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Abstract: The production of wild blueberries (Vaccinium angustifolium) contributes 112.2 million
dollars yearly to Canada’s revenue, which can be further increased by reducing harvest losses. A
precise prediction of blueberry harvest losses is necessary to mitigate such losses. The performance
of three machine learning (ML) algorithms was assessed to predict the wild blueberry harvest losses
on the ground. The data from four commercial fields in Atlantic Canada (including Tracadie, Frank
Webb, Small Scott, and Cooper fields) were utilized to achieve the goal. Wild blueberry losses (fruit
loss on ground, leaf losses, blower losses) and yield were measured manually from randomly selected
plots during mechanical harvesting. The plant height of wild blueberry, field slope, and fruit zone
readings were collected from each of the plots. For the purpose of predicting ground loss as a
function of fruit zone, plant height, fruit production, slope, leaf loss, and blower damage, three ML
models i.e., support vector regression (SVR), linear regression (LR), and random forest (RF)—were
used. Statistical parameters i.e., mean absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2), were used to assess the prediction accuracy of the models. The
results of the correlation matrices showed that the blueberry yield and losses (leaf loss, blower loss)
had medium to strong correlations accessed based on the correlation coefficient (r) range 0.37–0.79.
The LR model showed the foremost predictions of ground loss as compared to all the other models
analyzed. Tracadie, Frank Webb, Small Scott, and Cooper had R2 values of 0.87, 0.91, 0.91, and 0.73,
respectively. Support vector regression performed comparatively better at all the fields i.e., R2 = 0.93
(Frank Webb field), R2 = 0.88 (Tracadie), and R2 = 0.79 (Cooper) except Small Scott field with R2 = 0.07.
When comparing the actual and anticipated ground loss, the SVR performed best (R2 = 0.79–0.93) as
compared to the other two algorithms i.e., LR (R2 = 0.73 to 0.92), and RF (R2 = 0.53 to 0.89) for the
three fields. The outcomes revealed that these ML algorithms can be useful in predicting ground
losses during wild blueberry harvesting in the selected fields.

Keywords: machine learning algorithms; harvesting losses; wild blueberries

1. Introduction

Native to the northern parts of North America, the wild or lowbush blueberry
(Vaccinium Augustifolium Ait.) is an eternal, deciduous shrub. [1]. Canada produced
161,346 tons of harvested wild blueberries in 2020 making its production greater than 50%
of the world’s wild blueberries [2]. Unlike other fruits, wild blueberries grow naturally
from indigenous stands on deforested lands developed for agriculture [3]. Commercial
fields of wild blueberries are grown on abandoned farmland or cleared forests where
domestic blueberry plants already exist [4]. The fields are clipped to the ground level in the
first year (vegetative year) as part of a biennial process that primarily controls the stands
and is harvested in the second year (fruiting year) [4]. The wild blueberries are small and
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soft fruits with high economic value thanks to their delicious taste, rich in nutrients, and
anticancer properties [5].

Wild blueberries are harvested manually or mechanically for almost 100 years. Har-
vesting losses occur but can be minimized with improved management practices [6]. Me-
chanical harvesters replaced conventional hand raking crews to increase harvest efficiency
and reduce the reliance on manual labour [7].

Mechanical harvesting significantly improved the production of wild blueberries
in North America since their commercialization in the early 1980s [8]. Wild blueberries
are susceptible to mechanical damage due to their soft texture [9]. Reference [10] found
mechanical highbush blueberry harvesters caused increased fruit bruising and harvesting
losses as compared to hand raking. Variability in wild blueberry losses may be due to
endogenous or exogenous factors. Yielding nature of different clones and natural soil
variations in the selected fields are the intrinsic factors, while other factors like, crop
management practices, terrain, harvester operation, and operator skill may include in
extrinsic factors [11].

