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Abstract: The ridge–furrow rainwater harvesting (RFRH) planting mode is widely used in arid
and semi-arid areas to solve the problems of agricultural water shortage and low productivity.
However, the impact of film mulching on the stability of soil carbon pools makes this planting mode
vulnerable to the risk of increased soil carbon emissions and carbon pool losses. In order to clarify the
relationship between soil carbon emissions and hydrothermal factors, as well as the regulatory effect
of biochar application on soil carbon sequestration and reduced emissions under this planting mode,
we set up a biochar application experiment. The effects of the biochar application (at 10 Mg ha−1

biochar and 20 Mg ha−1 biochar) on the soil water dynamics, soil temperature changes, CO2-C
and CH4-C flux dynamics, grain yield, carbon emission efficiency, and the net ecosystem carbon
budget in wheat fields under the RFRH planting mode were investigated, with no biochar application
as the control. The results showed that applying biochar increased the soil water content, soil
average temperature, cumulative CH4-C uptake, wheat grain yield, and carbon emission efficiency
by 3.10–12.23%, 0.98–3.53%, 59.27–106.65%, 3.51–16.42%, and 18.52–61.17%, respectively; reduced
the cumulative CO2-C emissions by 7.51–31.07%; and increased the net ecosystem carbon budget by
2.91 Mg C ha−1 to 6.06 Mg C ha−1. The results obtained by equation fitting showed that in wheat
fields under RFRH, the CO2-C emission fluxes had negative and positive exponential relationships
with the soil water content and soil temperature, respectively, while the CH4-C uptake fluxes had no
significant correlation with the soil water content and had an inverse U-shaped quadratic function
relationship with soil temperature. Overall, these results suggest that the application of biochar to
wheat fields under RFRH can improve grain yield, farmland carbon emission efficiency, and the net
ecosystem carbon budget, and change wheat fields from a carbon source to a carbon sink. These
results can provide a theoretical basis and technical support for efficient, green, and sustainable
production in farmland in arid and semi-arid areas.

Keywords: CO2 and CH4; equation fitting; net ecosystem carbon budget; soil temperature; soil
water content

1. Introduction

The global population is expected to reach 9.8 billion by 2050, and food production
will need to be increased by 70% to meet the demand due to population growth [1]. It is
difficult to increase the area of arable land and it actually tends to decrease, so it is necessary
to enhance the productivity of land to increase crop production [2,3]. At present, about
41% of the world’s arable land area is distributed in arid and semi-arid areas [4], and many
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studies have indicated that there is great potential for improving the productivity of land in
these areas [3]. For many years, the main factor that has restricted agricultural production
in arid and semi-arid areas is a shortage of water [5]. In order to address this issue, some
technical approaches for improved water utilization have been developed. In particular,
the ridge–furrow rainwater harvesting (RFRH) planting technique has gradually become
an important planting mode for crops in arid and semi-arid areas because it can improve
the soil moisture status in the crop root zone, and promote crop growth and yield formation
by collecting precipitation via film covering on the ridge [6–9].

Film mulching regulates the soil hydrothermal environment and also changes the
stability of the soil carbon pool [10]. Many studies have shown that film mulching promotes
the mineralization and decomposition of soil organic carbon and increases losses from the
soil organic carbon pool [11–15], thereby affecting the quality of farmland soil and leading
to the gradual degradation of farmland [16,17]. In addition, the soil carbon pool is closely
related to the atmospheric carbon pool [18,19], so the increased soil carbon emissions
under film mulching will increase the atmospheric carbon concentration and exacerbate
global warming [20–25]. Therefore, there is an urgent need to sequester carbon and reduce
emissions under the RFRH planting mode.

