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Abstract: Obtaining the number of plants is the key to evaluating the effect of maize mechanical
sowing, and is also a reference for subsequent statistics on the number of missing seedlings. When
the existing model is used for plant number detection, the recognition accuracy is low, the model
parameters are large, and the single recognition area is small. This study proposes a method for
detecting the number of maize seedlings based on an improved You Only Look Once version 4
(YOLOv4) lightweight neural network. First, the method uses the improved Ghostnet as the model
feature extraction network, and successively introduces the attention mechanism and k-means
clustering algorithm into the model, thereby improving the detection accuracy of the number of
maize seedlings. Second, using depthwise separable convolutions instead of ordinary convolutions
makes the network more lightweight. Finally, the multi-scale feature fusion network structure is
improved to further reduce the total number of model parameters, pre-training with transfer learning
to obtain the optimal model for prediction on the test set. The experimental results show that the
harmonic mean, recall rate, average precision and accuracy rate of the model on all test sets are 0.95%,
94.02%, 97.03% and 96.25%, respectively, the model network parameters are 18.793 M, the model size
is 71.690 MB, and frames per second (FPS) is 22.92. The research results show that the model has high
recognition accuracy, fast recognition speed, and low model complexity, which can provide technical
support for corn management at the seedling stage.

Keywords: maize seedlings; detection; YOLOv4; improved Ghostnet; k-means clustering; attention
mechanism

1. Introduction

Maize is one of the most important crops in Chinese agriculture [1,2]. It is strategically
important to ensure the security of grain production, improve stockbreeding as well as the
processing industry of grain and oil, and enhance agricultural income and output efficiency.
In 2021, China’s maize output reached 27255.2 million tons, an increase of 11.8868 million
tons, rising 4.56% compared with the output in 2020. The precise number of maize seedlings
is able to compute the corresponding emergence rate [3] as well as leakage rate, in favor of
timely reseeding and reduction of production loss to the extreme, thus guaranteeing the
interests of growers and national food security.

In early times, the number of plants was obtained mainly by fixed (hand-held, tripod)
or walking (agricultural machinery, agricultural vehicles, wheelbarrow) equipment, which
was single, time-consuming, and laborious. Unmanned Aerial vehicles (UAV) remote
sensing [4–12], as a kind of flexible and efficient technology to obtain the information
of the farmland environment and crop growth, has been widely applied to agricultural
production and scientific research in recent years. Compared with traditional satellite
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and aerial remote sensing, UAV has many advantages such as low cost, low loss, repeata-
bility, and low risk, providing a new technical means in order to acquire a large-scale
plant number.

In terms of plant number acquisition, researchers mainly extracted the vegetation
index [13], color information [14] and plant phenotype [15] through traditional machine
vision and image processing technology, and gained different plant numbers according to
the obtained characteristics. Jia Honglei et al. [16] converted the grayscale image into a
binary image for boundary extraction and image segmentation. They found the geometric
center of the corn stalk section and marked it. Liu Shuaibing et al. [17] used the skeleton
extraction algorithm and mathematical morphological processes such as deburring to
extract the shape of corn seedlings, and to obtain the skeleton of the crop shape. Finally,
the Harris corner detection algorithm was used to extract the plant number information
of the corn seedling image. Zhao Biquan et al. [18] used the Otsu thresholding method to
segment rape plant objects from vegetation index images. The above research methods
require a specific shooting environment, angle, and lighting conditions. However, the
plant growth environment is complex, and the color and morphological features of the
collected images are easily disturbed by various factors, which in turn affects the feature
matching effect.

In recent years, with the rapid development of deep learning technology in the agri-
cultural field, the acquisition of plant number information has become more and more
convenient, fast, efficient, and accurate. Many scholars at home and abroad have studied
the acquisition of plant numbers and achieved results. Chin Nee Vong et al. [19] devel-
oped an image-processing workflow based on the deep learning model U-Net for plant
segmentation and stand-number estimation. Azam Karami et al. [20] used Red–Green–Blue
(RGB) images acquired by drones to identify and count corn through a modified CenterNet.
Yang et al. [21] used the improved YOLOv4 model to detect and count wheat ears in
the field, and added the Convolutional Block Attention Module (CBAM) module to the
YOLOv4 network to enhance the feature extraction ability of the network. Guo Rui et al. [22]
detected the number of soybean pods in the YOLOv4 model by integrating the k-means
clustering algorithm and the improved attention mechanism module. The results show
that the model had strong generalization ability. Zhang Hongming et al. [23] proposed a
seedling acquisition detection model (FE-YOLO) based on the feature enhancement mecha-
nism, which reduced the complexity of the network and realized the rapid acquisition of
the number of maize seedlings. All the above methods have made certain contributions to
the acquisition of plant quantity information. However, the model detection accuracy is
low and the number of model parameters is large. Training takes a long time, making it
difficult to arrange in mobile terminals and embedded chips.

