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Abstract: Boron (B) deficiency is a common phenomenon in most tobacco-planting areas in Yunnan,
China. In 2020 and 2022, hydroponic experiments that contained B in a concentration gradient of
0.000, 0.125, 0.250, 0.750, 5.000, 10.000, 20.000, and 40.000 mmol L−1 were conducted to investigate
tobacco cultivar K326′s agronomic traits, photosynthetic performance, antioxidant enzymes, and
boron and nicotine concentration. As B concentration increased, indices including leaves biomass
and net photosynthetic rate (Pn) generally increased first and then decreased, which was in contrast
to antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase
(CAT). With increasing B concentration, boron content in tobacco seedlings increased significantly by
24.00~96.44%, while decreased nicotine content by 21.60~82.03%. The highest biomass and photo-
synthetic performance were obtained within 0.75 and 5.00 mmol L−1 treatments. The results of the
sandy soil pot verification experiment were similar to the hydroponic experiment obtained. The ben-
eficial mechanism of moderate B on tobacco seedlings is to maintain cell structure integrity, enhance
photosynthetic capability, and promote root growth. Consequently, the optimum B concentration for
tobacco seedlings is 0.75~5.00 mmol L−1, and applying 0.25~0.50 B kg hm−1 in soil under available B
insufficiency could meet the needs of the growth of flue-cured tobacco.

Keywords: micronutrient; photosynthesis; physiology and biochemistry; enzyme activity; nicotine

1. Introduction

Boron (B) is an indispensable nutrient for the growth of plants, and it is relevant in
physical and metabolic functions, including synthesis of plant uracil nucleochlorophyll,
cytokinins, auxin, promote root development, cell-wall pectin formation [1,2], protein
metabolism, alkaloid production, etc., thus affecting the growth and development of
plants [3]. Boric acid (BO3

3−) is the main form of absorption of B by plants. Tobacco
(Nicotiana tabacum L.) is an important cash crop and pillar industry in China, and the
total national revenue of the tobacco industry reached USD 200 billion in 2020, playing
an important role in supporting the national fiscal revenue. Tobacco is sensitive to B and
the response curve is reported to have a very narrow sufficiency range, which means that
even in B-deficient tobacco planting areas, excessive B supplementation is likely to cause
malnutrition of tobacco plants [4,5] Appropriate concentration of B increases root system,
leaf area, photosynthetic capacity, and dry matter accumulation of tobacco plants, and
improves stress resistance, thus laying a good substance foundation for the growth of
flue-cured tobacco in the field. Therefore, exploring an optimum B application rate for
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major cultivar K326 of flue-cured tobacco seedlings is crucial for achieving sustainable
development and production of tobacco.

Plants under B deficiency condition generally show growth retardation, limitation of
the elongation and expansion of leaves, deformation of the leaves, and cessation of the
bud [6,7]. Additionally, boron deficiency leads to the production of large amounts of auxin,
thus prompting branches of root then increasing nicotine content [8]. Plants’ physiological
function and metabolism are also disturbed under B deficiency condition [9]. Specifically,
increasing cell membrane permeability and the accumulation of reactive oxygen species
would damage the normal structure and function of cells [10]. Boron toxicity, on the other
hand, causes a great loss of crop yield worldwide. Previous studies have shown that
when solution B concentration was at or above 200 mol/L, the tobacco plant showed B
poisoning symptoms [11]. Plants with B toxicity are usually characterized by leaf vein loss
of greenness, leaf tip burn, leaf tip curling, and necrotic patches at the tips or margins of
older leaves [12]. As for tobacco, the B poisoning symptoms were characterized by brown
spots at the tips or edges of the old leaves, which then developed towards the midrib and
base. In some extreme cases, the brittleness of the lamina and rapid foliation could be
recorded [13]. Barley leaf length, width, and area do not show any differences between
excessive and normal B application. However, root weakness and death of lateral root were
noted in the cultivation of excessive solution B concentration [14,15]. In addition, oxidative
stress becomes severe under B poisoning, manifested by significantly elevated superoxide
dismutase (SOD), peroxidase (POD), ascorbic acid peroxidase (APX), and catalase (CAT)
activity under B overdose conditions [16–18].

There are many studies that have investigated the effects of B deficiency on yield,
quality, and physiological and biochemical characteristics of flue-cured tobacco in the field
stage [19–21]; however, there are limited reports on B on photosynthesis characteristics,
antioxidant enzymes, and nicotine content in the seedling stage. By using a combination of
hydroponic experiment and sandy soil pot experiment, the objectives of this study were
to identify the critical values of B deficiency and toxicity in tobacco seedlings, to explore
the optimal concentration of B in actual production, to provide a basis for the regulation
of B nutrition in the production, and, further, to enrich the physiological mechanism of B
on flue-cured tobacco, which is of great significance for the yield and quality of flue-cured
tobacco.

