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Abstract: The codling moth (Cydia pomonella) is probably the most harmful pest in apple and pear
orchards. The crop loss due to the high harmfulness of the insect can be extremely expensive; therefore,
sophisticated pest management is necessary to protect the crop. The conventional monitoring
approach for insect swarming has been based on traps that are periodically checked by human
operators. However, this workflow can be automatized. To achieve this goal, a dedicated image
capture device and an accurate insect counter algorithm are necessary which make online insect
swarm prediction possible. From the hardware side, more camera-equipped embedded systems
have been designed to remotely capture and upload pest trap images. From the software side, with
the aid of machine vision and machine learning methods, traditional (manual) identification and
counting can be solved by algorithm. With the appropriate combination of the hardware and software
components, spraying can be accurately scheduled, and the crop-defending cost will be significantly
reduced. Although automatic traps have been developed for more pest species and there are a
large number of papers which investigate insect detection, a limited number of articles focus on the
C. pomonella. The aim of this paper is to review the state of the art of C. pomonella monitoring with
camera-equipped traps. The paper presents the advantages and disadvantages of automated traps’
hardware and software components and examines their practical applicability.

Keywords: automated trap; insect monitoring; pest management; precision agriculture; remote sensing

1. Introduction

The apple is one of the most important fruits in the world due to its versatile use [1].
Moreover, it is easy to grow, store, and transport. Its most harmful pest is the codling
moth [2]. It is a small insect which can damage the whole orchard within some days. Apple
growers need to handle this problem worldwide because international trade and tourism
has led to the global spread of this pest [3]. This type of pest originally comes from Central
Asia, but it has spread throughout Europe, North America, South Africa, Australia, and
China [4]. In New Zealand, they appeared over 150 years ago [5], while a new invasion
site was found in 2006 in northeastern China and considered as one of the most harmful
fruit pests [6]. Currently, one of the main control strategies against the codling moth is to
track the pest population and apply insecticides at the time of the insect invasion [7]. In
apple orchards, approximately 70% of insecticide treatments have been applied against
codling moth [1]. In practice, pheromone-based traps are used to estimate the codling
moth population in a given area [8]. Inside the trap, the pheromone substance is placed
on a sticky paper. Generally, the sticky paper is a colored or transparent cardboard with
a sticky glue layer. The pheromone attracts males to the trap and when the pest enters
the trap, it remains stuck on the sticky paper. Sticky papers are then periodically changed
and inspected by an expert who count the number of insects found on them. For example,
Figure 1 shows some sticky papers with captured codling moths.
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Figure 1. Sticky papers with captured moths (a,b), and without moth (c). 

In most countries, the codling moth monitoring is conducted from April to October, 
but it depends on the climate conditions [9]. Timely data about the number of insects and 
their species in the traps can aid in better pest management. The insect count gives an 
estimate for pest population, and helps farmers in determining the emergence period, the 
right amount of pesticide to use, and the effectiveness of the pest treatment [10]. 

Manual insect monitoring requires a substantial amount of manpower. Manually 
counting pests on a sticky paper is a very slow, tedious, and expensive process, especially 
when the area is large. In addition, it requires a skilled person capable of distinguishing 
insect species [11]. Those reasons indicate well why automating the identification and 
counting process would be very helpful. Moreover, the traditional pest counting does not 
give immediate feedback; therefore, pest population monitoring has a very low temporal 
resolution. However, the temporal resolution is very important in the case of the codling 
moth because if the information on the number of pests cannot be obtained in time, it is 
impossible to take immediate action [12]. 

Due to the above reasons, researchers and the industry moved towards smart solu-
tions. In the last decade, the advances of miniaturized sensor technology, microcontrol-
lers, and telecommunication engineering allowed the development of automated insect 
monitoring traps. Against manual counting, automated traps improve the temporal reso-
lution of pest population monitoring to better guide crop protection. Those traps can be 
seen as embedded systems which are designed for a pre-defined task and consist of a 
hardware and a software part. Embedded systems have been widely used in agriculture 
recently, and they allow remote surveillance with the use of RBG (Red, Green, Blue) cam-
eras [13]. Similar camera-equipped devices can effectively help the Integrated Pest Man-
agement (IPM) where the goal is to reduce insect pest population below the economic 
injury level. Most of the IPM systems are connected to wireless networks for monitoring 
orchards. Some of them provide online services, while others provide off-line services to 
help in the decision-making process [10]. Pest monitoring from a distant location opens 
the opportunity for continuously measuring insect population dynamics. The goal would 
be the execution of more precise treatments and to coordinate the interventions. It mainly 
means that the spraying needs to be performed only at the right time when the pest pop-
ulation is higher than a critical level. Such a forecast not only has economic (saving money) 
but also significant environmental effects (less spraying, less amount of insecticide, etc.) 
because farmers can apply insecticides at scheduled times to defend crops [14]. 

Beyond the hardware part, image processing, deep learning, and edge computing 
technologies also need to be adopted to automatize the insect counting process. Due to 
the current development of machine vision and learning technologies, deep object detec-
tor algorithms can be used to solve object detection problems with promising 

Figure 1. Sticky papers with captured moths (a,b), and without moth (c).

In most countries, the codling moth monitoring is conducted from April to October,
but it depends on the climate conditions [9]. Timely data about the number of insects and
their species in the traps can aid in better pest management. The insect count gives an
estimate for pest population, and helps farmers in determining the emergence period, the
right amount of pesticide to use, and the effectiveness of the pest treatment [10].

Manual insect monitoring requires a substantial amount of manpower. Manually
counting pests on a sticky paper is a very slow, tedious, and expensive process, especially
when the area is large. In addition, it requires a skilled person capable of distinguishing
insect species [11]. Those reasons indicate well why automating the identification and
counting process would be very helpful. Moreover, the traditional pest counting does not
give immediate feedback; therefore, pest population monitoring has a very low temporal
resolution. However, the temporal resolution is very important in the case of the codling
moth because if the information on the number of pests cannot be obtained in time, it is
impossible to take immediate action [12].