Efforts continued to improve mechanical harvesters to reduce harvesting losses. Pe-
terson [12] redesigned an experimental highbush blueberry harvester and reported 6.9,
and 8.6% harvesting losses for the redesigned experimental and commercial harvester
(rotary-style). Farooque [13] reported an average blueberry yield was 8000 kg ha−1 in the
well-maintained blueberry fields in Central Nova Scotia and above 10% of the blueberry
loss was observed when mechanically harvested. They also reported that crop damage
is directly proportional to the yield of harvestable fruit. Holshouser [14] evaluated that
the harvesting losses could alter from 3 to 10% because of lodging in the fields of soybean.
Lodging could lead to reduce picking efficiency and enhance the losses during harvest-
ing [15]. The harvester picker bars must be in touch with the top one-third of the plant to
acquire optimal soybean yield [16]. Keeping wild blueberries near open spaces will reduce
fruit zone, possibly leading to more loss of fruit [13].

Traditionally, wild blueberry growers depend upon their experience and previous
years data such as weather conditions, crop yield, and losses to make key determinations
to enhance both the brief financial success and long-term business viability [17]. There
are some commonly used methods to predict crop yield. For example, Prasad [18] used
an empirical equation and its related coefficient, based on historical, meteorological and
satellite data to predict wheat and rice production. They demonstrated that it is a promising
technique for predicting crop productivity. Feed Forward Neural Network and Recurrent
Neural Network can also be used to predict the fruit/crop yield on the basis of suitable
crop parameters like TemperatureMin, TemperatureMax, humidity, wind speed and pres-
sure [19]. Promising new technologies like machine learning (ML) have appeared more
recently and can potentially aid farmers’ decision-making [20].

A subtype of artificial intelligence called machine learning aims to learn from the
existing data to help the growers in making informed decisions. This approach can identify
patterns and correlations and uncover insights from the datasets. The models should be
trained using a dataset, where the model results are expressed on the basis of experience.
The predictive model is built using various aspects, and as such, the parameters of the
model are decided by the use of historical information when training. In the testing stage,
performance is accessed using a portion of the past records which has not yet been utilized
for training. The ML models can be predictive or descriptive, depending upon the research
issues and quarries. In order to learn from the gathered data and elaborate what has
occurred, descriptive models are utilized whereas, estimations are made using predictive
models [21]. The ML studies cover different challenges as they aim to build an effective
predictive model. The selection of appropriate model is required to address the issue at
hand, and the underlying platforms and models also must have the ability to manage the
volume of data [22].

According to the literature’s findings [23], the Random Forest (RF) model outper-
formed the Selection Operator regression, Least Absolute Shrinkage and ridge regression,
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and extreme gradient boosting in terms of predicting maize production and Nitrogen losses.
Yoosefzadeh-Najafabadi [24] compared three commonly used ML models namely RF, multi-
layer perception (MLP), and support vector machine (SVM) to predict soybean yield. Their
results revealed that the RF had the highest prediction accuracy in predicting soybean yield
as compared to the other two models they tested. Esfandiarpour-Boroujeni [25] estimated
the apricot yield with high accuracy (R2 = 0.81) using support vector regression (SVR).
Abbas [26] predicted potato yield using four ML models namely LR, k-nearest neighbour,
elastic net, and SVR concluded that all the algorithms worked very well in explaining the
tuber yield having R2 = 0.70, 0.65, 0.64, and 0.72 respectively.

The literature review has shown that various ML models have been used for the
prediction of crop yield and loss. However, limited work has been done using ML models to
predict the wild blueberry harvesting fruit losses. There is a need to investigate harvesting
patterns and pinpoint losses since wild blueberry growers experience significant harvesting
losses as a result of modified growing circumstances brought on by novel management
techniques [27]. Prediction of harvesting losses would help farmers in decision-making
so that they can develop their harvesting strategies to overcome the predicted losses by
increasing the fruit yield. The goal of this study was to predict wild blueberry ground
losses during harvesting using ML models.