2. Materials and Methods
2.1. Experiment Design

This study was carried out at the greenhouse of Yunnan Academy of Tobacco Agri-
cultural Science, Yuxi, China (24◦14′ N, 102◦30′ W; altitude 1680 m) in 2020 and 2022. On
18 September 2020 (6 weeks after germination), uniform tobacco seedlings (variety K326,
a most conventional commercial tobacco cultivar worldwide) with a single stem were se-
lected to transplant into 500 mL pots containing 1

2 B-free Hoagland’s solution. The pH was
adjusted to 6.0 with 0.1 mol/L NaOH and HCl. The growing condition was kept at 25 ◦C
under 16 h light period, humidity about 75%, and average irradiation 650 µM·m−2 s−1.
The roots were covered with tin foil to protect them from light to promote root growth and
were ventilated for 2 h a day, and the nutrient solution was replaced within the interval
of 3 days. After 7 days of preculture, eight different B concentrations (H3BO3) were used
(0.00 (B1), 0.125 (B2), 0.25 (B3), 0.75 (B4), 5.00 (B5), 10.00 (B6), 20.00 (B7), and 40.00 (B8)
mmol·L−1) to induce B deficiency and toxicity [4,8,11]. The nutrient solution without
BO3

3− (0.00 mmol·L−1) was set as the control. Each treatment was repeated three times
and the biochemical analyses were conducted 30 days after treatment application.

On 10 January 2022 (6 weeks after germination), the uniform tobacco seedlings (va-
rieties K326) with four leaves were selected and transplanted into a pot with sandy soil.
The sandy soil was sterilized and dewormed with carbendazim and trichlorfon in advance.
After 7 days of preculture, eight different B concentrations were conducted at 0.00, 0.25,
0.50, 0.75, 1.00, 2.00, 4.00, and 10.00 B·kg·hm−2, according to the planting of 15,000 tobacco
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plants per hectare. Numerically the weight of H3BO3 of 0.00 g (CK-S), 0.0167 g (B1-S),
0.0333 g (B2-S), 0.0500 g (B3-S), 0.0833 g (B4-S), 0.1333 g (B5-S), 0.2667 g (B6-S), and 0.5333 g
(B7-S) were applied to each tobacco seedling under different treatments, respectively. Other
nutrients were replenished by B-free Hoagland solution, and the B-free Hoagland solution
was applied once every 3 days for 2 L each. Each pot was transplanted with one plant, and
the positions of the tobacco seedlings were randomly adjusted to ensure more consistent
growth and illumination conditions for each tobacco. During the experiment, the day
length was 14 h, temperature kept at 25 ◦C, humidity maintained at 75%, and light intensity
was 650 µM·m−2 s−1. Relevant physiological indexes were sampled and measured when
the deficiency or toxicity symptoms were shown in this study. The basic nutrients of the
trail soil are shown in Table 1.

Table 1. Basic properties of the trail soil.

Soil Type Texture Cation Exchange Capacity
cmol·kg−1

Organic Matter
mg·kg−1

Total N
mg·kg−1

Total P
mg·kg−1

Total K
mg·kg−1

Available B
mg·kg−1

Sandy soil Sand 1.26 3.65 0.14 0.07 23.75 0.167

2.2. Analyses Methods
2.2.1. Agronomic Traits

Under hydroponic experiment, 30 days after transplanting, the height of tobacco
seedlings was determined from the ground along the stem to the growing tip, and the leaf
length and width were determined by the sixth leaf from the leaf base to the growing tip.

2.2.2. Biomass of Tobacco Seedlings

After being killed at 105 ◦C for 10 min and dried at 55 ◦C to the constant weight, the
root, stem, and leaf dry weight were measured and calculated to obtain the total weight.

2.2.3. Soil–Plant Analysis Development (SPAD) Value

Chlorophyll content in tobacco seedlings leaves were measured using an SPAD-502
(Konica Minolta Inc., Tokyo, Japan) portable chlorophyll detector [22–24]. The middle part
of the sixth leaf from the leaf base to the growing tip was measured three times. Three
measurements were averaged as SPAD value for each observation.