Soil carbon sequestration and carbon emissions are affected by soil hydrothermal
factors [26–28]. Adding biochar can regulate the soil temperature and soil water con-
tent [26,29], and many studies have also shown that biochar can stabilize the soil carbon
pool, reduce the mineralization and decomposition of soil organic carbon [30–32], and
increase the storage of soil carbon [29,33–35]. However, previous studies into carbon se-
questration and reducing emissions using biochar were mostly conducted in paddy fields
in humid areas or incubation experiments in laboratories [32,36–39]. Clearly, the ecological
environment, soil quality, and farming measures differ in dry farmland in non-humid
areas. However, few studies have investigated the effect of biochar application on soil
carbon sequestration in dry farmland and whether the application of biochar can reduce
soil carbon emissions under the RFRH planting mode.

Wheat is the food crop with the largest planting area and trade volume in the
world [40]. Coupled with the fact that it is used for food up to 65% [41], it has an ir-
replaceable role in meeting global food demand. Wheat has a wide range of adaptability to
environmental conditions [41]. It is also an important cereal crop in dryland regions [42].
Carrying out research on wheat planting is important for both agricultural production in
arid and semi-arid areas and global food security.

Thus, in the present study, different amounts of biochar were applied under the RFRH
planting mode using wheat as the test crop in order to: (1) investigate the effects of biochar
application on the soil hydrothermal characteristics and gaseous carbon (CO2 and CH4)
emissions, as well as the relationships between carbon emissions and soil hydrothermal
factors under RFRH planting; (2) determine the effects of biochar application on the crop
yield under RFRH planting; and (3) understand the effects of biochar application on the
carbon balance under RFRH planting, and the regulatory effects of biochar application and
the associated mechanisms on soil carbon sequestration and reductions in emissions under
RFRH planting in a dry farmland environment in a non-humid area. We aimed to identify
a suitable technical approach to save water, increase yields, reduce emissions, and facilitate
carbon sequestration, thereby providing a theoretical basis for high-quality production on
farmland in arid and semi-arid areas.

2. Materials and Methods
2.1. Experimental Site Situation and Biochar Characterization

The experiment was conducted at Yangling Experimental Station (108◦04′ E, 34◦17′ N),
Institute of Water-saving Agriculture in Arid Areas of China, which is located at an altitude
of 506 m. The meteorological data were obtained based on a 30-year average from the
Yangling Weather Station, which is about 200 m away from the experimental field. At
the experimental site, the annual average temperature is 13.0 ◦C, the annual number of
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sunshine hours is 2196 h, and the frost-free period is 220 days. The precipitation is generally
low with an uneven distribution in this region. The annual average precipitation was
about 600 mm, the annual average evaporation was about 933.2 mm, and the average
precipitation during the growth period of winter wheat was about 200 mm. The detailed
precipitation and air temperature data during the experiment were also obtained from this
weather station, as shown in Figure 1. The soil in the experimental field is Lou soil, which
belongs to Eum-Orthric Anthrosols. Before the experiment, the basic properties of the soil
in the top 0–20 cm layer were as follows: pH = 7.59, bulk density = 1.25 g cm−3, soil organic
matter = 13.22 g kg−1, total nitrogen = 0.94 g kg−1, available nitrogen (nitrate nitrogen
and ammonium nitrogen) = 48.62 mg kg−1, available phosphorus = 11.10 mg kg−1, and
available potassium = 110.69 mg kg−1.
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Figure 1. Precipitation and air temperature distributions during the winter wheat growing seasons
in 2018–2019 (A) and 2020–2021 (B).

The biochar used in the experiment was purchased from Zedi Agricultural Science
and Technology Company (Jiangsu, China). It was produced with the anaerobic py-
rolysis of equal weight rice straw and rice husk at 500 ◦C for 2 h. The properties of
biochar were as follows: pH = 9.27, total N = 6.5 g kg−1, total C = 205.6 g kg−1, total
P = 11.34 g kg−1, total K = 17.42 g kg−1, cation exchange capacity = 16.2 cmol kg−1, spe-
cific surface area = 29.6 m2 g−1, and bulk density = 0.35 g cm−3.