Due to the above reasons, researchers and the industry moved towards smart solutions.
In the last decade, the advances of miniaturized sensor technology, microcontrollers, and
telecommunication engineering allowed the development of automated insect monitoring
traps. Against manual counting, automated traps improve the temporal resolution of
pest population monitoring to better guide crop protection. Those traps can be seen as
embedded systems which are designed for a pre-defined task and consist of a hardware
and a software part. Embedded systems have been widely used in agriculture recently, and
they allow remote surveillance with the use of RBG (Red, Green, Blue) cameras [13]. Similar
camera-equipped devices can effectively help the Integrated Pest Management (IPM) where
the goal is to reduce insect pest population below the economic injury level. Most of the
IPM systems are connected to wireless networks for monitoring orchards. Some of them
provide online services, while others provide off-line services to help in the decision-
making process [10]. Pest monitoring from a distant location opens the opportunity for
continuously measuring insect population dynamics. The goal would be the execution
of more precise treatments and to coordinate the interventions. It mainly means that
the spraying needs to be performed only at the right time when the pest population is
higher than a critical level. Such a forecast not only has economic (saving money) but also
significant environmental effects (less spraying, less amount of insecticide, etc.) because
farmers can apply insecticides at scheduled times to defend crops [14].

Beyond the hardware part, image processing, deep learning, and edge computing
technologies also need to be adopted to automatize the insect counting process. Due to the
current development of machine vision and learning technologies, deep object detector
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algorithms can be used to solve object detection problems with promising performance, not
just in computer science but also in agriculture [15]. This is not surprising, because insect
counting can be seen as a special object detection problem, thus the one or two-staged Con-
volutional Neural Network (CNN)-based object detectors can be used effectively [16,17].

However, due to the multiple poses, texture and size difference between insects
attached to sticky paper, the development of automatic insect counting methods is quite
challenging. Those issues are clearly visible on Figure 1. Since moths are cached in different
poses, the insect counter model needs to be rotation invariant. To handle size differences
(e.g., fully open wings, half open wings, closed wings), features generated by the model
need to be scale invariant. Finally, the texture difference of cached insects (e.g., insects have
different texture on its back and belly) can be fixed with generalized color descriptors.

2. Materials and Methods

The efficiency of pest monitoring systems depends on both, the accuracy of the chosen
pest counting method and the electrical circuit inside the trap. In the market, some com-
mercially automated pest management systems are already available that support farmers
to remotely monitor pest population in their orchards, such as Trapview (EFOS d.o.o.,
Hrusevje, Slovenia), iSCOUT (Stiching iScout, Bilthoven, Utrecht, The Netherlands), and
the Z-Trap (Spensa Technologies Inc., West Lafayette, IN, USA) smart traps [18]. A sample
image about those three commercial traps can be seen on Figure 2. Beyond commercial
traps, some research groups have also proposed prototype systems to pest monitoring and
counting in past years.
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The development of insect counting algorithms runs on two lines. In the first one,
the original or a modified version of the well-known deep object detectors such as YOLO
and Faster R-CNN are used for insect counting. In the second one, segmentation and
classification are separated from each other. In the articles dealing with C. pomonella, the
second one is the popular approach.

This paper covers an in-depth review on the automatic detection and monitoring
of codling moth with camera-equipped traps. The following sections present the avail-
able commercial and prototype (from the literature) automated traps and insect counting
techniques that can currently be used in apple orchards to monitor the population of
C. pomonella. This review is based on several research papers, earlier reviews, online re-
sources, and own experiences.

3. Results
3.1. Commercial Camera-Equipped Traps

Out of the commercial traps, probably the most popular is the Trapview pest manage-
ment system which came on to the market in 2013 [19]. The standard system is powered by
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two lithium-ion batteries (with 3.7 V voltage and 2.2 Ah capacity) and a 4 W solar panel.
The trap contains four 5 MP (megapixel) cameras to capture images of the sticky paper. At
the time of the evaluation, images were concatenated into a single picture on the screen.
The system allows a maximum of three pictures per day and requires 100–200 MB of storage
per month. Each trap uses a GPRS module for wireless communication to create connection
with the cloud server while a GPS module provides information on the location of the trap
for mapping purposes.

The iSCOUT high-resolution camera system is designed to different insect types
including the codling moth. The trap is equipped with a 10 MP camera which provides
high quality images about the sticky plate. Captured images are sent via LTE network
toward the server side where an AI-based software analyzes them. Its power supply is
provided by a 6 V rechargeable lead acid battery which has a 12 Ah capacity.

The Z-Trap is another insect trapping device but against the Trapview, it automatically
detects the number of insects captured by the trap and sends the data wirelessly to the
grower’s mobile phone or web interface. The Z-Trap has been developed at the Purdue
University and later was commercialized in the Purdue Research Park by Spensa Technolo-
gies Inc. [20]. It is powered by a lithium phosphate battery which can operate the trap for
as long as 6 months under common monitoring conditions. However, many growers are
not satisfied by the cost and scalability of commercial traps. Schrader et al. [21] mentioned
that commercial remote monitoring traps are adopted hesitantly by growers because they
are expensive (approximately USD 1375/ha) and are used at a low trap density (1 trap
every 4 ha while the recommended would be 1 trap/ha).

3.2. Earlier Prototype Traps

An early prototype trap has been proposed by Guarnieri et al. [22] where the controller
unit inside the trap is a S60 (3rd edition) smartphone which has an integrated camera of
3 MP and its operating system is Symbian (Symbian, ver.9.0, Symbian Ltd., London, UK).
They claimed that the 3 MP camera resolution is higher than the minimum resolution
(>2 MP) to recognize the morphological characteristics of the codling moth. The phone
is extended with an external power management unit consisting of an MSP430F2013
microcontroller, an ultralow power switch, a TPS7333 voltage regulator, and 4 rechargeable
lithium batteries of 4800 mAh. In this system, the captured images are sent via GPRS
network to the server where the visual evaluation takes place.