2.2.4. Photosynthetic Parameters

At the end of the experiment, the photosynthetic parameters, such as the photosyn-
thetic rate (Pn; µmol·m−2·s−1), stomatal conductance (Cond; mol·m−2·s−1), intercellular
CO2 concentration (Ci; µmol·mol−1), and transpiration rate (Tr; mmol·−2·s−1), of all plants
were measured using the Li-6400 portable photosynthetic apparatus (Li-COR Inc., Lin-
coln, NE, USA). Before the measurement, the leaf chamber photosynthetic active radiation
intensity (PAR) was set to 1800 µmol·m−2·s−1 to induce the leaves. During the measure-
ment, the set value of the CO2 injection system was 400 µmol·mol−1, the gas flow rate
was 500 mmol·s−1, the leaf temperature was 25 ◦C, and the leaf chamber PAR was set to
1000 µmol·m−2·s−1. Finally, the automatic measurement procedure was started when the
photosynthesiometer readings were stable. The average value of the three measurements
was taken to facilitate the analysis.

2.2.5. Boron Ion Content in Tobacco Seedlings

Boron concentration was determined according to the wet ashing technique (10 mL
nitric and 5 mL of 70% perchloric acid digestion method), and the atomic absorption
spectrophotometry measurements were used in the determination [25].
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2.2.6. Nicotine Concentration

The nicotine concentration of tobacco leaves was measured by gas chromatography
with minor modification [26]. Briefly, 0.1 g tobacco leaf sample was freeze-dried and
ground into fine powder. After soaking in 1 mL of 10% (w/v) NaOH for 20 min, the sample
was extracted in the equivalent volume of dichloromethane with vortexing. The nicotine
content was determined using an Agilent Technologies 7890 A Chromatograph equipped
with a DB 5 MS column, using nicotine from Sigma-Aldrich as a standard control. The data
for each observation were determined from three independent replicates.

2.2.7. Defense-Related Enzymes and Compounds

A total of 0.5 g tobacco seedling leaves with uniform symptoms of B deficiency or B
poisoning were taken to determine the activity of antioxidant enzymes. SOD activity was
evaluated by SOD kit (NBT method) [27], POD activity was accessed by POD kit [28], CAT
activity was checked by CAT kit (UV absorption method) [29], and ascorbate peroxidase
(APX) activity was evaluated by APX kit (UV absorption method) [30]. These applying kits
were provided by Keming Biotechnology Co., Ltd., Suzhou, China.

2.2.8. Oxidative Stress Indicators

Malondialdehyde (MDA) content was determined by MDA kit [31], and H2O2 content
was accessed by H2O2 kit [32]. These applying kits were provided by Keming Biotechnology
Co., Ltd., Suzhou, China.

2.2.9. Nitrate Reductase (NR) Activity

Nitrate reductase (NR) was determined by NR kit [33], and this determination kit (UV
absorption method) was procured from Keming Biotechnology Co., Ltd., Suzhou, China.

2.2.10. Soil Physical and Chemical Parameters

Before the experiment was conducted, 500 g air-dried soil samples were used to
perform routine analysis for texture, cation exchange capacity, soil organic matter, soil total
nitrogen, phosphorus, potassium, and soil available boron.

Soil cation exchange capacity was determined via potentiometric titration [34]. Soil
texture (clay, silt, and sand) was measured by hydrometric method [35]. Soil organic matter
was determined by using the potassium dichromate oxidation method [36]. Soil total
nitrogen was determined by using a micro-Kjeldahl digestion followed by steam distillation,
total phosphorus was quantified using the molybdenum–antimony antispectrophotometric
method, and total potassium was measured by flame photometry [37]. Soil available
boron concentration in sandy soil was determined according to the curcumin–oxalic acid
method [38]. The concentration of available B in the sandy soil before the pot experiment
was 0.167 mg/kg. The B ion concentrations in sandy soil of each treatment were 0.213,
1.704, 2.716, 3.507, 6.679, 7.634, 11.953, and 22.829 mg/kg, respectively.

2.3. Statistical Analysis

Data were statistically analyzed by the single factor analysis of variance (one-way
ANOVA) and Spearman correlation in SPSS 20.0 (IBM SPSS Statistics Inc., Chicago, IL,
USA; SPSS Inc., Chicago, IL, USA). Triplicate measurements on tobacco plants samples
(n = 3) were averaged for statistical analysis of treatments effects. Treatment effects were
considered significant at alpha equals 0.05 level of probability. Means separation was
performed using Duncan’s multiple test. Figures were created with GraphPad Prism 8
Software (GraphPad Software, Inc., San Diego, CA, USA).