2. Methodology
2.1. Data Sites

Data about blueberry mechanical harvesting yield losses and the related factors con-
tributing to the yield losses were obtained from four wild blueberry field studies conducted
in Nova Scotia. The selected sites were in commercial wild blueberry fields including
Frank Webb (45.404733◦ N, 63.669376◦ W), Tracadie (47.511270◦ N, 65.138270◦ W), Cooper
(45.480573◦ N, 63.573471◦ W), and Small Scott (45.600641◦ N, 63.086512◦ W) having field
areas of 2.57, 1.6, 3.2, and 1.9 ha, respectively. While Cooper field and the Small Scott
field both were in the year of vegetation in 2010 and their fruit-bearing year in 2011, Frank
Webb and Tracadie were in their year of vegetation in 2011 and their fruit-bearing year
in 2012. To replicate early and late harvesting, the chosen fields were harvested every
year from early August to early September using a mechanical blueberry harvester (Doug
Bragg Enterprises Ltd., Collingwood, NS, Canada). Figure 1 displays the geolocation of the
chosen fields. The chosen fields had undergone biennial trimming by mowing as well as
traditional farming management techniques, and they had been commercially managed for
the previous ten years (fertilization, pruning, weed, disease, and pollination).
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Figure 1. Selected blueberry fields in two Atlantic provinces (New Brunswick and Nova Scotia).

2.2. Data Collection and Analysis

For data collection to understand the harvesting losses, eighty-two plots of 0.91 × 3 m
dimension (identical to harvester head’s width) were flagged arbitrarily in the Frank Webb
field, Cooper field, and Small Scott field, and one hundred and nine plots were flagged
in the Tracadie field. Each plot included a 0.3 m buffer around it to prevent inaccuracy
during the data collection. A John Deere tractor (62.5 kW) was equipped with a solitary
wild blueberry harvester. (Moline, Ill., Grand Detour, IL, United States). The harvester
was operated in the fields at a ground speed of 1.6 km h−1 and 28 rpm. At the beginning
of all the plots, the harvester’s head was put down for harvesting and then raised at the
end point of the plot. The belt of the harvester conveyor was connected to a bucket to
collect the blueberries from each plot. Three losses including blower, ground, and leaf
losses were considered. The blower damage was retrieved by mounting a collection bucket
below the harvester blower fans that was emptied after each plot. The dropped berries
were hand-picked from each plot to calculate the ground loss. For the leaf loss, the leaves
and debris were separated from the collected good berries, placed in labelled Ziploc®bags,
and measured to calculate the weight of yield and fruit loss.

For average plant height per field, five plants were selected in each plot to measure
their height. Readings of plant height were measured using a measuring tape and then
averaged for each plot. The zone from the top to the bottom of the cluster of fruits on
blueberry plants is indicated as the fruit zone. The purpose of fruit zone reading was
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to help the operator in adjusting the harvester’s head height from the ground to pick
blueberries effectively. Slope measurements (five at each plot) were recorded by hand using
a Craftsman SmartTool Plus digital level (Sears Holdings Corporation, Hoffman Estates,
IL, USA) and then averaged to get a characteristic slope for the selected fields from the
slope values of each plot. Fruit zone and plant height ranged from 7.4 to 34.6 cm and 10.6
to 39.0 cm respectively and both were moderately variable. The slope was highly variable
with a range from 0.2 to 23.7 degrees within all the selected fields. The attributes of the
harvesting plots are given in Table 1.

Table 1. Descriptive statistics of harvesting plot attributes.