2.2. Experimental Design and Field Management

A single factor randomized block design was employed with three blocks and the
following three treatments: (1) no biochar application (B0) as the control; (2) application of
biochar at 10 Mg ha−1 (B10); and (3) application of biochar at 20 Mg ha−1 (B20). Both the
biochar and fertilizer were applied basally before sowing. The amounts of fertilizer applied
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under each treatment were the same with 225 kg ha−1 pure N, 75 kg ha−1 P2O5, and
150 kg ha−1 K2O. The main local wheat cultivar Xinong 979 was used as the test material.
Wheat was sown manually in strips around October 20 each year at a rate of 2.25 million
plants ha−1 with a row spacing of 20 cm, and it was harvested during early June in the
following year without replanting after harvest. The RFRH planting mode was used for
all of the treatments (Figure 2), where the widths of the furrows and ridges were 60 cm
and 40 cm, respectively. The 15 cm-high ridges were covered with plastic film to collect
precipitation and wheat was planted in the furrows. Other management measures applied
in the experimental field were the same as those used for wheat production in local fields
and they were consistent across treatments.
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2.3. Sampling and Measurement Methods
2.3.1. CO2 and CH4 Emission Measurement

The CO2 and CH4 emissions in the field were measured by static chamber-gas chro-
matography. The static chamber comprised a base (40 cm × 30 cm × 15 cm) and top box
(40 cm × 30 cm × 40 cm). The base was made of stainless steel and it was sealed by a
water-filled groove at the top. The top box was made of polyvinyl chloride sheet and it was
wrapped with a layer of heat-insulating reflective material on the outside. A thermometer
was placed at the top and a gas sampling pipe in the middle. The long side of the base was
perpendicular to the planting row and it was positioned according to the proportion of
each part of the planting pattern. Sampling commenced after fertilization and sowing, and
it was conducted every half a month until the wheat was harvested. Sampling was always
performed at 9:00–11:00 a.m. During sampling, the top box was fastened to the base and
sealed with water. Gas samples were then extracted at intervals of 0, 10, 20, and 30 min
using 50-mL syringes, and the temperature in the box was recorded. After sampling, the
gas samples were analyzed as soon as possible using a GC-2010 Plus gas chromatograph
(Shimadzu, Kyoto, Japan) with a flame ionization detector. The gas chromatograph was
calibrated with standard gas before each test. The CO2 and CH4 emission fluxes were
calculated by the following formula [43]:

F = k × (273.15/T) × (V/A) × (∆c/∆t) (1)

where F is the gas emission flux (mg CO2-C m−2 h−1 or µg CH4-C m−2 h−1), k is the
conversion factor (0.536 kg C m−3 for both CO2 and CH4), T is the average temperature
inside the box during sampling (K), V is the volume of the sampling box (m3), A is the
area of the bottom of the sampling box (m2), and ∆c/∆t is the rate of change in the
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gas concentration in the sampling box per unit time (CO2: ppm h−1; CH4: ppb h−1).
Linear regressions were performed based on the gas concentration and sampling time, and
flux values were accepted when r2 > 0.90. Cumulative gas emissions were estimated by
integrating the monthly average fluxes during the wheat growing season [44].

2.3.2. Soil Water Content and Soil Temperature

When the gas samples were collected, the volumetric water content of the 0–20 cm soil
layer was measured using an AZS-100 TDR portable soil moisture meter (IMKO, Ettlingen,
Germany) and converted into the soil mass water content based on the soil bulk density.
The soil temperature at a depth of 10 cm was also measured with a geothermometer at the
same time.

2.3.3. Wheat Yield, Aboveground Biomass, and Carbon Emission Efficiency (CEE)

At maturity, 1 m × 1 m sample plots (including the rainwater harvesting ridge and
planting furrow areas) were harvested manually. The aboveground biomass weight, spike
number, and kernel number per spike were measured after drying, before threshing to
measure the yield and 1000-grain weight. The yield per hectare, spike number per hectare,
and aboveground biomass per hectare were then calculated. The CEE was calculated
based on the wheat yield and total gaseous carbon emissions (TGCE) by the following
formula [45]:

CEE = WY/TGCE (2)

where WY is the wheat yield (Mg ha−1), and TGCE denotes the total gaseous carbon
(CO2-C and CH4-C) emissions during the wheat growing season (Mg ha−1).