This study innovatively proposed an improved lightweight target detection neural
network for maize seedling quantity acquisition. In this method, the YOLOv4 network
is used as the backbone model. Firstly, the improved Ghostnet network and depthwise
separable convolution are introduced to reduce the number of model parameters. Then,
introducing the CBAM attention module and the k-means clustering algorithm improves
the model’s ability to recognize tiny targets. Finally, on the premise of comprehensively
analyzing the size of the prior boxes and the target size of the maize seedling to be detected,
the detection branch used to detect large-sized targets is selected to be removed, and an
improved lightweight target detection neural network is finally obtained. The improved
lightweight object detection neural network improves the model’s training efficiency and
recognition performance by transferring public knowledge pre-trained on the COCO
dataset. The experimental analysis shows that this method has the potential for mobile
deployment and is practical and effective.
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2. Materials and Methods
2.1. Overview of Experimental Area

The experimental area is located in the modern Agricultural Science and Technology
Demonstration Park, Duerbote Mongolian Autonomous County, Daqing City, Heilongjiang
Province, with the central geographic coordinates of (46◦49′ N, 124◦26′ E). The altitude is
about 147 m. The planting crop is corn. The area has a large temperature range between day
and night, abundant with sufficient solar and wind energy resources, which is appropriate
for crop planting.

2.2. Image Acquisition

The UAV image test data were collected from 10:00 to 13:00 on 12 June 2021 in the
Agricultural Park of Duerbert Mongolian Autonomous County. In this experiment, maize
is in V3 growth stage. In the acquisition of UAV images, to avoid the loss of texture feature
information of some images due to cloud occlusion, weather conditions with stable solar
radiation intensity and a clear and cloudless sky were selected for acquisition. In the
process of data acquisition, Pix4Dcapture was used for route planning, and the UAV route
overlap degree was set as 80%, side overlap degree as 70%, and flight altitude as 10 m
for the experiment. The ground sampling distance was 0.44 pixel/cm. DJI Phantom 3
Professional UAV is a remote sensing platform with a total mass of 1280 g and a maximum
horizontal flight speed of 57.6 km/h in a windless environment. The battery is LiPo (4 S,
4480 mAh). The UAV is equipped with a 1/2.3 inch CMOS image sensor, effective pixels
of 12.4 million, and FOV94 ◦ 20 mm f/2.8 lens. The data source collected is image data
in *.jpg format.

2.3. Data Set Construction and Preprocessing
2.3.1. Image Preprocessing

After the aerial image is exported from the UAV storage device, the Pix4DMapper [24]
software is used to generate the mosaic image. First, feature points are automatically
calculated in each image. Then, the feature points are automatically matched in the image
sequence, which needs to be repeated many times. After the matching is completed, enter
the stage of generating the dense point cloud. Finally, a Mosaic image is generated as
shown in Figure 1b.

Figure 1. Study area: (a) experimental-area location; (b) splicing diagram of test field.
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2.3.2. Data Set Construction

A total of 300 [25–27] images of maize seedlings were collected in this experiment.
Considering the large size of the collected single image, dense seedlings, and small pixel
area of the whole image, sample production will confine itself to a large amount of sample
area, and the image cannot be directly scaled and detected, affecting the speed of network
detection. Therefore, the Python language is used in the research to slice the collected
images to improve the speed of network training and detection.

The sliced images were screened to eliminate fuzzy and distorted images, and 500 im-
ages were randomly selected as data sets. The data sets were divided into a 9:1 ratio, 90%
divided into training set and verification set according to 9:1, and the remaining 10% were
used as test sets. Finally, the sample numbers of the training set, validation set, and test set
were 405, 45, and 50. The LabelImg tool was used to annotate the data of corn seedlings
in the image, and the .XML file including ground truth was obtained after the annotation,
and the data set was constructed according to the Pascal Visual Object Classes (VOC) [28]
data format.

2.4. YOLOv4 Network Model

Target detection algorithms based on deep learning are mainly divided into two cate-
gories. One is a two-stage target detection method represented by RCNN [29], SPP Net [30],
Fast RCNN [31], and Faster RCNN [32], whose main idea is to generate regions first and
then conduct classification and recognition through a convolutional neural network. The
other is the single-stage target detection method represented by the Single Shot MultiBox
Detector (SSD) [33], You Only Look Once (YOLO), etc. Its main idea is to predict object
classification and location by extracting features directly from the network without using a
region proposal. As a classical single-stage target detection network, YOLO has fast infer-
ence speed and high accuracy, among which YOLOv4 [34] makes a series of improvements
based on YOLOv3 [35], greatly improving its speed and accuracy. YOLOv4 is mainly com-
posed of four parts: input terminal, backbone network, neck network and head network.
The Mosaic data augmentation method is designed, and the input images are merged by
random clipping, scaling, and spatial arrangement. At the same time, training techniques,
such as the learning rate cosine annealing attenuation method, are used. This method
not only enriches the data set but also improves the training speed of the network. The
backbone network is the CSPDarknet53 network, which includes five Cross Stage Partial
(CSP) modules that first divide the feature mapping of the base layer into two parts and
then combine them through a cross-stage hierarchy. The Mish activation function, which is
smoother than the Leaky ReLU activation function, can further improve the accuracy of the
model. The Mish function [36] expression is:

Mish = x× tan h(ln(1 + e x)) (1)

where x is the input value, tanh is the hyperbolic tangent function, and ln is the logarithmic
function of the number based on e.

The Spatial Pyramid Pooling (SPP) structure, using maxpooling kernels such as
{1 × 1, 5 × 5, 9 × 9, 13 × 13}, stitches together feature maps of different scales. Compared
with simply using the k × k maxpooling, it can more effectively increase the receiving
range of backbone features and significantly separate the most critical context features.
The Path Aggregation Network (PANet) adds a bottom-up path augmentation structure
after the top-down feature pyramid, which contains two PAN structures, and the PAN
structure is modified. The original PAN structure uses a shortcut connection to fuse the
down-sampled feature map with the deep feature map, and the number of channels of the
output feature map remains unchanged. The modified PAN uses the concat operation to
connect the two input feature maps, and merge the channel numbers of the two feature
maps. The top-down feature pyramid structure conveys strong semantic features, and the
bottom-up path augmentation structure makes full use of shallow features to convey strong
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positioning features. PANet can make full use of shallow features, and for different detector
levels, feature fusion of different backbone layers to further improve feature extraction
capabilities and improve detector performance.

The head network adopted multiple l x 1 alternately and the size of a 3× 3 convolution
kernels for the convolution operation, being able to experiment with the size of the figure,
and then forecast the figure; the characteristics of each layer will generate the corresponding
three-box criterion to predict the box, whether the forecast box containing the features
related to the information, and detect the target. Finally, the final prediction box is obtained
by the non-maximum algorithm and the set prior box.

2.5. Improved YOLOv4 Network Model Design
2.5.1. Improved Ghostnet Feature Extraction Network

The backbone network of YOLOv4 is CSPDarkNet53. Although the feature extraction
capability of the CSPDarkNet53 backbone network is strong, the calculation is complex
and requires more memory space. This study proposes an improved YOLOv4 lightweight
neural network model. Based on the original YOLOv4 network, the improved Ghostnet
network is used as the backbone feature extraction network. Ghostnet [37] is a novel
end-to-side neural network architecture proposed by Huawei’s Noah’s Ark Lab. MobileNet
and ShuffleNet [38] introduce depthwise convolution and shuffling operations, using
smaller convolution kernels (floating point operations) to build efficient CNN, but the
remaining 1 × 1 convolutional layers will still take up a lot of memory. While Ghostnet
maintains a similar recognition performance, the total number of parameters required by
the model and the computational complexity are reduced. The ghost module divides the
ordinary convolution into two parts. First, an ordinary 1 × 1 convolution is performed to
generate the feature concentration of the input feature layer. Next, depthwise separable
convolutions are used to obtain similar feature maps with feature enrichment. Ghost
bottlenecks consist of ghost module; Ghostnet contains two bottleneck structures, stride = 1
for feature extraction and stride = 2 to reduce the number of channels. Ghost bottlenecks
consist of two parts, the backbone part and the residual edge part. The structure is shown
in Figure 2 below.

Figure 2. Structure diagram of ghost bottlenecks.



Agriculture 2022, 12, 1679 6 of 18

The entire Ghostnet is composed of Ghost bottlenecks; after the stacking of Ghost
bottlenecks, the feature layer of 7 × 7 × 160 is finally obtained. Use a 1 × 1 convolution
block to adjust the number of channels to obtain a 7 × 7 × 960 feature layer. Through a
global average pooling at the tail, the size of the feature map is reduced from 7× 7 to 1× 1.
After using a 1 × 1 convolution block to adjust the number of channels, a 1 × 1 × 1280
feature layer is obtained.