Field No. of Plots Plot Attribute Mean ± SD Minimum Maximum CV (%)

Frank Webb 82

Plant Height (cm)

22.4 ± 3.66 13.0 31.8 16.3
Tracadie 109 23.7 ± 3.83 19.0 39.0 15.0
Cooper 82 23.6 ± 4.06 10.6 32.8 17.2

Small Scott 82 24.0 ± 3.63 13.0 34.0 15.8
Frank Webb 82

Fruit Zone (cm)

17.6 ± 3.43 11.0 24.8 19.6
Tracadie 109 22.8 ± 4.00 11.2 34.6 17.5
Cooper 82 19.4 ± 3.57 7.80 25.3 18.4

Small Scott 82 19.1 ± 3.62 7.40 31.0 19.0
Frank Webb 82

Slope (degree)

7.86 ± 5.16 0.73 21.7 65.7
Tracadie 109 2.48 ± 1.35 0.47 6.57 54.4
Cooper 82 7.47 ± 4.40 0.50 19.5 58.9

Small Scott 82 7.04 ± 4.48 0.20 23.7 63.6

CV = coefficient of variation; SD = standard deviation.

The primary sign of the variability is the coefficient of variation (CV) in descriptive
statistics. A CV less than 15% shows the least variability of parameters; the CV between
15 to 35% indicates that the parameter is moderately variable and the CV greater than
35% describes that the parameter is highly variable [28]. The ground loss varied from
3.4 to 1847 kg/ha with CV > 35% across all the fields. Relationships of all variables
were assessed using Pearson correlation coefficients. The values of correlation coefficients
(r ≤ 0.35) normally stand for weak correlations, 0.36–0.67 for medium correlations, and
0.68 to 0.90 for strong correlations, and r ≥ 0.90 shows significantly high correlations [29].
The selected ML models were trained using datasets (plant size, fruit area, slope, blueberry
yield, leaf loss, and the blower loss). Because the model was constructed utilizing a variety
of attributes, its parameters were established during the training stage using data from
prior years (2011 and 2012). During the testing stage, the fraction of the data which wasn’t
utilized for training was employed for performance assessment. [22].

2.3. Machine Learning Models

Machine learning can direct patterns and correlations and uncover insights from the
datasets. 80% of the data was utilized in training and 20% in testing. Machine learning stud-
ies consist of different challenges like inaccessible data, data security, and time-consuming
implementation when building a well-functioning predictive model. It is difficult to choose
the correct models to solve the issue at hand, and moreover, the models and the fundamen-
tal platforms have to handle a big volume of data [22].

2.3.1. Linear Regression

Linear Regression (LR) models are understandable but incredibly powerful. Linear
regression gives an impact of each predictor variable on the response variable [30]. They
reported that supervised learning is a method used in LR. It can be applied to predict
continuous variables. Linear regression in ML uses data to learn by reducing the loss
commonly known as the mean square error (MSE) or root mean square error (RMSE) by
using models, for example, gradient descent. Based on the type of data, the gradient
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descent model works at minimal loss functions, increasing the LR model’s ability to predict
outcomes accurately. [30]. Linear regression is described by the equation below:

y = a + bx

where a = constant intercept, b = slope of a regression line.
The loss function (J) assists in evaluating the values of coefficients (a, b) by reducing

the inaccuracy in between the real values and the anticipated values. It can be explained by
the equation below:

Minimize J =
1
n

n

∑
i=1

(ŷi − yi)

where, ŷi = predicted value, yi = actual value.

2.3.2. Support Vector Regression

Support vector regression is a supervised learning model that may be utilized for both
regression and classification purposes [31,32]. Support vector regression can be linear or
non-linear using respective kernel functions. The well-known kernels are linear, radial
basis function, sigmoidal, polynomial. The productivity of the SVR very much realize
on the selection of the kernel. Linear kernel is used in the SVR for linear regression
while using as appropriate nonlinear kernel makes it nonlinear [33]. By including the
hyperplane and widening the gap between the anticipated and real values, SVR has always
aimed to reduce inaccuracy. The SVR may perform better when applied to information
that is imbalanced regarding the binary outcome because they are created utilizing only
the support vectors [34]. On the other hand, it has some drawbacks, for example, the
user must choose the SVR’s kernels for nonlinear scenarios. The kernel and any related
hyperparameters that the kernel requires should be specifically picked; a bad kernel
selection might impair the performance of the model. [35]. Linear SVR was used for this
study based on the results obtained from LR. Linear SVR can be defined by the formula
given below:

y =
n

∑
i=1

(ai − a∗i )k(ai, x) + b

where, a and x = supplementary hyperplanes in conjunction with the regression line.