A few years later, the advantages of integrated circuit technology boosted the auto-
mated trap design. In 2019, Brunelli et al. [23] developed a trap where the central unit was
a Raspberry Pi which is extended with a camera for image capture and an Intel Movidius
Neural Compute Stick to run the moth counting method. The wireless communication
is guaranteed by a LoRa modem. According to the authors’ measurements, the active
time-period of their trap is approximately 62 s and a 9 Ah battery is enough to sustain the
trap for more than one year.

In 2020, Segalla et al. [24] also wrote about an automated trap which is very similar
to the trap proposed by Brunelli et al. [23]. The two articles show high similarity. For
example, the central unit is a Raspberry Pi 3 extended with a Movidius computing stick and
the insect counting takes place inside the trap with a VGG16-based deep neural network
model in both cases. However, there are differences as well. Since the Intel Movidius
Neural Compute Stick is rather power demanding, the authors of [24] measured the energy
consumption of the Raspberry Pi 3 and 4 devices with and without the accelerator stick.
They found that the Raspberry Pi 3 with the accelerator stick requires the least amount
of energy to run the moth counter software. According to their measurement, the active
state (program execution) is more than 50 s. Their visual illustration about the power
consumption shows more than 400 mA avg. power consumption in the active state. The
authors measured 10.73 mA avg. power consumption/cycle. So, the predicted number of
cycles is 169 with the used 1820 mAh single cell LiPo battery. In addition, their prototype
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also includes a solar energy harvester and a Pi-Juice-Hat which is responsible for the
power management.

In the same year, Brunelli et al. [25] designed another low-power trap where the central
unit is a GAP8 SoC (System on Chip). They claimed that the power consumption of the
board is 30 uW in deep sleep mode, thus it may operate without any maintenance for years.
Their camera unit is grey scale with low resolution (244× 324 pixels) to minimize the image
processing time. The image processing is placed into the trap and the result is sent via LoRa
protocol toward the receiving side.

In the next year, several new automated traps were created. Perez-Aparicio et al. [26]
made a relatively large trap from polypropylene food containers. The power supply is
provided by a 12 V, 7 Ah lead-acid battery which is charged from a 20 W solar panel. Due
to the weight of the power supply unit (~7.5 kg), it is held by a steel bar. The electronic part
of their trap consists of a Raspberry Pi Zero, an 8 MP infrared camera, and infrared LED for
night vision. In this trap type, the obtained images are stored on the Pi’s microSD card and
the user need to download them for processing. Their estimated trap price was EUR 150.
Hadi et al. [27] proposed a sticky box which is made of four polystyrene plates. For image
capture, a Raspberry Pi camera is used which can be rotated by servo motors. Inside the
box, a Raspberry Pi 3 Model B+ and an Arduino board are placed. The primary task of the
Raspberry Pi is the image capturing and saving while the Arduino board is responsible
for the motor movement and external sensor handling such as the rain sensor. In their
initial setting, the main components of the circuit are glued into a plastic box and some of
them are in a breadboard. The authors mentioned that the power source is a 12 V 7.2 A
rechargeable battery, but the power consumption is not detailed. In the prototype trap of
Preti et al. [12] the central unit was a low-power ESP32 microcontroller with integrated WIFI
and Bluetooth modules. The camera is a 5 MP Omnivision OV5648 with a 2592 × 1944 max
resolution. The power sources are two lithium rechargeable graphene batteries connected
in series. These batteries can supply 3500 mA as maximum current at 7.2 V. During active
mode, the electronic board requires 300 mA of current. The batteries are charged with
two photovoltaic modules (12 V, 2 W). The communication module is a SIM800 which is
responsible for image transmission toward the Java-based server. The estimated production
cost of one prototype trap in total EUR 375.

3.3. Current Prototype Traps

Since there was not generally any accepted guideline to the automated trap’s circuit
design, circuit development continued in 2022. Schrader et al. [21] considered the cost and
operating time as the two main criterion. They presented the development of a plug-in
imaging system for pheromone delta traps used in pest population monitoring. The plug-in
can be connected to the top of a delta trap, and it captures images about the sticky plate.
Here, the central unit is an Arducam IoTai ESP32 development board that is equipped with
an OV2640 imager that provides 2 MP image resolution. The captured images are stored
on the on-board microSD card in 320 × 240 pixel resolution. The circuit is powered by
a 350 mAh, 3.7 V lithium polymer ion battery. The developers stated that the operating
time of the trap is approximately 2 weeks if it captures images at daily intervals. The
system’s building cost is about USD 33 per unit. However, this circuit does not allow
automated operation because images must be collected manually. Finally, the latest trap
has been proposed by Suto [28]. In this article a detailed description can be found about a
plug-in which is dedicated to the Raspberry Pi devices, especially to the Zero W and W 2.
In the center of the board, a fixed-focus, Raspberry Pi v2 camera is located. The circuit
incorporates a SIM7600E-H and an EMB-LR1276S module for communication via mobile
network and LoRa wide area network. Since, the Raspberry single board computers have
no sleep mode, the author developed a particular on/off timing circuit that integrates an
RTC, an RC oscillator and an 8-bit shift register. This trap is designed to on-board image
evaluation, and it has been tested with a deep object detector method. The test results
showed that its average power consumption is 2.4 W (with LTE information transmission)
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during the active state (400 s) while in the inactive state it is only 22 mW. According to the
author’s estimation, the lifetime of the trap would be less than 80 days with a 11 Ah battery.
In order for the operation time of the trap to be longer, a solar charger also has been placed
on the plug-in board where the charging controller is a LT3652 IC (integrated circuit) from
the Linear Technology Corporation.

A summary about the key features of traps can be found in Table 1. The Z-trap has
been omitted from the table due to insufficient information. In addition, an illustration of
some prototype traps can be seen on Figure 3.

Table 1. Key features of automated traps. Empty cell means that the information is not available.