This study adopts the improved ghost module. In the feature maps extracted by
mainstream deep neural networks, rich and even redundant information usually ensures a
comprehensive understanding of the input data. Therefore, in the improved Ghost module,
the input image is first subjected to a 1 × 1 ordinary convolution to increase the dimension
and define the dimension-raising coefficient T = 6. Ensure that sufficient information is
extracted and increase the interaction of cross-channel information. Next, in the ghost
module trunk branch, first use depthwise convolution. After the dimension increase, use
cheap operations to get more redundant feature maps on the input data. After passing
through the 1 × 1 convolution layer, these redundant features are concentrated in the
form of reverse residuals. In this way, more feature information can be obtained with less
computational cost. In the residual branch of the ghost module, use 1 × 1 convolution to
adjust the channel dimension of the input data to facilitate the feature concat combination
with valid features extracted from the trunk branch. Then, combine the different feature
maps together to form a new output. The Ghostnet network can use the SENet module
to achieve feature enhancement of the channel attention. However, due to the lack of
fine-grained feature improvement, this module has a large amount of computation and a
limited feature improvement effect. Therefore, in this study, the SENet module is removed
to further reduce the number of model parameters. The structure diagram of the improved
ghost module is shown in Figure 3.

Figure 3. Improved ghost module.
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2.5.2. Depthwise Separable Convolution

Depthwise Separable Convolution [39] is divided into depthwise convolution and
pointwise convolution. Depthwise Separable Convolutions consider channels and spatial
regions separately. Dividing ordinary convolution into two processes for operation can
learn rich feature information with fewer parameters. Depthwise convolution and point-
wise convolution are shown in the Figures 4 and 5 below. In order to further reduce the
number of parameters of the network, depthwise separable convolution was introduced in
the PANet and YOLO Head structures to replace the standard convolution in the original
network. The formula for calculating the ratio of depthwise separable convolution to
traditional convolution is:

K2M + MO
K2MO

=
1
O

+
1

K2 (2)

where K is the convolution kernel size of the depthwise separable convolution, M is the num-
ber of input feature maps, and O is the number of output feature maps. The computational
cost of depthwise separable convolution is about 1/K2 of that of standard convolution.

Figure 4. Depthwise convolution.

Figure 5. Pointwise convolution.

2.5.3. CBAM Attention Mechanism

CBAM [40] is an efficient and lightweight attention module. This module can be
integrated into any convolutional neural network structure and trained end-to-end with the
base network. It contains two independent sub-modules, the Channel Attention Module
(CAM) and the Spatial Attention Module (SAM). The two modules are combined in the way
of the first channel attention module and then the spatial attention module. Compared with
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SENet [41], CBAM adds a spatial attention module, since in this study, the maize seedlings,
after generating orthophotos, have good positional characteristics in the two-dimensional
plane. Therefore, the CBAM module is selected to assign the weights of the channel features
and spatial features of the feature map, increase the weights of useful features, and suppress
the weights of invalid features. This module can make the network pay more attention
to the target area with important information, obtain relevant information, and improve
the overall accuracy of target detection. The CBAM module is shown in Figure 6. After
many trials, the module works best when placed at the front of the YOLOv4 neck network.
Therefore, the improved YOLOv4 lightweight neural network in this study is trained and
predicted based on this.

Figure 6. Structure of CBAM.

2.5.4. K-means Clustering Adjusts the Target Prior Box

The original YOLOv4 prior box is based on the COCO dataset. Including 80 categories,
the size of the a priori box is different for different categories. In order to make it more
suitable for the detection of maize seedlings, this study adjusted the prior box in the original
YOLOv4 model using the k-means clustering algorithm. Randomly select k boxes as the
cluster center, and calculate the distance between all other anchor boxes and the cluster
center. The calculation of distance is based on the concept of Intersection Over Union (IOU).
All anchor boxes are divided into k regions according to the distance, and the distance of
these k regions is averaged. The average value is taken as the cluster center of the region
again, and the iteration stops until the cluster center does not change. The formula for the
distance between the cluster center and other anchor boxes is as follows:

distance(a, b) = 1− min(w1, w2)×min(h1, h2)

w1h1+w2h2 −min(w1, w2)×min(h1, h2)
(3)

In the formula, a is the anchor box of other tags, b is the anchor box position of the
cluster center traversing all the tag files, w1 is the width of the cluster center, h1 is the
height of the cluster center, w2 is the width of other tag anchor boxes, h2 is the height
of the anchor box for other labels. We calculate the size, width, and height of the anchor
box, and use the obtained data to perform k-means clustering. The anchor box coordinate
information of all training data is used as the input sample, and the size of the 9 cluster
center a priori boxes is finally generated by iteration as (18, 14), (46, 23), (29, 44), (58, 41),
(89,33), (46,65), (85,55), (71,85), (128,73).