2.3.3. Random Forest

The RF model is a form of ensemble approach which generates forecasts by aggregating
forecasts from many different base models. The RF model has had outstanding luck as
a particular regression and classification tool since its inception by [36]. The bootstrap
aggregating technique used by the RF model, also known as bagging, lowers the variability
of a quantitative learning approach. [37]. In summary, different bootstrapped specimens
out of the training information are collected, and trees are built using these samples. A
democratic decision is made for each tree’s anticipated class, and an average forecast is
then returned. The overall prediction power of the model is potentially increased by this
method. In addition, an estimate of out-of-bag error, which is a reliable estimation of the
test error, is possible with bootstrap aggregating [36]. Both regression and classification
problems can be solved by the RF model, which makes it a diverse model that is extensively
used by engineers. In addition to prediction accuracy, A wide range of industries, especially
the share market, banks, pharmacology, patient healthcare management, and physiology,
frequently use RF as a tool [38]. While using the RF to solve regression problems, MSE
has been used to know data branches from each node. The following equation is used to
find MSE:

MSE =
1
N ∑N

i=1( fi − yi)
2
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where, N = total number of points, fi = output of the model, and yi = true value of data
point i.

The RF model can provide the estimation of the importance of the variables by com-
paring the changes of MSE when a specific variable is randomly altered, and other variables
are kept unchanged.

2.3.4. Hyperparameters Tunning

The data samples were split up into 20% and 80% sets for the testing and training
of the data sets, respectively. It is important to evaluate various hyperparameters for
varied datasets, because all hyperparameters behave uniquely for the different kinds of
datasets [26]. That is why the testing procedure was performed by adopting the hit and trial
method based on which the best combination of values was selected which gave the highest
R2, mean absolute error (MAE) and RMSE. Following this procedure, the hyperparameters
which are displayed in Table 2 were utilized to train the selected ML models. The hit and
trial method was adopted to determine the range of hyperparameters. Support vector
regression was tested by optimizing the regularization parameter (C) value from 50–200
and it performed well at C = 150. Similarly, the Epsilon value was optimized from 0.1–1.0,
and it performed well at 0.2. In case of RF, seven hyperparameters were tested at maximum
depth = 10–60, random state = 5–75, min samples leaf = 1–20, verbose = 0.1–10 and it
showed the best results at maximum depth = 35, random state = 30, min samples leaf = 3,
and verbose = 2.

Table 2. Hyperparameters tuning of machine learning models.

Algorithms Hyperparameters

Intercept calculation (fit
intercept) TRUE

Linear Regression Data normalization FALSE

Number of iterations (n jobs) None

True X copying TRUE

Defining algorithms (kernel) Linear

Support Vector Regression Regularization parameter (C) 150.0

Penalty association (Epsilon) 0.2

Maximum depth 35.0

Random state 30.0

Min samples split 6.0

Random Forest Min samples leaf 3.0

Max features 8.0

Max leaf nodes None

Verbose 2.0

2.3.5. Model Evaluation Criteria

References [39,40] used three statistical parameters, R2, RMSE, and MAE, which were
utilized to evaluate LR, SVR, and RF models. R2 assesses that how well a model explains or
predicts the outcomes. Its value lies from 0.0 to 1.0 range. A value closure to 1 represents
the model’s excellent efficiency.

R2 =

√√√√∑N
i=1(yi − y)2 − ∑N

i=1(yi − ŷi)2

∑N
1=1(yi − y)2
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The amount of error in a measurement is called absolute error and an average of all
those absolute errors is known as MAE.