3. Results
3.1. Effect of B Solution Concentration on Seedling Growth and Shoot Biomass Formation

The growths of flue-cured tobacco seedlings treated with different B concentrations
after 30 days of hydroponics condition are shown in Figure 1. The 0.00 mmol·L−1 treatment
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showed B deficiency symptoms with light green color, corking of leaf veins, and leaf
marginal curling. With B concentration in solution increased from 5.00 mmol·L−1 to
40.00 mmol·L−1, the area of scorched leaf surface gradually expanded from leaf tip to
whole leaf as per tobacco B toxicity symptoms. At 40.00 mmol L−1 treatment, the lower
leaves of flue-cured tobacco were completely withered to deformation.
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Figure 1. Effects of B on the growth performance of tobacco seedlings. Note: growth statuses of flue-
cured tobacco seedlings under different B concentrations: 0.00 mmol·L−1 (B1), 5.00 mmol·L−1 (B5),
10.00 mmol·L−1 (B6), 20.00 mmol·L−1 (B7), 40.00 mmol·L−1 (B8). B1 treatment showed B deficiency
symptoms, B5 showed a normal growth condition, and B6 to B8 showed B toxicity symptoms. (A)
Root dry weight. (B) Stem dry weight. (C) Leaves dry weight. (D) Total weight. (E) SPAD value.
Data are means ± standard errors (n = 3). Within a column, values followed by different lower letters
are significantly different at p < 0.05 following Duncan’s multiple-range test.

All plant growth parameters were significantly different between the eight treatments
(p < 0.05) (Figure 1A–D). With the increase in B concentration, tobacco seedlings’ leaf,
stem, root, and total dry weight showed a downward parabolic trend, and peaked at
B concentrations at B5 treatment, which, respectively, increased by 9.68~36.56% (leaf),
12.26~52.36% (stem), 13.64~56.82% (root), and 10.65~38.92% (whole plant), compared with
other treatments.

The B concentration in solution did not affect the plant height and stalk width
(Figure 2A,B), while it significantly (p < 0.05) affected the leaf number (Figure 2C), max-
imum leaf length (Figure 2D), and leaf width (Figure 2E). When B concentration was at
B4 treatment, leaf length increased 4.83~20.175%. At B5 treatment, the leaf width was
higher than other treatments by 0.77~24.36%. The leaf number peaked at B7 treatment, and
was significantly higher than those of B2 and B8, compared with other treatments, which
increased by 2.38~19.05%.
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are significantly different at p < 0.05 following Duncan’s multiple-range test.

3.2. Effect of B Solution Concentration on Photosynthetic Performance

Boron concentrations significantly impacted the SPAD value of flue-cured tobacco
seedlings leaves (p < 0.05) (Figure 1E). SPAD value reached its maximum at B7, which
increased by 9.16% (B1), 15.04% (B2), 13.71% (B3), 7.88% (B4), 4.84% (B5), 3.46% (B6), and
12.00% (B8), respectively.

Photosynthetic properties of tobacco seedlings were significantly influenced by solu-
tion B concentration (p < 0.05; Table 2). Photosynthetic properties parameters showed a
parabolic trend with the increase of B concentration. The Pn parameters peaked at B4 treat-
ment and were significantly increased by 63.96%, 46.83%, and 80.28% compared with B1,
B7, and B8, respectively. The Cond parameter at B4 increased the most, by 33.40%~75.86%,
compared to other treatments. The Ci parameters reached the maximum at B3 treatment,
which was 0.83%~57.95% higher than other treatments. The Tr parameters reached the
highest at B3 treatment, which increased by 49.02% (B1), 30.83% (B2), 62.05% (B7), and
61.55% (B8), respectively.

Table 2. Photosynthetic rates of tobacco seedlings under different B application rates.

Treatments Pn/(µmol/(m2·s)) Cond/(mol/(m2·s)) Ci/(µmol/mol) Tr/(mmol/(m2·s))

B1(CK) 4.29 ± 1.43 cd 0.064 ± 0.011 cd 397.77 ± 6.26 b 2.56 ± 1.15 cd
B2 10.25 ± 1.12 a 0.080 ± 0.025 cd 497.29 ± 4.83 a 3.48 ± 0.68 bc
B3 10.50 ± 1.50 a 0.108 ± 0.025 bc 501.48 ± 5.95 a 5.02 ± 0.82 a
B4 11.90 ± 1.59 a 0.205 ± 0.038 a 410.79 ± 8.05 b 4.75 ± 0.70 ab
B5 11.75 ± 1.62 a 0.129 ± 0.027 b 267.78 ± 4.46 c 3.70 ± 0.88 abc
B6 9.61 ± 1.32 ab 0.136 ± 0.021 b 381.16 ± 4.5 b 3.79 ± 0.82 abc
B7 6.33 ± 1.59 bc 0.071 ± 0.020 cd 254.11 ± 7.04 c 1.91 ± 0.64 d
B8 2.35 ± 0.74 d 0.049 ± 0.017 d 210.85 ± 6.29 c 1.93 ± 0.78 d

Note: Data are means ± standard errors (n = 3). Different lower letters denote significant differences (p < 0.05
following Duncan’s multiple-range test).