2.5.5. Improved Multi-Scale Feature Fusion Network Structure

YOLOv4 uses different detection layers to detect objects of different sizes. For a
416 × 416 input image, the sizes of the three detection layers are 13 × 13, 26 × 26, 52 × 52.
The feature maps of the three detection layers are down-sampled 8 times, 16 times, and
32 times, respectively. Each detection layer corresponds to 3 a priori boxes, containing a
total of 9 a priori boxes. The smaller the size of the feature map, the larger the corresponding
a priori box size. The largeness of the area corresponding to each grid cell in the input
image is generally responsible for detecting objects with larger sizes. On the contrary, the
larger the size of the feature map, the smaller the corresponding a priori box size, the
smaller the area corresponding to each grid cell in the input image, generally responsible
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for detecting objects with smaller sizes. Therefore, the 13 × 13 detection layer is suitable
for the detection of large objects and 52 × 52 detection layers are suitable for small target
detection. After k-means clustering, it is found that the image size of maize seedlings is
relatively uniform and small in size. Therefore, this study removes the 13 × 13 detection
layer used to detect large objects and the prior boxes are changed from the original 9 to
6. This improved method compresses model parameters while ensuring model detection
accuracy. The improved network structure is shown in Figure 7.

Figure 7. Improved multi-scale feature fusion network structure.

2.5.6. Pre-training the Original Network with Transfer Learning

Transfer learning [42] refers to the idea that knowledge learned in one environment is
used in another domain to improve its generalization performance. With the development
of deep learning, the network model gradually increases from the first few layers. The
hardware requirements for model training are becoming higher and higher, and the training
time is longer. Transfer learning can help us solve this problem. We load the weight
parameters trained by others into our model, which can quickly train an ideal result
without requiring a large dataset.

In order to improve the training speed, the data set in this study is limited. We
use the idea of transfer learning to transfer the simple edge information learned by the
Ghostnet-YOLOv4 model in the COCO dataset to the maize seedling detection network.
Use initial weights to pre-train the improved YOLOv4 lightweight neural network model;
first, freeze some convolutional layers. When the model gradually converges, unfreeze the
entire network model and train the entire network. The whole process of detecting the
number of maize seedlings is shown in Figure 8.
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Figure 8. Flow chart of seedling number detection.

2.6. Test Evaluation Index

To objectively measure the target detection effect of the model on maize seedlings, the
Precision (P), Recall (R), Harmonic Average F1 Value (F1), Average Precision (AP), Mean
Average Precision (mAP), the number of network parameters, the model size, and FPS
were used to evaluate the trained model. The IOU value was 0.5 in the experiment. The
calculation formulas of P, R, F1 are shown in the following formulas.

Precision =
TP

TP + FP
× 100% (4)

Recall =
TP

TP + FN
× 100% (5)

F1 =
2× Precision× Recall

Precision + Recall
(6)

Among them, True Positive (TP) represents the number of correctly detected maize
seedlings; False Positive (FP) represents the number of misclassified maize seedlings; False
Negative (FN) represents the number of missed maize seedlings; F1 represents the harmonic
average of accuracy and recall. When F1 is closer to 1, the model is better optimized. AP
represents the area composed of the PR curve and the coordinate axis. The higher the
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AP value is, the better the performance of the target detection algorithm is. The mAP
represents the AP average of multiple categories, and its value represents the general
detection performance of the algorithm for different categories. Since this study only
performed single-class target detection for maize seedlings, the mAP and AP values were
the same, and both were the area of the PR curve of maize seedlings. The specific definition
is shown in Equation (7).

mAP =
1
N

N

∑
m=1

1∫
0

PRdr (7)

In the formula, N is the number of categories, and to compare the model complexity,
the model size, the number of network parameters, and the number of frames per second
are used as model complexity evaluation parameters.

3. Results and Analysis
3.1. Test Platform and Training Parameters Setting

This experiment is based on the PyTorch framework, and the experimental environ-
ment is shown in Table 1. The model accuracy of different backbone feature extraction
networks and the differently modified parts of the improved model are compared on the
Windows operating system. Verify the model performance on the same validation set. In
this experiment, the input image pixels are 416 × 416. The training was divided into two
stages, and the whole stage was trained for 2000 epochs. For the first half of the stage, the
backbone feature extraction network of the model was trained in 500 epochs by freezing.
The initial value of the learning rate was set to 1 × 10−3, and the batch size was set to 16.
The learning rate adjustment is realized by the cosine annealing decay algorithm, and the
decay coefficient is 0.0005. For the second half of the stage, the backbone feature extraction
network was unfrozen, and the entire model was further trained for 1500 epochs with an
initial learning rate of 1 × 10−3, and the batch size was set to 8. Save the weight file every
200 generations of training (epoch) on the training set and generate a log file to output the
loss value of the training set and the validation set. The loss value curves of the training set
and validation set of the improved model in this paper are shown in Figure 9.

Figure 9. The curve of the loss value changing with the number of iterations.
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Table 1. Test environment.