MAE =
1
n

n

∑
i=1

(yi − ŷi)

The difference between both the true and anticipated values are measured using
RMSE. The effectiveness of the model is indicated by a reduced RMSE value.

RMSE =

√
∑N

i=1(yi − ŷi)2

N

where, yi = actual value present at the ith time, ŷi = estimated value at the ith time, y = mean
value of yi, i has a value range of 1 to N, and N = number of values.

3. Results and Discussion
3.1. Descriptive Statistics

Table 3 displays the findings of the descriptive statistics for the chosen parameters.
Fruit yield was highly variable within all the selected fields with values varying from 253
to 17,968 kg/ha. The ground loss were highly variable and occurred due to many factors
which include pre-harvest berry drop. Leaf loss showed a high variability ranging from 0
to 575 kg/ha. Blower loss also showed high variability (0–529 kg/ha) except only moderate
variability for at the Tracadie site (21.2–129 kg/ha).

Table 3. Descriptive statistics of chosen parameters.

Field Variable Mean ± SD Minimum Maximum CV (%)

Frank Webb

Fruit Yield (kg/ha)

8136 ± 2914 2218 17968 35.8

Tracadie 5572 ± 2102 1690 13574 37.7

Cooper 3705 ± 2014 305 9914 54.4

Small Scott 2618 ± 1570 253 7635 60.0

Frank Webb 1072 ± 386 132 1847 36.0

Tracadie
Ground Loss (kg/ha)

580 ± 217 148 1056 37.4

Cooper 291 ± 186 19.6 891 63.9

Small Scott 165 ± 127 3.40 708 77.0

Frank Webb

Leaf Loss (kg/ha)

244 ± 116 42.9 575 47.4

Tracadie 88.2 ± 34.4 23.8 320 39.5

Cooper 83.9 ± 77.4 4.90 343 92.6

Small Scott 39.7 ± 62.7 0 299 158

Frank Webb

Blower Loss (kg/ha)

142 ± 90.6 31.5 529 63.8

Tracadie 67.8 ± 20.4 21.2 129 30.0

Cooper 43.5 ± 39.1 4.90 225 89.8

Small Scott 22.2 ± 33.0 0 220 149
CV = coefficient of variation; SD = standard deviation.

3.2. Correlation Analysis

In order to identify the relationships in between ground losses and other input vari-
ables, correlation matrices were established. The Pearson correlation’s results have been
shown in Figure 2. In the Frank Webb field, there were strong significant, and positive
correlations between ground loss and fruit yield (r = 0.78), and leaf loss (r = 0.79). Fa-
rooque [41] reported that the fruit losses on the ground enhanced with an increment in the
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blueberry yield during the harvesting. There was a moderate correlation between ground
loss and blower loss (r = 0.62). The ground loss was negatively correlated with plant height
(r = −0.28) and fruit zone (r = −0.06) which means that ground loss decreased while plant
height and fruit zone increased and vice versa. It has also been reported by [13] that the
ground loss was inversely proportional to plant height (r = −0.21) and fruit zone (r = −0.07).
The slope had a positive correlation with ground loss (r = 0.04). In the Cooper field, the
ground loss had a moderate positive correlation with fruit yield (r = 0.47). It was due to
the topography of the field and the size of berries. The remaining variables had a weak
correlation i.e., r ≤ 0.35. In the Small Scott field, ground loss and fruit yield were positively
correlated (r = 0.59). Leaf loss, blower loss, and slope also had a positive correlation with
ground loss i.e., r = 0.33, 0.14, and 0.37, respectively. In the Tracadie field, a significant
correlation between ground loss and fruit yield was observed (r = 0.73). Leaf loss, blower
loss, and slope were weakly correlated with the ground loss which means that r ≤ 0.35
for these variables. [13] concluded that ground loss had a significant correlation with fruit
yield (r = 0.78) but it had a weak correlation with blower loss (r = 0.15) and slope (r = 0.16).
Plant height and fruit zone represented a reverse relationship with the ground loss.
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3.3. Evaluation of Machine Learning Algorithms