3.3. Effect of B Solution Concentration on Antioxidant Enzymes and MDA Content

Antioxidant enzymes in tobacco seedlings were significantly influenced by B (p < 0.05,
Figure 3). As solution B concentration increased, the SOD, POD, and CAT activities
showed a “down-up” trend. SOD activities reached a maximum at B7, by 10.44~91.67%,
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compared to other treatments. POD activity was increased more severely at B6 treatment,
by 21.32~65.62%, than other treatments. When B concentration was at B7 treatment, the
CAT activities were significantly higher than other treatments, increasing by 50.05~96.44%.
Concentrations at B4 had minimal MDA content with significant variability between each
treatment (p < 0.05), which decreased by 46.65~302.57%.
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3.4. Effect of B Solution Concentration on B and Nicotine Concentration in Plant Tissue

Boron concentrations in tobacco seedlings’ root, stem, and leaf were significantly
affected by solution B concentration (p < 0.05, Figure 4A). With the increase of solution B
concentration, there were sharp increases in the root, stem, and leaf tissue. All parameters
were significantly different and reached the maximum at B8 treatment. Compared with
B8 treatment, the concentration of B ion accumulation increased by 24.43~86.76% (roots),
26.97~96.44% (stems), and 24.00~67.01% (leaves), respectively.
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Figure 4. Changes of B and nicotine concentration in different parts of flue-cured tobacco under
different B concentrations. Note: concentration of B and nicotine content in each part of tobacco
seedlings under different B concentrations. (A) B concentration. (B) Nicotine concentration. Data
are means ± standard errors (n = 3). Within a column, values followed by different lower letters are
significantly different at p < 0.05 following Duncan’s multiple-range test.
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The concentration of nicotine in roots and leaves of tobacco seedlings was significantly
affected by B in solution (p < 0.05, Figure 4B). Nicotine concentration in root and leaves
declined significantly when B concentration was at or above B1 treatment; however, the
nicotine content in stems did not show significant difference among treatments. Compared
with other treatments, B1 was increased by 33.58~82.03% (roots), 43.83~72.93% (stems), and
21.60~70.34% (leaves), respectively.

3.5. Indices Related to Different B Solution Concentration

The correlation analysis shows that the different B solution concentration was posi-
tively correlated with the accumulation of B ion in each part of tobacco seedlings (p < 0.01),
and the correlation coefficients were 0.976 (roots), 0.943 (stems), and 0.985 (leaves), re-
spectively (Table 3), while the nicotine content in roots and leaves of flue-cured tobacco
seedlings was negatively correlated with the different B solution concentration (p < 0.01),
and the correlation coefficients were −0.783 (roots) and −0.622 (leaves).

Moreover, the accumulation of B ion in each part of tobacco seedlings were negatively
correlated with the nicotine content in each part of tobacco seedlings, and the correlation
coefficients varied from −0.756 to −0.476 (p < 0.01). The activities of SOD and CAT and
the content of MDA were negatively correlated with the Pn and Cond parameters, and
the correlation coefficients varied from −0.869 to −0.696 (p < 0.01). The correlation of Ci
parameter between the accumulation of B concentration in tobacco seedlings was negative,
and the correlation coefficients varied from −0.709 to −0.618 (p < 0.01).

3.6. Effect of B Concentration on Plant Growth and Physiological Indices under Pot Experiment

The pot experiments were designed to address the inappropriate use of B in the
field and verification of the results concluded under the hydroponics condition. The
concentration of B in sandy soil before the pot experiment was 0.167 mg·kg−1. A total of
15 days after application of different B concentrations, the B deficiency symptoms were
observed at B1-S treatments with leaf marginal curling, while the B toxicity symptoms were
observed at B3-S, B4-S, B5-S, B6-S, and B7-S treatments with scorched appearance, extreme
stunting, and even plant death (Figure 5). With the increase of B concentration in sandy soil,
the leaves withered, and experienced thinness, stunting, and complete death. However,
these hydroponics that had B deficiency symptoms did not show any symptoms in the pot
environment.
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Figure 5. Growth statuses of flue-cured tobacco seedlings in pot experiment under different B
concentrations. Note: 0.00 B kg·hm−2 (CK-S), 0.25 B kg·hm−2 (B1-S), 0.50 B kg·hm−2 (B2-S), 0.75 B
kg·hm−2 (B3-S), 1.00 B kg·hm−2 (B4-S), 2.00 B kg·hm−2 (B5-S), 4.00 B kg·hm−2 (B6-S), 8.00 B kg·hm−2

(B7-S).
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Table 3. Spearman correlation coefficients for correlations among different B concentrations and the tobacco seedlings growth indices.

