cultivate in a sustainable manner. Seaweed-based products are of
particular interest to growers [28,35]. Seaweed extracts often form the basis of fertilization
programs with biostimulation [36,37]. According to Du Jardin [38], a biostimulant can be
defined in the following manner: “A plant biostimulant is any substance or microorganism
applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or
crop quality traits, regardless of its nutrients content. By extension, plant biostimulants also
designate commercial products containing mixtures of such substances and/or microorgan-
isms.” Numerous scientific studies have reported positive effects of seaweed extracts on
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plants, including improved yield and yield quality, and increased resistance to biotic and
abiotic stresses [39]. As reported by Mooney and Van Staden [40], formulations based on
seaweed extracts have beneficial effects on plant metabolism, promote growth, resistance
to pathogens and increase antioxidant activity. Additionally, the studies conducted in this
paper indicated the positive effect of active compounds extracted from marine algae. It
should be noted that the high antioxidant activity of highbush blueberry fruit confirmed
in the T4 combination may be due to the use of several active compounds obtained from
marine algae and tropical and desert plants in the fertilization program. Interesting research
results were presented by Grazani et al. [41], where the authors stressed the importance
of using biostimulants in the cultivation of Olea europaea to mitigate the effects of abiotic
stresses (high temperature and drought). The effect of preparations with seaweed extracts
was confirmed by higher values in leaf number growth and leaf area, as well as the same
treatments showing positively significant values for antioxidant activity and polyphenol
content. Similar results for ‘Gala Must’ apple fruit were obtained by Nagy et al. [42] indi-
cating that a biostimulant fertilizer formulation containing seaweed extracts significantly
improved antioxidant properties in the studied variety of apples. Ambroszczyk et al. [43]
proved that tomato fruits treated with biostimulation preparations had significantly higher
antioxidant activity compared with fruits not treated with preparations containing marine
algae extracts. In our own experiment, we found a higher content of total polyphenols
in highbush blueberry fruits after application of preparations containing biostimulants
(T4). A similar relationship was confirmed by Mikos-Bielak [44]. The author showed that a
biostimulant obtained from seaweed extracts, when applied to raspberry crops, resulted in
a 30% increase in the polyphenol content of fruits, compared with the control group. As
reported by DeBoer [19], polyphenols in plants not only have a health-promoting effect on
the human body but also perform important defined functions in plant organisms. Many
authors have reported that the use of programs based on seaweed extracts increases the
biological performance of plants, has an anti-stress effect on plants, and strengthens the
defined functions of plant organisms [28,45,46]. In a research paper by Sylvia et al. [47], the
authors evaluated the effects of seaweed extracts on the antioxidant activity and polyphenol
content of fruit, and found a program containing a combination of several biostimulants
to be the most effective. Similar observations were also obtained in the present study.
Mukherjee [48] reported that seaweed is a source of elicitors due to the presence of sev-
eral different polysaccharide compounds they take a direct part in the activation of plant
secondary metabolism pathways and the mobilization of signaling molecules to trigger a
defined response in the plant to a stress factor (biotic or abiotic). Higher concentrations of
health-promoting components and nutrients in agri-horticultural crops following use of
products containing seaweed extracts were found in maize [49], broccoli [50], Arabidop-
sis [51], strawberry [52], grape [53], and spinach [54]. Fan et al. [54] reported that the total
content of phenols, flavonoids and antioxidant compounds in spinach was significantly
higher after treatment with a marine algae extract, as a result of increased activity of, among
other things, chalcone isomerase, which is a key enzyme in the biosynthesis of flavanone
precursors and triggers activation of plant defined compounds. The effect of biostimulant
extracts on the antioxidant properties of highbush blueberry fruit, proven in the present
study, was also confirmed by Bi et al. [55] and Vera et al. [56]. The authors indicated that
the use of brown algae extracts in agricultural crops influenced better assimilation and
concentration of nutrients, increased plant metabolism, the rate of cell division and the
photosynthetic index, which ultimately increased the physiological performance of plants.

5. Conclusions

The experiment showed that fertilizers with biostimulation have a significant effect
on increasing the antioxidant activity of highbush blueberry fruit and the content of total
polyphenols, and also have a significant effect on the content of anthocyanins. A notable
result of the study was the fertilizer program in which various bioactive substances derived
from marine algae and desert plants were used. Therefore, it can be concluded that
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the synergistic effect of the interaction of several biostimulants more effectively affects
the mechanisms regulating plant metabolism, supports physiological functions and, in
particular, activates defined mechanisms. Based on the present study, it can be concluded
that the use of biostimulated products in horticulture has a significant positive impact on
the health-promoting properties of fruits. The mechanisms affecting the concentration
of antioxidants in plant fruits treated with seaweed extracts or bioactive substances still
require further research.
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