2.3.4. Net Ecosystem Carbon Budget (NECB)

The NECB was estimated for a wheat field by the following formula [46]:

NECB = GPP − CO2-C − Harvest-C − CH4-C + Add-C (3)

where CO2-C and CH4-C are the cumulative CO2 and CH4 carbon emissions from farmland
during the wheat growing season, respectively (Mg ha−1), Harvest-C is the amount of
carbon contained in the harvested aboveground biomass (Mg ha−1), Add-C is the amount
of carbon added (Mg ha−1), and GPP is the gross primary production (Mg ha−1), which
was extrapolated from the net primary production (NPP) based on the carbon use efficiency
(carbon use efficiency = NPP/GPP) [47]. The carbon use efficiency of wheat was estimated
as 0.65 [48–50].

The NPP of a wheat field was estimated by the following formula [51]:

NPP = NPPshoot + NPProot + NPPlitter + NPPrhizodeposit (4)

where NPPshoot, NPProot, NPPlitter, and NPPrhizodeposit are the NPP values corresponding
to shoot, root, litter, and rhizodeposit, respectively. Shoot was the harvested aboveground
biomass and the other parts were estimated as described by Huang et al. [52] using allomet-
ric relationships. The root/shoot ratio was taken as 0.11 [52]. Litter accounted for about 5%
of the shoot and root biomass [53,54]. Rhizodeposit accounted for about 10% of the shoot
and root biomass [55]. The carbon content of each part was treated as 400 g kg−1 [56].

2.4. Statistical Analysis

Statistical analyses were carried out on the data from 2018–2019 and 2020–2021 (the
data from 2019–2020 were not successfully obtained due to the epidemic). Data entry and
sorting were conducted using Microsoft Excel 2007. Analysis of variance was performed
using IBM SPSS Statistics 20. Equations representing the relationships between gas emis-
sions and hydrothermal factors were fitted using IBM SPSS Statistics 20. The figures were
prepared using OriginPro 2022.
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3. Results
3.1. Soil Water Content and Soil Temperature

The soil water contents in the 0–20 cm soil layer tended to decrease during the wheat
growth process. The application of biochar affected soil water content. With B0 as the
control, the increasing range of soil water content in different months varied from −14.06%
to 25.18% and from −30.66% to 85.26% under B10 and B20, respectively (Figure 3). Finally,
the application of biochar significantly increased the average soil water content during the
wheat growth period (p < 0.05). Compared with B0, the average soil water contents were
3.10–5.64% and 3.24–12.23% higher under B10 and B20, respectively (Figure 3).
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The soil temperature at a depth of 10 cm decreased initially and then increased under
each treatment during the wheat growth process, with a trough period in December–
January (Figure 4). The application of biochar affected soil temperature. With B0 as the
control, the increasing range of soil temperature in different months varied from −6.67% to
8.57% and from −3.64% to 16.67% under B10 and B20, respectively (Figure 4). Overall, the
application of biochar reduced the variations in the soil temperature range to some extent
and increased the average soil temperature during the wheat growth period. Compared
with B0, the average soil temperatures were 1.96–3.53% and 0.98–2.35% higher under B10
and B20, respectively (Figure 4).
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3.2. Carbon Emissions
3.2.1. CO2-C Emissions

The CO2-C emission fluxes under different treatments exhibited similar seasonal
variations, where they all decreased initially, before increasing and finally decreasing, with
the peak occurring in May (wheat filling stage) (Figure 5). The application of biochar
affected the CO2-C emission fluxes in wheat fields. With B0 as the control, the decreasing
range of the CO2-C emission fluxes in different months varied from 0.48% to 39.38% and
from −0.55% to 35.99% under B10 and B20, respectively (Figure 5). In general, the CO2-C
emission fluxes were significantly higher under B0 than B10 and B20 during the same
period (p < 0.05). Compared with B0, the average CO2-C emission fluxes were 8.54–24.64%
and 7.51–31.07% lower under B10 and B20, respectively (Figure 5).