Parameter DBC TBR TBS TBL TNR TNS TNL SPAD Pn Cond Ci Tr SOD POD CAT MDA

DBC 1
TBR 0.977 ** 1
TBS 0.943 ** 0.935 ** 1
TBL 0.985 ** 0.967 ** 0.943 ** 1
TNR −0.783 ** −0.756 ** −0.681 ** −0.754 ** 1
TNS −0.490 * −0.519 ** −0.508 * −0.476 * 0.548 ** 1
TNL −0.622 ** −0.636 ** −0.526 ** −0.642 ** 0.629 ** 0.573 ** 1

SPAD 0.321 0.291 0.238 0.32 −0.147 0.05 −0.025 1
Pn −0.284 −0.29 −0.298 −0.296 0.15 0.088 0.141 −0.069 1

Cond −0.079 −0.159 −0.098 −0.091 −0.174 0.241 0.271 0.155 0.625 ** 1
Ci −0.733 ** −0.703 ** −0.618 ** −0.709 ** 0.503 * 0.29 0.289 −0.394 0.473 * 0.262 1
Tr −0.36 −0.357 −0.306 −0.372 0.069 0.133 0.366 −0.326 0.563 ** 0.624 ** 0.557 ** 1

SOD 0.32 0.358 0.388 0.371 0.052 −0.14 −0.231 0.187 −0.696 ** −0.785 ** −0.443 * −0.718 ** 1
POD 0.047 0.005 0.029 0.021 0.022 0.141 0.07 0.088 −0.410 * −0.23 −0.236 −0.363 0.430 * 1
CAT 0.378 0.391 0.421 * 0.373 −0.099 −0.116 −0.296 0.139 −0.733 ** −0.679 ** −0.351 −0.703 ** 0.845 ** 0.509 * 1
MDA −0.005 0.019 0.041 0.013 0.18 −0.129 −0.217 −0.243 −0.705 ** −0.869 ** −0.167 −0.651 ** 0.715 ** 0.382 0.714 ** 1

Note: DBC = different B concentration; TBR = total B content in root; TBS = total B content in stem; TBL= total B content in leaves; TNR = total nicotine content in root; TNS = total
nicotine content in stem; TNL = total nicotine content. * Correlation was at significant level (p < 0.05); ** correlation was at extremely significant level (p < 0.01).
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Under pot experiments (Figure 6), SOD and POD activities reached a maximum at
B6-S treatment, by 18.36~168.65% (SOD) and 45.39~965.44% (POD) compared to other
treatments, respectively (Figure 6A,B). Under APX index, B5-S reached the highest, which
increased by 25.26 times (CK-S), 11.12 times (B1-S), 6.37 times (B2-S), 76.85% (B3-S), 35.93%
(B4-S), 52.05% (B6-S), and 29.89% (B7-S), respectively (Figure 6C).
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Figure 6. Physiological indices of flue-tobacco seedlings under different B concentrations. Note:
physiological indices of flue-tobacco seedlings under different B concentrations. (A) SOD activity. (B)
POD activity. (C) APX activity. (D) MDA content. (E) H2O2 content. (F) NR activity. Data are means
± standard errors (n = 3). Within a column, values followed by different lower letters are significantly
different at p < 0.05 following Duncan’s multiple-range test.

When B concentration was at B-S7 treatment, the H2O2 content and the MDA content
were significantly higher than these of other treatments, by 20.01~207.94% (H2O2) and by
35.06~192.45% (MDA), respectively (Figure 6D,E).

Under the NR indicators, CK-S treatment was the lowest, which was reduced by
76.41% (B1-S), 3.38 times (B2-S), 2.13 times % (B3-S), 1.47 times % (B4-S), 5.97 times (B5-S),
7.69 times % (B6-S), and 5.70 times % (B7-S), respectively (Figure 6F).

4. Discussion
4.1. Effect of B Solution Concentration on Tobacco Seedling Agronomic Traits, and Photosynthetic
Performance under Hydroponic Condition

The yield and quality of tobacco leaves are core targets for tobacco production and
growers, and leaf length, leaf width, and photosynthesis are the basis of yield and quality
formation. Boron is involved in ions transport and maintains the photosynthetic area,
transpiration rate, and stomatal conductance in plants [39]. Therefore, moderate B concen-
tration improves photosynthesis ability and ultimately improves the accumulation of dry
matter in plants [20,40]. This finding is that with the increase of B concentration, the leaf,
root, stem, and total dry matter mass of tobacco seedlings showed a unimodal curve change,
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and when the concentration was 5.00 mmol L−1, all parameters reached the maximum.
However, in terms of photosynthesis ability, when B concentration was at 0.75 mmol L−1,
net photosynthetic rate (Pn) and stomatal conductance (Cond) reached a maximum, while
those of both intercellular CO2 concentration (Ci) and transpiration rate (Tr) would reach
maximum at 0.25 mmol L−1. These results implied that tobacco plants subjected to a severe
B deficiency (>0.25 mmol L−1) or excess (<5.00 mmol L−1) had significant inhibition of
photosynthesis ability, leading to insufficient energy, and suppressing the accumulation of
plant matter. Moreover, previous studies indicated that if Ci is consistent with the change in
Pn and Cond, then the decrease in Pn could be considered as being limited by stomata fac-
tors. Otherwise, it is restricted by nonstomatal factors [41]. The results of this study showed
that under different B treatments, Ci, Pn, and Cond showed a consistent trend, indicating
that stomatal factors might be the major reason for the decrease in photosynthetic rate.