The outcomes of the model assessment have been given in the Table 4. SVR had a
higher R2 (0.93) for Frank Webb field; LR recorded R2 = 0.91 whereas, the lowest R2 (0.53)
was recorded for RF in this field. The ranges of MAE and RMSE were 2.35–2.49 and 2.96–3
kg/ha respectively for all the algorithms in this field. In the Tracadie field, high R2 was
recorded for LR and SVR which were 0.87 and 0.88 respectively, whereas, RF had R2 = 0.78.
The values of MAE and RMSE for this field ranged from 10.74–34.32 and 13.08–45.15 kg/ha,
respectively. In Cooper field higher R2 (0.89) was observed for RF whereas, for LR and
SVR, the values of R2 were 0.73 and 0.79, respectively. Lowest values of MAE and RMSE
were calculated for SVR i.e., 0.1 and 0.15, respectively in this field. In the Small Scott field
higher R2 value was recorded for LR (0.91), and the lowest SVR and RF were recorded at
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0.07 and 0.18 for this field, respectively. The highest MAE and RMSE were observed for
RF i.e., 53.76 and 103, respectively. The findings revealed that the SVR and LR performed
very well in predicting the berry losses (Table 4). Wang [42] compared the performance of
the RF algorithm with SVR and artificial neural network (ANN) to remotely estimate the
wheat biomass and reported that RF (R2 = 0.79) and SVR (R2 = 0.62) showed good results
as compared to ANN (R2 = 0.3). Gandhi [43] used different machine learning techniques
and reported that SVR performed very well for the prediction of rice crop yield under
different climatic scenarios. Palanivel [44] used diverse machine learning techniques such
as LR, ANN, and backpropagation methods to predict the crop yield. In order to develop
a prediction model for fruit yield, Obsie [45] selected four ML models, that are boosted
decision trees, multiple linear regression, extreme gradient boosting, and RF, and concluded
that RF was the second-most successful algorithm, accompanied by the Boosted Decision
Tree algorithm with R2 = 0.90.

Table 4. Comparison of algorithms (linear regression, support vector regression, and random forest)
within fields.

Field Algorithm MAE (kg/ha) RMSE (kg/ha) R2

Linear Regression 2.35 2.96 0.91

Frank Webb Support Vector Regression 2.46 3.22 0.93

Random Forest 2.49 3.00 0.53

Linear Regression 10.7 13.1 0.87

Tracadie Support Vector Regression 10.6 12.8 0.88

Random Forest 34.3 45.2 0.78

Linear Regression 1.95 3.01 0.73

Cooper Support Vector Regression 0.10 0.15 0.79

Random Forest 53.7 103 0.89

Linear Regression 1.95 3.01 0.91

Small Scott Support Vector Regression 0.14 0.18 0.07

Random Forest 53.8 103 0.18
RMSE, root means square error; MAE, mean absolute error.