Configure Parameter

CPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz
GPU

Operating System
NVIDIA GeForce RTX 3060 16 G

Windows10
Acceleration Environment

Development Platform
Cuda 11.3
PyCharm

Others Numpy1.17.0 Opencv4.1.0

3.2. Comparison of Seedling Test Results
3.2.1. Comparison of Different Backbone Feature Extraction Networks

It is convenient to place the model on the mobile side to reduce the number of model
parameters and design an improved YOLOv4 lightweight neural network using improved
Ghostnet as the backbone network. In order to verify the rationality of the designed
improved YOLOv4, a comparison experiment was conducted on the test set to compare
different backbone feature extraction network models. The mAP, precision, recall, F1-score,
model size, number of network parameters, and FPS of different models were obtained, as
shown in Table 2.

Table 2. Comparison of different backbone feature extraction networks.

Model P (%) R (%) mAP (%) F1 Model Size (MB) Parameters (M) FPS

YOLOv4 90.87 74.06 88.35 0.82 243.90 63.938 19.21
Vgg-YOLOv4 92.65 90.87 94.32 0.92 197.50 51.773 26.18

Densenet121-YOLOv4 94.16 87.74 95.10 0.94 168.89 44.274 23.89
Mobilenetv1-YOLOv4 94.04 89.06 94.54 0.91 154.60 40.527 29.46
Mobilenetv3-YOLOv4 93.66 90.62 94.87 0.92 150.93 39.565 28.90

Ghostnet-YOLOv4 93.24 89.54 94.07 0.91 149.78 39.264 32.77

As seen from the table, compared with the original YOLOv4 model, this study uses
Ghostnet as the backbone network, and the mAP, precision, recall, and F1 are greatly
improved. The number of network parameters and model size is greatly reduced, and the
FPS is improved. Through experiments, it is found that although Ghostnet-YOLOv4 is close
to other models in terms of various accuracy indexes, the number of network parameters
and model size of Ghostnet-YOLOV4 is the smallest among the following models and
the largest in FPS among the following models. All indicators of Vgg-YOLOV4 and
Densenet121-YOLOV4 have a good performance, but the number of network parameters
and model size is larger, and the FPS decreases more than that of Ghostnet-YOLOV4. We
use Ghostnet as the backbone network, and the model has improved various indicators
to varying degrees. Among them, the mAP has increased by 5.72%, the precision rate has
increased by 2.37%, the F1 has increased by 0.09, the recall rate has increased by 15.48%,
the number of network parameters decreased by 38.59%, the model size decreased by
94.12 MB, and the FPS reached 32.77. Therefore, the Ghostnet-YOLOV4 lightweight neural
network improves precision and has apparent advantages in mobile devices and embedded
applications. Therefore, this study further improves the model detection effect and reduces
the model size.

3.2.2. Comparison of Test Results of Different Improved Structures

The original YOLOv4 algorithm has a large number of model parameters, which is
not conducive to placement on the mobile terminal. There are false detections and missed
detections for dense and overlapping targets. Therefore, an improved YOLOv4 lightweight
neural network is proposed. The specific improvement methods are as follows: 1©Improved
multi-scale feature fusion network structure. By analyzing the detection targets in this
study, it is found that the size of maize seedlings is relatively uniform, and the target box
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is small. Therefore, this study removes the 13 × 13 detection layer for detecting large
objects to reduce the number of network parameters. 2© The improved Ghostnet is used as
the backbone feature extraction network. 3© Depthwise separable convolution. In order
to reduce the number of model parameters as much as possible, this study replaces the
standard convolution in PANet and YOLO head with the depthwise separable convolution.
4© K-means clustering. The anchor boxes of the original YOLOv4 network are based on

the COCO dataset, and this paper re-clusters the anchor boxes to make them more suitable
for the detection of maize seedlings. 5© CBAM attention mechanism. In order to verify the
superiority of lightweight YOLOv4 improvement, we conducted comparative experiments
on the test set. When IOU = 0.5, the test results are shown in Table 3.

Table 3. Comparison of detection results of different improved structures.

Model P (%) R (%) mAP (%) F1 Model Size
(MB)

Parameters
(M) FPS

YOLOv4 90.87 74.06 88.35 0.82 243.90 63.938 19.21
YOLOv4 + 1© 92.12 77.50 90.75 0.84 179.29 47.001 31.94
YOLOv4 + 1© + 2© 93.61 87.98 94.25 0.91 127.49 33.422 26.89
YOLOv4 + 1© + 2© + 3© 94.69 90.02 94.93 0.92 71.61 18.772 24.89
YOLOv4 + 1© + 2© + 3© + 4© 97.28 91.82 96.91 0.94 71.61 18.772 24.87
YOLOv4 + 1© + 2© + 3© + 4© + 5© 96.25 94.02 97.03 0.95 71.69 18.793 22.92

Note: 1© Improved multi-scale feature fusion network structure; 2© Improved Ghostnet backbone feature extrac-
tion network; 3© Depthwise separable convolution; 4© K-means clustering; 5© CBAM attention mechanism.