4.2. Effect of B Solution Concentration on Tobacco Seedling Antioxidant Enzymes and MDA
Content under Hydroponic Condition

Boron plays a predominant role in the cell-wall structure of higher plants, and the
primary function of this element is in cell-wall synthesis, and in maintaining its structure
and integrity [20,42]. Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)
are important protective enzymes for plants to resist biotic and abiotic stresses, and they
mainly eliminate reactive oxygen species in cells through balanced regulation of these
enzymes. Thus, the degree of damage to plants caused by stress could be accessed by
antioxidant enzyme activities [43,44]. In this case, boron concentration significantly affected
the antioxidant enzyme activities, and the leaves’ SOD, POD, and CAT activities peaked
at 20.00 mmol L−1, 10.00 mmol L−1, and 20.00 mmol L−1, respectively. This phenomenon
indicated that B toxicity damaged tobacco seedling leaves. Moreover, there was a significant
difference in CAT between all treatments, indicating that CAT was more sensitive to B
deficiency or toxicity stress than other enzymes.

Malondialdehyde (MDA) is one of the products of the peroxidation of membrane
lipid, which could reflect the damage degree of plants by stress. In this study, when plants
were treated with 0.750 mmol L−1, the MDA content was significantly reduced. These
results suggest that a certain concentration of B could protect the leaves from active oxygen
damage, maintaining the stability of the cell structure, especially chloroplast structure,
thereby increasing the activity of thylakoid photosynthetic proteins, rubiscoases, and
photorespiration enzymes [45,46].

4.3. Effect of B Solution Concentration on Tobacco Seedling Nicotine Level under
Hydroponic Condition

Nicotine is the most vital and the most abundant alkaloid compound in tobacco.
Apart from being an important indicator of tobacco quality, it is also an important de-
fense compound [47]. In tobacco, nicotine is synthesized mainly in tobacco roots, then
is transported to other organs through the xylem [48]. In this experiment, when the B
concentration was at 0.00 mmol L−1, the content of nicotine in each part of flue-cured
tobacco seedlings was significantly higher than that of other treatments. Some studies
point out that severe B deficiency would not affect the absorption of nitrogen by flue-cured
tobacco [49]. Therefore, the effect of B on nicotine would be achieved by inhibiting root
elongation to induce strong branching of tobacco roots, increasing the number of fine roots
and the nicotine production in roots [10]. On the contrary, boron toxicity led to a significant
nicotine content decrease (Figure 4B) because an excessive supply of B (40.00 mmol L−1)
significantly inhibited the accumulation of root dry matter (Figure 1A). This phenomenon
indicated that excessive supply of B would cause the reduced root cell division, death of
apical meristems, and inhibit root biomass as well [44,50,51]. Taken together, boron affects
the synthesis and accumulation of nicotine by changing the root cells’ morphology and the
growth of tobacco seedlings.
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4.4. Interactions between Indices to Different B Solution Concentrations under
Hydroponic Condition

To further clarify the effect of B on the growth and development of flue-cured tobacco
seedlings, the correlation analysis of all involved indexes showed that there was a significant
negative correlation between B accumulation and nicotine content in each part of flue-cured
tobacco, confirming that B may influence nicotine synthesis and accumulation [52,53]. As a
result, the rational use of B fertilizer can regulate the nicotine content. Furthermore, there
was a significant negative correlation between photosynthetic performance (Pn, Cond, and
Tr) and defense-related enzymes and compounds (SOD, CAT, and MDA). Intercellular
CO2 concentration (Ci) was significantly negatively related with B accumulation. These
results indicate that the decline of photosynthetic performance was mainly due to the
stomatal factors [54] and the destruction of cell structure by excessive B instead of the
decrease of chlorophyll content [55]. This may be explained by the fact that excessive B
would damage the plasma membrane system and increase the permeability of the leaf cell
membrane, thus leading to a large number of reactive oxygen species in flue-cured tobacco
seedlings [56]. Excessive reactive oxygen species could cause degreasing and peroxidation
of the membrane, destroy the structure and function of biofilm, inhibit photosynthetic
performance, and even cause cell death.