Trap Type Controllable
Unit

Battery
Capacity

Power
Consumption

Solar
Charger Camera Communication Insect

Counting
Cost/
Unit

Trapview - 2 × 2.2 Ah - Yes 4 × 5 MP Mobile network Server side -

iSCOUT - 12 Ah - Yes 10 MP Mobile network Server side -

[12] ESP 32 3.5 Ah 1.5 W
(active state) Yes 5 MP Mobile network Server side EUR 375

[21] Arducam
IoTai 0.35 Ah - No 2 MP Not used Not applied USD 33

[22] S60 phone 4 × 4.8 Ah - No 3 MP Mobile network Not applied -

[23] Pi 3 +
Movidius stick 9 Ah - No 8 MP LoRa In-trap -

[24] Pi 3 +
Movidius stick 1.8 Ah 0.054 W

(average) Yes - LoRa In-trap -

[25] GAP8 SoC - 30 uW
(sleep mode) No >1 MP LoRa In-trap -

[26] Pi Zero W 7 Ah - Yes 8 MP Not used Not applied EUR 150

[27] Pi 3 +
Arduino Uno 7.2 A - No 8 MP Not used Not applied USD 500

[28] Pi Zero 11 Ah

2.4 W
(active state)

2 2 mW
(inactive state)

Yes 8 MP LoRA/mobile
network In-trap USD 75
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3.4. Databases and Data Generation

A significant barrier of the codling moth counting algorithm development is the lack
of public trap images. In the earlier papers, the main goal was the insect pest classification
where the image typically contains a single insect. As an example, Xie et al. [29] tested their
two-phases insect classifier method on the images of 24 insect species with approximately
60 images per class. Although the authors shared their images with the community, this
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was not common because most scientists worked on their own unpublic images [30,31].
A review from 2017 also mentioned the lack of a freely available (and quite extensive)
reference dataset [32]. In the following year, Kalamatianos et al. [33] presented a dataset
with images of McPhail trap’s contents. It was the DIRT (Dacus Image Recognition Toolkit).
Most images depict olive fruit fly, collected in Corfu, Greece. The images are obtained with
smart phone and tablets; therefore, they are not standardized. The original (filtered) dataset
contained 202 pictures which have been cut into four slices.

Later, Xie et al. [34] extended their dataset to 4500 images obtained about pests of
corn, soybean, wheat, and canola. Since the authors made the images available for the
researcher community, other researchers also used them as a data source [35,36]. Although
public datasets have already been available, due to the rise in deep machine learning
algorithms, the number of images inside them did not seem enough. To overcome this
issue, Wu et al. [37] created the IP102 freely available database for pest classification. In
the paper, they gave a review of the used databases in previous works and claimed that
earlier public datasets do not contain enough samples for the efficient training of deep
learning algorithms. The IP102 contains more than 75,000 images of 102 insect species but
only a fraction (approximately 19,000) of the images have been annotated. The dataset
has a hierarchical structure where insects that mainly affect a specific agricultural product
are grouped into the same upper-level category. In the same year, the Kaggle community
published another freely available large-scale database. It is called the Fieldguide Challenge:
Moths & Butterflies. It contains 530,000 images of 5419 pest species. The weakness of this
database is the lack of species name (classes are identified by ID without name).

Unfortunately, the earlier mentioned databases do not contain images of C. pomonella.
Moreover, on those images, only one insect can be seen. For illustration, Figure 4 shows
sample images from the Fieldguide Challenge dataset. Obviously, the difference between
those images and trap images (see Figure 1) is substantial because trap images can be more
different insect species captured in different poses while database images contain only one
clearly visible insect which fills the image. To handle this problem, Suto [38] proposed a
particular idea. He generated a binary dataset from the Fieldguide Challenge database
(only 25 classes) where insects on the “positive” images were visually similar to the codling
moth. Thereafter, the binary dataset has been used to train a deep moth counter model.
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Counting and contains more than 2000 images. Its images were captured with a light trap
and the codling moth does not belong to the investigated insect species.

3.5. Evaluation Metrics

An interesting question is how can the accuracy of an insect counting method be
measured? In 2016, Ding and Taylor [40] observed that there is no standard protocol
for the evaluation of insect counting algorithms because this is a relatively new field of
computer vision. Therefore, they adopted metrics from the pedestrian detection problem
with some minor modifications. Their evaluation is based on the statistics of misdetections,
correct detections, and false positives. In this context, the misdetection refers to a labelled
region which has not been detected by the algorithm while the false positive refers a
bounding box (region of interest) proposed by the algorithm which does not correspond
to any ground truth region. To determine if a proposed bounding box correct or not, the
Intersection-over-Minimum (IoMin) heuristic has been used (1):

IoMin
(
bp, bt

)
=

area(bp ∩ bt)

min(area(bp), area(bt))
(1)

where bt is the ground truth bounding box and bp is the bounding box proposed by the
algorithm. They supposed that a specific ground truth bounding box is correctly detected
if there is at least one bp such that IoMin(bp, bt) > 0.5. When multiple proposed boxes
satisfy the condition, the one with the highest probability had been chosen. After this
condition is applied on all ground truth boxes, unmatched boxes are considered as false
positives. One of their performance metrics was the area under the precision–recall curve
where the precision (2) and recall (3) with threshold value k ε K can be calculated with the
following formulas:

p(k) =
# true positive detections

total number o f detections
(2)

r(k) =
# true positive detections

total number o f ground truth boxes
(3)

The above-mentioned area under the precision–recall curve is also called as AP (aver-
age precision) (4). This metric along with its averaged version for all classes (mAP) were
widely adopted by other researchers as quantitative object level metrics [13,16,41]. Both
can be given in percentage and fractional forms. However, other researchers used the
Intersection-over-Union (IoU) (5) to determine the correctness of a proposed bounding box
instead of the IoMin. Even though the most common IoU threshold is 0.5, this is not fulfilled
in all cases. For example, in the work of Sun et al. [42], the proposed box is considered as
a true positive if the IoU value exceeds the 0.75 threshold value; in other cases, the box is
false positive.