On the basis of YOLOv4, the improved multi-scale feature fusion network structure
improves the recall rate by 3.44%, mAP by 2.40%, F1 value by 0.02, precision by 1.25%,
network parameters reduced by 26.49%, model size decreased by 64.61 MB, and FPS
increased by 12.73 compared to the original YOLOv4. The experimental results show
that the improved multi-scale feature fusion network structure ensures that the network
recall, mAP, F1 value, and precision are higher while reducing a certain amount of model
parameters, and the FPS has been significantly improved.

In the network that replaced the backbone feature extraction network and improved
multi-scale feature fusion structure, compared with the original YOLOv4 network, the recall
rate increased by 13.92%, mAP increased by 5.90%, F1 value increased by 0.09, precision
increased by 2.74%, network parameters are reduced by 30.516 M, the model size is reduced
by 116.41 MB, and the FPS is increased by 7.68. Through comparison, it can be seen that
the indicators of the model have been greatly improved, and the number of network
parameters has significantly been reduced. It shows that this study’s improved Ghostnet
feature-extraction network can extract the feature information of maize seedlings well.
Compared with the network that only improves the multi-scale feature fusion network
structure, the recall rate is increased by 10.48%, the mAP is increased by 3.5%, the F1 value
is increased by 0.07, the precision is increased by 1.49%, network parameters are reduced
by 13.579 M, and the model size is reduced by 51.80 MB, but the FPS is reduced by 5.05. It
shows that the replacement of the backbone network can improve the detection accuracy
of the model, but the FPS decreases. The validity of this partial improvement in the field of
maize seedling detection was confirmed.

Compared with the original YOLOv4 network, after adding the depthwise separable
convolution to the model, the recall rate is increased by 15.96%, the mAP is increased
by 6.58%, the F1 value is increased by 0.1, the precision is increased by 3.82%, and the
network parameters are reduced by 45.166 M, the model size is reduced by 172.29 MB,
and the FPS is increased by 5.68. Compared with the network that replaced the backbone
feature extraction network and improved multi-scale feature fusion structure, the recall
rate has improved greatly, and the improvement value is 2.04%. The network parameters
and model size have been greatly reduced by 14.65 M and 55.88 MB, respectively, and the
FPS has dropped slightly. Through experiments, it is found that replacing the standard
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convolution with the depthwise separable convolution in this study improves the model’s
accuracy to varying degrees and greatly reduces the number of parameters, making the
model more lightweight.

In the experiment, after readjusting the priori boxes with k-means clustering, the
model has a certain improvement in various indicators. However, the recall rate is not
significantly improved. We consider that there may be insufficient attention to the target
object due to too much redundant information in the model, so we add the attention
mechanism module in the next experiment. After adding the CBAM attention mechanism
to the model, compared with the model without the attention mechanism, the recall rate
increased by 2.20%, the mAP increased by 0.12%, the F1 value increased by 0.01, and the
precision decreased by 1.03%. The network parameters only increased by 0.021 M, the
model size remained almost the same, and the FPS decreased by 1.95. Compared with
the model without k-means clustering and attention mechanism module, the recall rate is
increased by 4%, the mAP is increased by 2.1%, the F1 value is increased by 0.03, and the
precision is increased by 1.56%. From the experimental results, we can see that adding the
attention mechanism module greatly improves the model’s recall rate while ensuring the
model’s size and the number of network parameters. The model pays more attention to the
characteristic information of maize seedlings.

In general, compared with the YOLOv4 network, when IOU = 0.5, the model proposed
in this study can improve mAP by 8.68%, recall by 19.96%, F1 value by 0.13, precision by
5.38%, and reduce the number of network parameters by 70.61%, the model size is reduced
by 172.21 MB, and the FPS is increased by 3.71.

The confidence threshold was set as 0.3, so the network could only detect seedling
targets higher than the confidence. The recognition effect of YOLOv4, improved YOLOv4
lightweight networks, Mobilenetv1-YOLOv4, Mobilenetv3-YOLOv4, Densenet121-YOLOv4,
Vgg-YOLOv4. and on small maize seedlings was compared, as shown in Figure 10. As can
be seen from the comparison of areas enclosed by dashed lines in Figure 10a,b, YOLOv4
had misdetection and missed detection of small seedlings, while the improved YOLOv4
model had a better prediction effect.

Figure 10. Detection results of different models: (a) YOLOv4 test results; (b) Improved YOLOv4
lightweight networks test results; (c) Mbilenetv1-YOLOv4 test results; (d) Mobilenetv3-YOLOv4 test
results; (e) Densenet121-YOLOv4 test results; (f) Vgg-YOLOv4 test results.
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4. Discussion

Many researches have been conducted on the application of object detection in agri-
culture, such as crop identification, disease detection and plant counting, among which
there are some lightweight models with sound effects [43,44]. In this study, the improved
YOLOv4 lightweight neural network can obtain more accurate information on the number
of maize seedlings to reduce farmers’ workload further.