As shown in Figure 6, March–May was the key stage for soil CO2-C emissions from
wheat fields, and the cumulative CO2-C emissions in this stage accounted for 66.94–82.47%
of the cumulative CO2-C emissions in the whole wheat growing season. The application of
biochar significantly reduced the cumulative CO2-C emissions from wheat fields (p < 0.05).
Compared with B0, the cumulative CO2-C emissions were 584.83–1429.88 kg ha−1 and
514.18–1802.82 kg ha−1 lower under B10 and B20, respectively (Figure 6).

3.2.2. CH4-C Uptake

As shown in Figure 7, the CH4-C uptake fluxes under different treatments all decreased
initially, before increasing and finally decreasing. The application of biochar affected the
CH4-C uptake fluxes in wheat fields. With B0 as the control, the increasing range of the
CH4-C uptake fluxes in different months varied from−50.00% to 370.42% and from−1.86%
to 967.86% under B10 and B20, respectively (Figure 7). In general, the CH4-C uptake fluxes
were significantly lower under B0 than B10 and B20 during the same period (p < 0.05).
Compared with B0, the average CH4-C uptake fluxes were 59.29–65.09% and 97.93–106.68%
higher under B10 and B20, respectively (Figure 7).
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As shown in Figure 8, March–April was the active stage for soil CH4-C uptake in wheat
fields, and the cumulative CH4-C uptake in this stage accounted for 36.40–58.75% of the cu-
mulative CH4-C uptake in the whole wheat growing season. The cumulative CH4-C uptake
tended to increase as the biochar application amount increased. Compared with B0, the
cumulative CH4-C uptake amounts were 616.24–743.44 g ha−1 and 926.72–1337.69 g ha−1

higher under B10 and B20, respectively (Figure 8).

3.3. Relationships between Carbon Emissions and Hydrothermal Factors

The relationships between the CO2-C emission fluxes and soil water contents under
different biochar application amounts all conformed to an exponential decay equation.
According to the fitted equations, the soil water content could explain 21.1–34.3% of the
variations in the CO2-C emission fluxes. The coefficient of determination (R2) for the fitted
equation increased as the amount of added biochar increased (Table 1). However, the
relationships between the CO2-C emission fluxes and soil temperature under different treat-
ments all conformed to an exponential growth equation. According to the fitted equations,
soil temperature could explain 72.6–75.8% of the variations in the CO2-C emission fluxes.
The R2 value for the fitted equation decreased as the amount of added biochar increased
(Table 1).
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Figure 8. Cumulative CH4-C uptake under different amounts of added biochar during the winter
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lowercase letters indicate significant differences between treatments (Duncan’s test, p < 0.05).

Table 1. Equations of the relationships between the CO2-C emission fluxes (F) and soil water content
(SWC) and soil temperature (ST) under different amounts of added biochar in wheat fields.

Equation Treatment a b R2 p

F = a × e(b×SWC)
B20 320.212 −0.124 0.343 0.011
B10 276.467 −0.115 0.235 0.042
B0 294.764 −0.106 0.211 0.055

F = a × e(b×ST)
B20 20.019 0.103 0.726 0.000
B10 19.963 0.104 0.745 0.000
B0 27.301 0.099 0.758 0.000

Note: B20, B10, and B0 represent 20, 10, and 0 Mg biochar ha−1, respectively.

There was no significant correlation between the CH4-C uptake flux and soil water
content under each treatment (Table 2). However, the relationships between the CH4-
C uptake fluxes and soil temperatures under different biochar application amounts all
conformed to an inverse U-shaped quadratic equation. According to the fitted equations,
the soil temperature could explain 46.3–72.6% of the variations in the CH4-C uptake flux.
The application of biochar increased the R2 value for the fitted equation (Table 2).
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Table 2. Equations of the relationships between the CH4-C uptake fluxes (F) and soil water content
(SWC) and soil temperature (ST) under different amounts of added biochar in wheat fields.