AP =
K

∑
k=1

p(k)∆r(k) (4)

IoU
(
bp, bt

)
=

area(bp ∩ bt)

area(bp ∪ bt)
(5)

Beyond AP and mAP, some other metrics also have been introduced to better describe
the counting method’s performance. In the paper by Zhong et al. [43], the accuracy was
defined as the ratio of the correctly detected objects and the total number of detections.
Rustia et al. [44] tested the moth counter algorithm on testing images with a resolution of
3280 × 2464 where the detection accuracy was calculated from the predicted moth count
by the algorithm and the manual count by an entomologist. This accuracy can be described
as the relative absolute difference of manual count and automatic count in percentage (6).
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In (6), Ca denotes the predicted number of insects while Cm is the number of manually
counted insects.

acc =
(

1− Ca − Cm

Cm

)
× 100 (6)

Suto [38] introduced two additional metrics. One was to measure the accuracy of the
object proposal (segmentation) algorithm (7) where N is the number of test images and
Mi is the number of ground truth boxes on the i’th image. To measure the performance of
the insect-counting method, he introduced a loss function (8) where cp is the number of
predicted boxes, and cr is the number of ground truth boxes.

accs =
1
N

N

∑
i=1

1
Mi

Mi

∑
j=1

max
(

IoU
(

bi,l
p , bi,j

t

))
(7)

l(cp, cr) =
1
N

N

∑
i=1

∣∣∣cp
i − cr

i

∣∣∣
cr

i + 1
(8)

3.6. Insect Counting Methods

Insect classification has a wide literature background. Inside it, the evolution of im-
age classifier models is clearly visible. Most models can be categorized into two classes,
namely feature extraction-based and deep learning-based. In feature-based models, the
model’s performance mainly depends on the type of extracted features. In some cases, just
a subset of features feed the classifier those which have been selected by a feature selector
algorithm [35]. The used features in previous works have a wide range. Deng et al. [45] ex-
tracted SIFT-HMAX (combination of Scale Invariant Feature Transform and None-negative
Sparce Coding) and Local Configuration Patterns from insect images. Yalcin [46] used local
binary patterns, elliptic Fourier descriptors, Hu moments, and radial distance functions
as features.

Later, researchers turned toward deep learning methods [47–49]. Deep learning
brought some great breakthroughs in different machine learning problems such as image
classification and object detection [50,51]. It is a branch of machine learning where a
significant part of models are CNNs. In CNNs, feature extraction automatically takes
place in the so-called convolutional layers, thus hand-crafted feature extraction is not
necessary [52]. CNN merges multi-layer neural network with digital filtering where the
input data are convolved with a set of small filters. Based on a different approach, the
filtering process can be seen as a hierarchical feature extraction [53]. This is the reason why
the layer volumes are called as feature maps. The usage of deep models further improved
the insect classification accuracy.

Against insect pest classification, insect counting is much more challenging. To count
the number of insects on an image, it is not enough to classify the pest, but it is also
necessary to localize all of them on the image. In this case, the image processing requires a
further segmentation phase to separate insects from each other before the identification step.
In most cases, images have high resolution in the insect classification papers, sometimes
obtained in the laboratory environment. In contrast to “laboratory images”, the quality of
automated trap images is relatively low, due to the trap’s circuit constraints. Furthermore,
their quality is affected by several other factors such as illumination conditions, trap
movement, insect movement, appearance of other objects (e.g., leaves, glue), and wrecked
insects. This is further complicated by the fact that the sticky paper may catch not just
the target insect but also other non-target insects. Those factors make most of the earlier
developed insect classifier methods impractical where images were of high quality and
finely segmented. Therefore, image counting is a more complex problem, and the literature
is sparse because the main research trend is the identification [54].

The conventional pest detection chain is similar to the general object detection chain
and consists of three stages: segmentation, feature extraction, and classification. Today,
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some deep object detectors incorporate all those steps into one model while in other
cases, segmentation or even feature extraction are separated from the classification stage.
In the literature, several segmentation algorithms can be found such as thresholding-
based, clustering-based, contour-based, or region-based algorithms. However, Bakkay
et al. [55] established that the conventional segmentation techniques cannot take into
consideration difficulties such as touching insects. Their idea was to combine region
and contour-based segmentation to keep the details and separate touching insects. They
proposed an automated segmentation method which gives back candidate image regions
for insect detection. Although this segmentation technique can be combined with any other
classifier model and it is faster than a sliding-window based segmentation, its precision
rate was only 0.77 according to the authors’ tests.

Due to the complexity of the task, insect counting methods shifted toward deep object
detectors rather early. In 2018, Sun et al. [42] used a modified RetinaNet object detector
to detect and count Red Turpentine Beetle pests in a cylinder-shaped pheromone trap.
On their own dataset, the proposed RetinaNet model achieved 75.1% AP with 0.75 IoU
threshold value. They tried to measure the decision time of the lightweight RetinaNet
model on two single board computers. On the Raspberry Pi 3B, the model could not run
due to the limited computational resources. On the Nvidia Jetson TX2, the average decision
time was 0.711 s.

In the same year, Zhong et al. [43] developed a pest counting method where the YOLO
object detector was used as an object proposal (segmentation) and the object classifier
was an SVM (Support Vector Machine). Their reason for this unusual model pairing was
the relatively small dataset that was available for them. Since six pest species have been
investigated in their paper, six SVM have been constructed according to the one-vs all
classification strategy. On their test images, the complete model accuracy (correctly detected
objects per total number of detected objects) was 92.5%. The decision time of this detector
chain was 5 min on a Raspberry Pi 2 model B.

In 2020, some additional studies have been published where the goal was the insect
counting on trap images. Rustia et al. [44] developed a pest counting algorithm to their
sticky paper trap which was designed for greenhouses. The target pests were the whiteflies,
thrips, flies, and aphids. In their algorithm, the sticky paper images with resolution
of 3280 × 2464 went through an RGB-to-LUV color transformation where the 85–120 V
channel interval has been used for binary thresholding. The next step was a selective blob
detection where small (16 × 16 pixel) and large (128 × 128 pixel) blobs are filtered out.
Then the RGB pixels of the cropped blobs in vectorized form (feature vector) were the
input of an SVM classifier. The authors noted that the raw RGB pixels form a better feature
vector than color, shape, and morphological features according to their current results
and previous study [56]. In the test phase, their method achieved 93% average temporal
accuracy (6). Although the performance of the algorithm is quite good, it cannot identify
insects by categories.