An essential goal of this research is to achieve the model’s being lightweight while
ensuring detection accuracy. In the maize seedling detection, only one target in the en-
vironment needs to be determined, and there is no need to learn too many shape and
color features. Therefore, in this study, the backbone network CSPDarknet53 of YOLOv4
is replaced by the improved lightweight network Ghostnet, and the depthwise separable
convolution replaces the traditional convolution with fewer parameters. According to the
experimental results in Table 3, compared with the 3.77% increase in mAP value when
Chenxi Zhang et al. [45] used the improved Ghostnet and introduced the deeply separable
convolution model to detect apples, the mAP value of this model is increased by more
percentage points, reaching 6.58%. The precision, recall, and F1 value are greatly improved,
and the model size is significantly reduced. On the one hand, the improvement of mAP
is due to the addition of 1 × 1 standard convolution in the Ghost module, which helps
improve the ability of the model to provide detailed information. On the other hand, the
YOLOV4 model has more complex parameters, more suitable for detecting objects with
more categories. However, the target object of this study is only maize seedlings so that the
lightweight network will have a better detection effect.

The k-means algorithm is widely used in object detection. Junfeng Gao et al. [46]
proposed an improved YOLOv3 model for sugar beet detection. The size of the YOLO
anchor box was calculated from the training dataset using the k-means clustering method,
and the results showed that the mAP of sugar beet reached 0.897. Since maize seedlings
in the data set of this study were at the same growth stage, the size of seedling plants
was relatively uniform and consistent. The original prior box is based on 80 categories of
detection targets, which is not suitable for single target detection. Therefore, the k-means
algorithm is used to optimize the generation of the prior box. The experimental results
show that the mAP value of the model using an optimized preselection box is 96.91%, and
the precision reaches the maximum value of 97.28%. This is because in multi-scale training,
the anchoring framework using the k-means algorithm can better fit the training target and
has better generalization ability. In addition, by analyzing the k-means clustering results,
it is found that the size of the prior box is relatively concentrated, and most of the targets
are small. Therefore, by removing the detection branch that detects large objects. The
experimental results show that mAP is improved by 2.4%, and FPS is improved by 12.73
compared with the original model. This shows that the 13 × 13 feature layer is unsuitable
for small target detection, and the effect is better and the detection speed is faster after
removing it.

The model in this study performs well in terms of accuracy, but needs to be im-
proved in terms of FPS. As can be seen from Table 3, the FPS decline of the model is
mainly concentrated in the backbone network replacement and the CBAM [47] attention
mechanism. In order to solve this problem, a lighter backbone feature extraction net-
work and CBAM module can be built in the subsequent research and embedded in the
YOLOv4 network. This can improve the detection accuracy while reducing the weight
of the model. In addition, through testing, it was found that the main reasons for false
detection and missing detection in this paper are that some weeds and straw were similar
in color and shape to maize seedlings, while some seedlings were small in size and not
significantly different from the ground. In future studies, we will be more inclined to dis-
tinguish the characteristics of weeds and seedlings to improve the detection accuracy of the
model further.
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5. Conclusions

(1) This study proposes an improved YOLOv4 lightweight neural network algorithm
for detecting maize seedlings. We used the improved Ghostnet as the backbone
feature extraction network to construct the YOLOv4 lightweight network, improved
the multi-scale feature fusion network structure, introduced the k-means clustering
algorithm to adjust the target prior box, and added the attention mechanism to the
neck network to make it more suitable for seedling detection. By introducing deep
separable convolution in PANet and YOLO Head networks instead of traditional
convolution, the network is more lightweight and more conducive to deploying
mobile terminals. The model’s training speed and average accuracy are improved by
loading the pre-trained weights and freezing some layers.

(2) We verify the feasibility and superiority of the proposed method through comparative
experiments on the same test set, taking the F1, recall, mAP, precision, number of
model parameters, model size, and FPS as the judgment basis. The method F1, recall
rate, mAP, and precision rate of this study are 0.95, 94.02%, 97.03%, and 96.25%,
respectively, which are 0.13, 19.96%, 8.68%, and 5.38% higher than YOLOv4. The
model network parameters are 18.793 M, the model size is 71.69 MB, and the FPS
is 22.92. Compared with the YOLOv4 model, the network parameters are reduced
by 70.61%, the model size is reduced by 172.21 MB, and the FPS is increased by 3.71.
Through comparative experiments, the model in this study has stronger detection
performance, a better prediction effect, and lower model complexity, which is suitable
for deployment in edge devices and has a certain application value.
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