4.5. Preliminary Study on Production Practice

To further verify the application of the optimum B concentration in actual production,
a pot experiment was designed with sandy soil as the medium. Before the experiment, the
initial concentration of available B in the sandy soil was 0.167 mg/kg, and the concentration
of B in the 0.00 kg/hm2 treatment in the experiment was 0.213 mg/kg, both of which were
lower than 0.45 mg/kg, indicating the lack of available B in the sandy soil [57]. A total
of 15 days after the treatment, it was found that the tobacco leaves showed an obvious
B poisoning phenomenon at and above the B concentration of 1.00 B kg/hm2. In the pot
experiment, with the increase in B content in the sandy soil, the activities of superoxide
dismutase (SOD), peroxidase (POD), and content of malondialdehyde (MDA) were raised
after a decline, which was consistent with the results of the hydroponic experiment. How-
ever, the activities of SOD and POD and the content of MDA in the pot were higher than
those in hydroponics, which indicated that under pot conditions, tobacco seedlings were
more susceptible to B than under hydroponics system.

Moreover, the H2O2 content, which is the most common reactive oxygen molecule
in organisms, could damage cell membranes and accelerate the aging and disintegration
of cells, while APX is the key enzyme used for metabolism of ascorbic acid, and could
eliminate H2O2 and hydroxyl radicals [58,59]. The experimental results showed that when
the B concentration in the sandy soil was over 0.50 B kg/hm2, the APX activity was
significantly increased, and reached the maximum at 2.00 B kg/hm2. However, the H2O2
content generally decreased and then increased with the increasing soil B concentration.
The maximum value of H2O2 content was reached at 8.00 B kg/hm2, indicating that a high
concentration of B damages the cell membranes and accelerates the aging and disintegration
of cells.

Boron plays an important role in the process of plant nitrogen metabolism [60], and NR
could directly regulate the reduction of NO3

-, thereby regulating nitrogen metabolism and
affecting photosynthetic carbon metabolism [61]. The results showed that with the increase
of B concentration in the sandy soil, NR activity generally exhibited a gradual increase
trend, indicating that B deficiency destroyed the homeostasis of endogenous enzymes
in plants. This consequence would reduce the activity of nitrogen invertase, which was
consistent with the studies of Camacho-Cristobal and Gonzalez-Fontes [49,62].

4.6. Boron Critical Value in Flue-Cured Tobacco Seedlings

Boron is an essential micronutrient for the growth of plants, and the dramatic dif-
ferences in sensitivity of different plants to B concentrations may be explained by plant
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species (B mobility) [63], stage of life (older plants contain more B) [64], and genotype [65].
This study observed that the B deficiency symptoms at B concentration were 0.00 mmol
L−1 and 0.00 B kg hm−2, with light green color, corking of leaf veins, and leaf marginal
curling, while the B toxicity symptoms were observed from 5.00 mmol L−1 and 0.75 B kg
hm−2, with inhibition of plant growth and leaf scorch developing from the edges of the
leaves, leading to necrosis (Figures 1 and 5). The deficiency symptoms may be due to the
low internal concentrations of B reducing NR activity in the tobacco leaves, resulting in a
decrease in leaf surface and photosynthesis, consequently leading to impaired growth and
development. Excessive B would induce oxidative damage and H2O2 accumulation, which
may contribute to the expression of the B toxicity symptoms. When B solution concentra-
tion was at 0.75 and 5.00 mmol L−1, the agronomic traits and dry biomass weight were in
the proper conditions, which was conducive to the growth of flue-cured tobacco seedlings.

5. Conclusions

Tobacco is a greatly important cash crop and is sensitive to B. Inappropriate B appli-
cation would seriously reduce the yield and quality of tobacco leaves. When solution B
concentration is beyond 0.75 to 5.00 mmol L−1, the insufficient or excessive B could lead
to cell structural destruction, photosynthesis inhibition, and nicotine synthesis disorder.
Moreover, severe B deficiency reduced the NR activity in tobacco leaves and also resulted
in photosynthesis inhibition. Notably, excessive B application significantly increased B ion
accumulation but decreased nicotine content in tobacco seedlings by changing the root
morphology, and inhibiting the growth and function of the root. Therefore, the optimum
application amount of B in production is 0.25~0.50 B kg hm−2. Overall, when soil available
B concentration is lower than 0.45 mg kg−1, B fertilizer of 0.25~0.50 B kg hm−2 should be
applied to the soil before the transplanting. This study contributes to raising the knowledge
on B fertilization and improves the understanding of the physiological mechanism of the
interaction between B and the growth and quality of tobacco, which would be beneficial
for the yield and quality of flue-cured tobacco in boron-deficient tobacco-growing areas.
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