3.4. Comparison of Actual and Predicted Ground Losses

Outputs of algorithms were compared to evaluate which algorithm performed better
in predicting the ground losses from plant size, fruit area, topography, blueberry yield, leaf
damage, and the blower loss as shown in Figure 3. In the Frank Webb field, SVR (R2 = 0.94)
performed better as compared to LR (R2 = 0.91) in predicting the ground losses. In this field,
RF did not perform well in predicting the losses (R2 = 0.53). Whereas, in the Cooper field,
RF had the highest value (R2 = 0.99) which means RF performed very well in predicting
the ground losses, while SVR and LR had (R2 = 0.79) and (R2 = 0.74) respectively. LR was
found to be the best performer in predicting the ground losses in Small Scott (R2 = 0.91)
and Tracadie (R2 = 0.89). Whereas SVR (R2 = 0.88) and RF (R2 = 0.78) were also good in
predicting the ground losses for the Tracadie field. In comparison, SVR and RF performed
better in three fields except for the Small Scott field LR performed well in all the fields. The
logic behind poor performance of RF and SVR in the Small Scott field could be the result of
influencing factors such as climate, soil, etc. which may influence yield. Therefore, some
unknown factors which were not included in this study may have influence on yield which
reduced modelling accuracy at the Small Scott site. Different models performed well in
different studies like [46] used machine learning algorithms namely SVR, RF, and deep
neural networks for the autumn crop yield prediction. The results showed that SVR and RF
performed very well in predicting the yield having R2 = 0.92 and R2 = 0.90. All the models
performed differently in varying fields due to the type of data. They performed well,
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especially for linear data and our data is point-based or discrete data which is not linear.
So, the performance of the models depends on the correlation between input parameters
(slope, plant height, blower loss, fruit zone, and leaf loss) and the output data (ground loss)
which is different for each of the fields. The models performed differently in each fields
because the productivity of models relies on the nature of the specific input data.
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3.5. Comparison of Machine Learning Algorithms

Three ML models were utilized in this study to find the ground losses. The com-
parison of these algorithms showed that the LR and SVR performed comparatively well
for all the fields as shown in Figure 4. The LR performed better because it utilizes the
data to learn by reducing loss like MAE and RMSE [29]. SVR may perform better than
other algorithms due to its use of a stronger optimization method for a wide range of
variables [47]. Pan [48] established quantitative structure-function relationship algorithms
for forecasting the auto-ignition temperatures of organic substances using a support vector.
Investigated and contrasted the calibration and predictive power of the SVR with the other
two widely used techniques, back-propagation neural network and LR. Outcomes revealed
that the support vector performed better as compared to the backpropagation and MLR.
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Additionally, it demonstrated improved generalization capabilities for the support vector
and demonstrated that it is a powerful resource. The result of this research also highlights
the superior productivity of LR and SVR in comparison to RF because of their improved
optimization methods for a large number of parameters [46]. Support vector regression
gives the supplemental functionality of kernel, which increases the productivity of the
model by understanding the nature of attributes [49]. Linear regression performance was
best in all the fields and SVR performance was better for three of the four fields. Whereas
RF performed well for only two fields. On the basis of this study’s findings, LR and SVR
models are suggested to predict the ground losses in the selected blueberry fields.
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4. Conclusions

In this study, the losses on the ground have been predicted during the harvesting of
blueberry using ML algorithms and the best algorithms have been proposed which can be
used to predict the fruit losses on the ground. Four blueberry fields were selected, and a
randomized experiment was conducted in each field. Eighty-two plots were setup in three
fields and one hundred and nine plots were made in the fourth field. Berry losses and fruit
yield were measured from each plot. The values of fruit zone, plant height, and topography
were also noted from all the plots within the selected fields. Three ML algorithms namely
LR, SVR, and RF were used to predict ground losses. Modeling techniques were used to
access the prediction of ground losses. Findings of correlation investigation indicated that
the blueberry yield and the losses (leaf loss, blower loss) had moderate to high correlations
with the ground loss with r ranging from 0.37–0.79. LR model performed best as compared
to the other models for Frank Webb, Tracadie, Cooper, and Small Scott with R2 = 0.91, 0.87,
0.73, and 0.91, respectively. With the exception of Small Scott (R2 = 0.07), the SVR model
also outperformed the competition for the Frank Webb (R2 = 0.93), the Tracadie (R2 = 0.88)
and the Cooper (R2 = 0.79). When actual and anticipated ground losses are compared, the
LR model performed best with R2 ranging from 0.73–0.92 within all selected fields. SVR
also performed well with R2 ranging from 0.79 to 0.93 for three fields. The results showed
that these ML algorithms could be used to predict blueberry losses on the ground. These
results will further help in optimizing the harvesting techniques.
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