Equation Treatment a b c R2 p

F = a × SWC + b
B20 1.417 19.861 - 0.087 0.234
B10 1.183 15.479 - 0.069 0.293
B0 −0.099 19.587 - 0.001 0.920

F = a × ST2 + b
× ST + c

B20 −0.317 7.317 14.414 0.552 0.002
B10 −0.310 7.604 3.228 0.726 0.000
B0 −0.202 5.167 −1.793 0.463 0.009

Note: B20, B10, and B0 represent 20, 10, and 0 Mg biochar ha−1, respectively.

3.4. Wheat Yield, TGCE, and CEE

The spike numbers per hectare, kernel number per spike, and 1000-grain weights
all increased as the amount of added biochar increased. Compared with B0, the spike
numbers per hectare, kernel number per spike, and 1000-grain weights were 0.91–2.21%
and 4.64–4.87%, 1.12–4.73% and 2.27–7.97%, and 0.39–1.78% and 0.58–2.72% higher under
B10 and B20, respectively (Table 3). Thus, the wheat yields also increased as the amount
of added biochar increased. Compared with B0, the wheat yields were 3.51–8.82% and
10.68–16.42% higher under B10 and B20, respectively (Figure 9A). In addition, the applica-
tion of biochar significantly reduced the TGCE values in wheat fields (p < 0.05). Compared
with B0, the TGCE values were 8.55–24.66% and 7.53–31.09% lower under B10 and B20, re-
spectively (Figure 9B). Therefore, the application of biochar significantly improved the CEE
values (p < 0.05). Compared with B0, the CEE values were 18.52–37.86% and 25.93–61.17%
higher under B10 and B20, respectively (Figure 9C).

Table 3. Wheat yield components under different amounts of added biochar in 2018–2019 and
2020–2021.

Year Treatment Spike Number
ha−1 (×104)

Kernel Number
per Spike

1000-Grain
Weight (g)

18–19
B0 328.33 (6.98) b 40.97 (0.35) b 46.57 (0.71) a

B10 331.33 (8.51) b 41.43 (0.24) ab 46.75 (0.77) a

B20 344.33 (7.36) a 41.90 (0.47) a 46.84 (0.72) a

20–21
B0 453.00 (2.31) b 40.17 (0.41) c 42.23 (0.28) b

B10 463.00 (2.89) ab 42.07 (0.12) b 42.98 (0.32) ab

B20 474.00 (6.81) a 43.37 (0.34) a 43.38 (0.33) a

Note: B0, B10, and B20 represent 0, 10, and 20 Mg biochar ha−1, respectively. Data are means and (standard errors).
Different lowercase letters indicate significant differences between treatment means (Duncan’s test, p < 0.05).

3.5. NECB

The application of biochar significantly increased the C inputs in wheat fields (p < 0.05).
Compared with B0, the C inputs were 23.38–24.35% and 47.31–49.10% higher under B10
and B20, respectively (Figure 10). Thus, the application of biochar significantly increased
the NECB values in wheat fields (p < 0.05). Compared with B0, the NECB values were
2.91–3.58 Mg C ha−1 and 5.29–6.06 Mg C ha−1 higher under B10 and B20, respectively
(Figure 10).
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4. Discussion
4.1. Responses of Soil Hydrothermal Characteristics and Carbon Emissions to Biochar Application

The soil water content and soil temperature are important physical characteristics of
soil, and they are affected by many factors such as climate, topography, and agronomic
measures. Biochar has many hydrophilic functional groups, a large specific surface area,
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and high porosity, which contribute to improved soil water retention [57,58]. Studies have
shown that the application of biochar can increase the soil water content in farmland [59,60].
Similar to previous studies, the results obtained in the present study showed that the
application of biochar significantly increased the soil water content in wheat fields. In
addition, Feng et al. [61] found that the application of biochar could increase the soil
temperature, and suggested that this may have been related to the effect of biochar on
promoting the absorption of solar radiation by the soil. Furthermore, Zhang et al. [62]
showed that the application of biochar reduced the variations in the soil temperature
range. Moreover, Liu et al. [63] found that biochar changed the soil thermal properties
by increasing the total soil porosity, which may have reduced the fluctuations in the soil
temperature. Similar to previous studies, we found that the application of biochar increased
the average soil temperature during the wheat growth period and reduced the fluctuations
in the soil temperature.