Hong et al. [16] tested the speed and accuracy of seven deep learning-based object
detectors including Retinanet, SSD, and Faster R-CNN on pheromone trap images. Their
target moth types were the H. assulta, S. litura, and S. exigua. Beyond the trap images, the au-
thors added 168 photos to their dataset to increase the number and type of negative samples
in the “unknown” class. It is also worth noting that those images are not remote sensing
smart trap images. At the end, the total number of images was 1142. Not surprisingly, their
investigation showed that the Faster R-CNN model had the highest mAP (90.25%) and the
longest decision time. On the other hand, the SSD detector was the fastest, but its mAP was
the smallest (76.86%). In the work of Qing et al. [13], the target insects were the S. inferens,
C. suppressalis, C. medinalis, S. furcifera and N. lugens. In their counting method, the image
went through more image enhancement steps before segmentation: background removal,
morphological operations, and noise (small hole) removal. The segmentation algorithm is
based on erosion and heavy thresholding where several threshold conditions have been
used to split the possible touching insects. For the identification of small and large insects,
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different deep classifiers (VGG16, GoogleNet, ResNet-x, etc.) have been used. Here, the
results showed that the ResNet-x models achieve the highest mAP value which is near 90%.

Due to the wide range of pest insects and image capture devices, the research con-
tinued. Mamdouh and Khattab [17] applied a slightly modified YOLOv4 object detector
model for counting the number of olive fruit flies. As an information source, they used
the DIRT dataset and the Leeds butterfly dataset as negative samples. Since the McPhail
liquid trap has a yellow color, they applied yellow color normalization on trap images.
At the end, their test results showed 96.68% mAP. Rong et al. [57] modified the Faster
R-CNN architecture to count aphids and leaf miner flies on images (3456 × 4608 pixels)
that are captured with handheld mobile devices. Their approach produced 80.2% mAP on
the test images.

Although the above-mentioned studies are focused on insect counting; none of them
deal with the C. pomonella pest. In addition, the images were obtained by hand in many
cases and not with a smart trap. For illustration, Figure 5 depicts yellow stick paper and
liquid trap pictures obtained by hand. Similar images have been used in [17,43,44,57].
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Since the target insect and the image capturing circumstances are different, those
methods cannot be adopted directly to codling moth counting. We found only a few
relevant articles where the target insect was the C. pomonella and trap images were used. In
2016, Ding and Taylor [40] proposed a deep learning-based detection pipeline for codling
moth counting in trap images obtained inside the field. They applied sliding-window for
image segmentation and a convolutional neural network as image region classifier. In the
segmentation phase, a sliding window passes through multiple scales of the image where
all window regions are transferred to the classifier. The classifier output is a probability
value which indicates that a particular region contains moths or not. To eliminate the
overlapping between windows, the non-maximum suppression (NMS) has been used. It
retains only those windows whose probability is locally maximal. Out of the remaining
windows (or bounding boxes), only those boxes are kept which have higher probability
than a pre-defined threshold value. At the end, the number of remaining boxes can be used
as a moth count estimate. Their method achieved 93.1% AP value on 40 trap images with
640 × 480 resolution.

In the paper of Brunelli et al. [23], before segmentation the input image is pre-processed.
The pre-processing stage consists of grey scale conversion, smoothing, and edge extraction.
The segmentation is based on the OpenCV’s blob detector. Thereafter, image regions
are classified with the VGG16 model. This approached brought 94.38% precision and
92.6% recall rates. Segella et al. [24] also applied the VGG16 and compared its classification
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efficiency with the LeNet model. In their tests, the LeNet model showed higher performance
than the VGG16. In this paper the segmentation process is not detailed.

In the work of Preti. et al. [12], the image analysis takes place in Java programming
environment with the usage of three Java libraries. Namely, MorphoLibJ, DeepLearning4J,
and ImageJ1. However, in the current version of their algorithm, it overestimates 1.5–3-fold
the real captures count.

The last study was published in the same year [38]. In this work, the author also
developed a three-phase insect counter pipeline similar to Ding and Taylor’s [40], but in
this case, the segmentation was performed with the Selective Search algorithm. In addition,
instead of the NMS, the soft-NMS algorithm was implemented because the soft-NMS with
the right parameters can handle better touching insects. The author’s tests showed that the
Selective Search object proposal produced 82% recognizer accuracy (7) on 30 test images
while the insect counting algorithm had a 0.164 loss value (8).

A summary about the key properties of the insect counting methods can be found in
Table 2. Only those methods are listed in the table where the target insect is the C. pomonella.

Table 2. C. pomonella counting methods. Empty cell means that the information is not available.

Article Segmentation Classifier Image
Resolution Performance

[40] Sliding-window CNN 640 × 480 93.1 AP

[23] OpenCV’s blob detector VGG16 - 94.38% (2)
92.6% (3)

[24] - LeNet - 97.6% (2)
100% (3)

[12] - CNN 2592 × 1944 >20% (2)
[38] Selective Search CNN various 0.164 (8)

4. Discussion
4.1. Discussion on Camera-Equipped Traps

In Section 3.1, Section 3.2, Section 3.3, more prototype and commercial traps were
investigated for monitoring codling moth. Not surprisingly, we have much more infor-
mation about the published prototype traps than about commercial traps. Nonetheless,
independently of the trap type, the basic concept is similar. All of them consist of a trap
house which includes integrated electronics (controller unit, camera, communication mod-
ule, etc.) battery and a sticky plate. However, according to the collected information
about the hardware background of automated traps, different design principles can be
observed. First is the question of the controller unit. One part of devices uses single board
computer as the controller unit while other parts rely on microcontrollers. In the case of the
single board computers, the Raspberry Pi “family” members are the most popular. Even
though the Raspberry Pi devices have several benefits, choosing the right controller unit is
not a trivial decision because different microcontrollers and single-board computes have
different advantages and disadvantages. The Raspberry Pi devices are excellent in terms
of processing power, connectivity, and storage space, but microcontrollers use a fraction
of the energy that a Raspberry Pi may use [58]. Moreover, Raspberry devices do not have
programmable sleep mode, real-time clock, and analog capabilities. For better illustration,
Table 3 shows a comparison between the Raspberry Pi Zero W, ESP32-Cam board, and the
Arduino Uno microcontroller board.