The emission of CO2 from the soil is an important pathway that allows carbon to
flow from the soil carbon pool to the atmospheric carbon pool, and these emissions are
affected by the physical and chemical properties of soil and biological processes. Biochar
can inhibit the mineralization of soil organic carbon by adsorbing soluble organic carbon
and promoting the formation of agglomerations [64]. In addition, biochar can slow down
the decomposition of soil carbon by inhibiting the activity of glucosidase and microbial
growth [65–67]. Lentz et al. [68] conducted biochar application trials in irrigated farmland
and showed that the application of 22.4 Mg ha−1 biochar significantly reduced soil CO2
emissions by 20%. Similarly, Ge et al. [69] found that the application of biochar in a
subtropical bamboo forest reduced cumulative CO2 emissions. Similar to most previous
studies, we found that the application of biochar significantly reduced cumulative CO2-C
emissions by 7.51–31.07% in wheat fields.

The emission (or uptake) of soil CH4 is determined by CH4 production and oxidation
processes, which are mainly regulated by methanogenic bacteria and methane-oxidizing
bacteria [70]. Biochar application can increase the abundance of methane-oxidizing bacte-
ria and reduce the ratio of methanogenic bacteria relative to methane-oxidizing bacteria,
which is conducive to the CH4 oxidation process [70,71]. Qin et al. [37] showed that the
application of biochar could significantly reduce CH4 emissions from rice fields. Similarly,
Karhu et al. [72] demonstrated that the application of 9 Mg ha−1 biochar increased the
CH4 uptake amount by 96%. Furthermore, Huang et al. [73] found that the pmoA gene
copy number as an indicator of methane-oxidizing bacteria increased as the biochar appli-
cation amount increased, which further contributed to accelerated CH4 oxidation in the
soil [74]. Similar to previous studies, the results obtained in the present study demonstrated
that the application of biochar significantly increased the cumulative CH4-C uptake by
59.27–106.65% in wheat fields, and the cumulative CH4-C uptake increased as the amount
of added biochar increased.

4.2. Relationships between Carbon Emissions and Hydrothermal Factors

The soil water content and soil temperature are important factors that affect soil CO2
emissions [27]. Tang et al. [29] found that the CO2 emission fluxes tended to decrease as
the soil water content increased in tobacco fields, and indicated that the CO2 diffusion
resistance was large when the soil water content was high, which was not conducive
to CO2 emissions. Furthermore, Lu et al. [75] showed that the relationship between the
CO2 emission flux and soil water content conformed to an exponential decay equation
in the maize growing season, and the R2 value for the fitted equation increased as the
biochar application amount increased. Similar to previous studies, we found that the
relationships between the CO2-C emission fluxes and soil water contents under different
treatments all conformed to an exponential decay equation, and the goodness of fit of the
equation increased as the amount of added biochar increased. However, increases in the
soil temperature can promote microbial metabolism and the decomposition of organic
carbon in soils [76,77], which will increase soil CO2 emissions. Thus, He et al. [26] showed
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that the CO2 emission flux increased exponentially as the soil temperature increased in a
wheat–maize rotation system. Furthermore, Shen et al. [78] showed that the goodness of fit
of the equation for the relationship between the CO2 emission flux and soil temperature
decreased after applying biochar. Similar to most previous studies, we found that the
relationships between the CO2-C emission fluxes and soil temperatures under different
biochar application amounts all conformed to an exponential growth equation, and the R2

values for the fitted equation decreased as the amount of added biochar increased.
The soil water content and soil temperature are also important factors that affect soil

CH4 emissions (or uptake) [79,80]. The relationship between the soil water content and CH4
emission varies under different soil water conditions, where an increase in the soil water
content from a low level can enhance the microbial activity and increase CH4 uptake [81],
whereas a decrease in the soil water content from a high level will make the environment
less anaerobic and reduce CH4 emissions [82]. However, there is no significant correlation
between the CH4 uptake flux and soil water content when the soil water content is in a
moderate range with little fluctuation [27,83]. In the present study, the soil water content
was moderate range under the different treatments, so we found no significant correlation
between the CH4-C uptake flux and soil water content under each treatment. In addition,
methanogenic bacteria and methane-oxidizing bacteria differ in terms of their preferred
temperature ranges and sensitivity to temperature [84,85], and thus the effects of variations
in the soil temperature on CH4 emissions are relatively complex. In particular, Wang
et al. [86] found that the relationship between the CH4 emission flux and soil temperature
in a desert steppe soil conformed to a U-shaped quadratic equation. Furthermore, Lu
et al. [83] showed that the goodness of fit of the equation for the relationship between
the CH4 uptake flux and soil temperature increased after applying biochar. Similar to
previous studies, we found that the relationships between the CH4-C uptake fluxes and soil
temperatures under different treatments all conformed to an inverse U-shaped quadratic
equation, and the R2 value for the fitted equation increased after applying biochar.

4.3. Responses of Crop Yield and Farmland Carbon Sequestration to Biochar Application

Crop yields have always been a major focus of agricultural research and they cannot
be increased without improving the soil environment and crop traits. The application of
biochar can increase soil enzyme activity levels [87], soil nutrient supply [88,89], and soil
water and fertilizer storage capacity [90,91] to create good soil conditions for crop growth.
In addition, the application of biochar can promote crop root growth [92,93], regulate crop
metabolic activities [94], and increase the accumulated crop biomass [95]. Zhang et al. [36]
showed that the application of wheat straw biochar increased rice yield by 9–28%. In
addition, a meta-analysis by Jeffery et al. [96] demonstrated that the average crop yield
increased by about 10% after the application of biochar. Similar to most previous studies,
we found that the application of biochar improved the soil hydrothermal conditions and
increased the accumulated wheat biomass, and thus the yield increased by 3.51–16.42%.

The agricultural soil carbon budget greatly affects soil quality and crop productiv-
ity and further affects the sustainable development of agriculture [25,97], and thus car-
bon sequestration in farmland has become a research hotspot. Biochar is a highly stable
carbon-containing material [98] and its application to soil can help to improve soil carbon
inputs [29]. In addition, the application of biochar can enhance the carbon assimilation ca-
pacity of crops to fix more gaseous carbon, and the increased amount of carbon transported
to the underground parts increases soil carbon sequestration [29,99,100]. Furthermore, the
application of biochar can reduce the decomposition rate of soil organic carbon to slow
down soil carbon losses [31,32]. In previous soil carbon sequestration studies, the NECB
was widely used to assess the changes in soil carbon storage [51,101]. In particular, Wang
et al. [97] showed that vegetable fields without biochar application lost carbon and had neg-
ative NECB values, whereas vegetable fields treated with biochar sequestered carbon and
had positive NECB values. Similarly, Benbi et al. [102] applied biochar in a maize–wheat
system and obtained a positive NECB value, and thus biochar played a positive role in soil
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carbon sequestration. Similar to previous studies, we found that the application of biochar
increased the soil carbon inputs and changed the NECB value from negative to positive to
facilitate carbon sequestration in wheat fields.

5. Conclusions

In the present study, the CO2-C emission flux had negative and positive exponential
relationships with the soil water content and soil temperature, respectively. However,
the CH4-C uptake flux had no significant correlation with the soil water content and an
inverse U-shaped quadratic function relationship with the soil temperature in wheat fields
under RFRH planting. The application of biochar to wheat fields under RFRH planting
reduced cumulative CO2-C emissions and increased the soil water content, soil temperature,
cumulative CH4-C uptake, wheat yield, CEE, and NECB, and thus the farmland changed
from a carbon source to a carbon sink. The application of biochar under RFRH planting can
combine the benefits of saving water, increasing yields, reducing emissions, and facilitating
carbon sequestration to ensure high-quality production from farmland in arid and semi-
arid areas.
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