Agriculture 2022, 12, 1721 13 of 18

Table 3. Main features of Raspberry Pi Zero W, ESP32-Cam, and Arduino Uno.

Specification Raspberry Pi Zero W ESP32-Cam Arduino Uno

Type Single-board computer Microcontroller Microcontroller
Operating system Raspberry Pi OS FreeRTOS None

Processor 32-bit 32-bit 8-bit
Memory 512 MB 520 KB 32 Kb

Clock frequency 1 GHz 160 MHz 16 MHz
Type Single-board computer Microcontroller Microcontroller

Operating system Raspberry Pi OS FreeRTOS None
Camera port Yes Yes No
Input voltage 5 V 5 V 7–12 V

IO pins 40 (PWR, GND, digital) 16 (PWR, GND,
digital, analogue)

20 (PWR, GND,
digital, analogue)

Background storage MicroSD card (up to 1 TB) MicroSD card (up to 4 GB) Flash memory (32 KB)
Power consumption

(in idle state) 750 mW ~900 mW <250 mW

Sleep mode No Yes Yes

Despite the weaknesses of the single board computers, our opinion is that those
devices will be the dominant in smart traps due to the computational capacity and software
support. They make it possible for the high-level, Python programming due to the operating
system. Therefore, deep object detectors can be easily ported. Although there are some
microcontroller boards such as the ESP32 that supports the adaptation of deep artificial
neural network models due to the Tensorfow Lite library [54], the restricted development
environment and computational resources do not allow the adaptation of the widely used
deep detectors. Finally, the weaknesses of single board computers can be eliminated by
external circuit.

It is also visible that smart traps have a different level of automatization. Based on
the automatization, traps can be categorized into two classes: fully or semi-automatic. In
a fully automatic trap, the software is equipped with an insect counting method, while
semi-automatic traps are based on remote insect identification and counting. In the first
case, the insect counting takes place inside the trap. In the latter case, the trap captures
image about the cached insects and sends it toward the server via wireless communication
or just saves them in the background storage (SD card). In this case, the insect counter can
be a human expert or a dedicated software on the server side. Both of those approaches
have advantages and disadvantages. Putting the intelligence to the traps reduces the
communication costs and latencies. In this case, only the evaluation results need to be
transmitted toward the server side instead of the whole image. It limits the message size
to a few bytes. Since the information package is small, delivery of packages is easily
feasible on the cost-efficient LoRa radio channel. Against the LTE or other mobile network
technologies, communication via the LoRa network also enlarge the battery life.

On the other hand, local data processing has a significant impact on battery manage-
ment. Battery management is a critical point of all IoT applications. Some researchers
observed that, in most IoT applications, the largest battery drain occurs when information
is being transmitted over the wireless network [18,54]. However, if the insect counting is
performed locally, the power consumption of information transmission is not as important
as the runtime of the insect counter algorithm because the insect counter method multiplies
the active state time of the trap. Due to the limited computational resources, it can be a
huge increase. A good example that points out the differences between the computational
power of controller units can be found in [42] where the runtime of the same object detector
was 0.51 s on an Nvidia Jetson TX2 while on a Raspberry Pi 3B it was 24.82 s. Related to the
battery management, another important factor is the number of images obtained per day.
To minimize the power consumption, the controller software sends the device into sleep or
standby mode after the active period. In most cases, the automated trap is in active state
just once a day [21,22]. However, multiple shots per day have also been reported for ex-
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perimental prototypes [12,27]. Obviously, multiple active states reduce the battery lifetime
because it significantly increases the average power consumption of the trap. Therefore, if
it is not justified, one image per day is enough for moth population forecast.

Finally, several automated traps have been designed for a particular research work
but for series production, its cost is another key factor. The estimated costs are shown in
Table 1. However, it is important to highlight that those prices depend on more factors such
as the distributor, quantity, and year of manufacture. Here, it is not easy to compare costs
because in some cases only the cost of particular trap components is given. For example,
while in the paper of Preti et al. [12] the cost covers trap chassis, controller unit, batteries,
solar panel, assembly cost and additional components, the estimated cost in [21] is only
for the controller unit and the battery. Therefore, direct comparison is not recommended
because it would lead to false conclusions.

4.2. Discussion on Moth Counting Methods

The rise of deep learning algorithms is clearly visible not just in object detection
but also in insect counting [51]. Year by year, more agricultural scientists employ new
techniques from deep learning for land mapping, crop classification, biotic/abiotic stress
monitoring, and yield prediction [59,60]. This tendency is also observable in Section 3.6
where the insect counting methods have been presented. Most of them are based on
deep learning-based object detectors. To better illustrate the relative advantages and
disadvantages of those methods, their main characteristics have been summarized in
Table 4.

Table 4. Main characteristics of insect counting methods.

Article Year Method Insect(s) Decision time Performance

[40] 2016 Sliding-window + CNN Codling moths High 93.1 AP

[23] 2018 RetinaNet Red Turpentine Beetle Medium 0.751 AP

[43] 2018 YOLO + SVM Bee, fly, fruit fly, etc. High 93.99% (3)

[44] 2020 Blob detector + SVM Whiteflies, thrips, flies, and aphids Low <96% (6)

[16] 2020 Faster RCNN S. liture, H. assulta, S. exigua Medium 90.25 AP

[13] 2020 Segmentation + CNN S. inferens, C. suppressalis,
C. medinalis Medium 88.9 mAP

[17] 2021 Modified YOLO Olive fruit fly Medium 96.69 mAP

[57] 2022 Mask R-CNN Aphids, leaf miner flies,
grasshoppers Medium 80.2 mAP

[38] 2022 Selective search + CNN Codling moth High 0.164 (8)

None of the presented methods achieved a perfect result. One of the main reasons for
this can be tracked back to the insufficient amount of data. For researchers, a rather limited
number of trap images is available. It can cause problems at the time of model training
even with data augmentation because a deep model requires a significant amount of data
to optimize its parameters (weights and biases). If there is not enough training data, the
different appearance of the target object cannot be completely covered. The insects falling
into a trap may vary greatly in size, pose, and orientation. The same insect could have
different wing poses, levels of occlusion, and decay conditions over time (see Figure 1).
Another reason for the misclassification is the touching insects. This means that two or
more touching insects are detected as one or remain undetected (Figure 6b). As an example,
in the study by Hong et al. [16], moths with torn wings were detected as incorrect insect
species while two touching insects were detected as one object. Moreover, some insects
such as the C. pomonella show large intra-class variance. A sample image can be seen on
Figure 6a where next to the C. pomonella, Light Brown Apple moth is also visible.



Agriculture 2022, 12, 1721 15 of 18

Agriculture 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

[44] 2020 Blob detector + SVM 
Whiteflies, 
thrips, flies, 
and aphids 

Low <96% (6) 

[16] 2020 Faster RCNN 
S. liture, H. 
assulta, S. 

exigua 
Medium 90.25 AP 

[13] 2020 Segmentation + 
CNN 

S. inferens, C. 
suppressalis, 
C. medinalis 

Medium 88.9 mAP 

[17] 2021 Modified YOLO Olive fruit fly Medium 96.69 mAP 

[57] 2022 Mask R-CNN 
Aphids, leaf 
miner flies, 

grasshoppers 
Medium 80.2 mAP 

[38] 2022 
Selective search + 

CNN 
Codling 

moth High 0.164 (8) 

None of the presented methods achieved a perfect result. One of the main reasons 
for this can be tracked back to the insufficient amount of data. For researchers, a rather 
limited number of trap images is available. It can cause problems at the time of model 
training even with data augmentation because a deep model requires a significant amount 
of data to optimize its parameters (weights and biases). If there is not enough training 
data, the different appearance of the target object cannot be completely covered. The in-
sects falling into a trap may vary greatly in size, pose, and orientation. The same insect 
could have different wing poses, levels of occlusion, and decay conditions over time (see 
Figure 1). Another reason for the misclassification is the touching insects. This means that 
two or more touching insects are detected as one or remain undetected (Figure 6b). As an 
example, in the study by Hong et al. [16], moths with torn wings were detected as incor-
rect insect species while two touching insects were detected as one object. Moreover, some 
insects such as the C. pomonella show large intra-class variance. A sample image can be 
seen on Figure 6a where next to the C. pomonella, Light Brown Apple moth is also visible. 

 

 

(a) (b) 

Figure 6. (a) Trap image with C. pomonella and Light Brown Apple moth (red boxes); (b) undetected 
touching insects. 
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Only a little information is available about the software background of commercial
traps. There is such a commercial system where the accuracy of the predicted insect count
needs to be validated by a human operator. For example, Trapview trap automatically
processes the high-resolution image and provides an estimated count of the captured insect
species. However, manual confirmation is also a part of the customer service [18]. Cirjak
et al. [1] claimed that the Trapview standard model had a problem with detecting other ob-
jects than the target insect while Preti et al. [61] observed that the system incorrectly detects
morphologically similar insects. The original Z-Trap system is also not perfect. Although
the predicted number of insects and the real number of insects are highly correlated, the
prediction is not 100% accurate [20].

Taking into consideration only those methods where the target insect was the
C. pomonella, it can be established that a generally acceptable moth counting method does
not exist. Our observations show that, beyond the lack of data, another problem relies on
the segmentation. Based on the findings of Bakkay et al. [55], conventional segmentation
techniques are not efficient enough. Threshold-based segmentation algorithms are effi-
cient only when the image does not contain a large amount of noise or other objects. The
problem is the same with contour-based algorithms. The more sophisticated segmentation
techniques such as Selective Search bring higher efficiency, but they also cannot handle well
the touching insect problem. However, it must also be mentioned that the pest invasion
prediction can tolerate at most a 20% deviation between the real and predicted number
of insects.

5. Conclusions

Due to economic importance, the number of automated insect monitoring systems
is continuously increasing and could completely replace the conventional monitoring ap-
proach. To optimize the insect monitoring process, both industry and academia fields are
moving toward smart solutions, including automated traps. The detection and classifica-
tion of insect pests with automated traps brings a major breakthrough to integrated pest
management. This advanced insect monitoring direction can be exploited for pest invasion
detection and survey which will help farmers to schedule orchard spraying. The automated
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traps can reduce staff costs due to a lower control of traps on the field but the sticky paper
changing stays manual.

Taking into consideration the achievements in the field of hardware background, we
can conclude that remote monitoring can be realized using some of the available automated
traps. The integrated electronics inside them covers all necessary functionality for the
automatic operation such as long-range wireless connection, sufficient power supply (with
solar charger), and appropriate image resolution. Consequently, it can be said that the
hardware background is given.

From the software side, the uncertainty is significantly greater. Despite the great
achievements in insect classification, the algorithm-aided insect counting is not solved
yet. Today, methods that use deep object detectors and classifiers are the most studied
ones, because those techniques have already been applied effectively in many fields of
science, including agriculture. The current tendency shows that deep models will offer
solutions for the fully automatized insect counting but are currently not completely reliable.
It can be traced back to more reasons, one of them is the lack of sufficient amounts of data.
Another reason is the small size of insects. They occupy only a small region of the trap
image and the object detector algorithm (e.g., YOLO) cannot localize them well. Finally,
the touching insects (see Figure 6b) look like one object where cached moths will not be
counted correctly.

Even though insect counting methods are not yet perfect, they can indicate the sudden
increase in cached insects (even if the values are not completely accurate) and the spraying
should be started when the insect pest population reaches a critical level. This event can be
indicated by some earlier proposed traps and insect counting methods.

The efficient pairing of the hardware and software components will help reduce the
environmental footprint while saving cost and time.
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