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Abstract: Crop monitoring is critical for sustaining agriculture, preserving natural resources, and
dealing with the effects of population growth and climate change. The Sentinel missions, Sentinel-
1 and Sentinel-2, provide open imagery at a high spatial and temporal resolution. This research
aimed (1) to evaluate the temporal profiles derived from Sentinel-1 and Sentinel-2 time series data in
deducing the dates of the phenological stages of wheat from germination to the fully mature plant
using the Google Earth Engine (GEE) JavaScript interface and (2) to assess the relationship between
phenological stages and optical/ SAR remote sensing indices for developing an accurate phenology
estimation model of wheat and extrapolate it to the regional scale. Firstly, the temporal profiles
derived from Sentinel-1 and Sentinel-2 remote sensing indices were evaluated in terms of deducing
the dates of the phenological stages of wheat. Secondly, the remote sensing indices were used to assess
their relationship with phenological stages using the linear regression (LR) technique. Thirdly, the best
performing optical and radar remote sensing indices were selected for phenological stage prediction.
Fourthly, the spatial distribution of wheat in the TIP region was mapped by performing a Random
Forest (RF) classification of the fusion of Sentinel-1 and Sentinel 2 images, with an overall accuracy of
95.02%. These results were used to characterize the growth of wheat on the TIP regional scale using
the Temporal Normalized Phenology Index (TNPI) and the predicted models. The obtained results
revealed that (1) the temporal profiles of the dense time series of Sentinel-1 and Sentinel-2 indices
allowed the dates of the germination, tillering, jointing heading, maturity, and harvesting stages to
be determined with the support of the crop calendar. (2) The TNPIincrease and TNPIdecrease revealed
that the declining part of the NDVI profile from NDVIMax, to NDVIMin2 revealed higher TNPI values
(from 0.58 to 1) than the rising part (from 0.08 to 0.58). (3) The most accurate models for predicting
phenological stages were generated from the WDVI and VH–VV remote sensing indices, having an
R2 equal to 0.70 from germination to jointing and an R2 equal to 0.84 from heading to maturity.

Keywords: crop monitoring; Sentinel-1; Sentinel-2; time-series; Google Earth Engine; Temporal
Normalized Phenology Index (TNPI)

1. Introduction

Crop phenology is the study of the seasonal cycle of vegetation growth and devel-
opment phases. It contains comprehensive information about developments at the stages
of the crop growing season, which is useful for analyzing the impact of climate change
on crops in a specific region [1]. From this perspective, the continuous monitoring of the
phenological status of crops is required for improving irrigation, fertilization, and pesticide
application [2]. The original motivation of this article was the precise and continuous
monitoring of phenological stages of wheat on a field and regional level using Sentinel-1,
Sentinel-2, and GEE in a semi-arid and fragmented agricultural region, i.e., the case of the
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Tadla Irrigated Perimeter (TIP) in central Morocco. The TIP was chosen as a study area due
to its agricultural importance in the region, particularly in cereals production [3].

Recent studies in the TIP focused on crop type mapping from Landsat 8 NDVI data [4],
crop classification using Sentinel-2 time series [5], the monitoring of surface soil moisture
by applying optical data [6], and the monitoring of soil salinization using satellite spectral
indices [3]. However, a cloud computing approach based on the evaluation of the remote
sensing indices derived from Sentinel-1 and Sentinel-2 in studying the phenological stages
of wheat and developing an accurate phenology model is still not developed in the region.

Vegetation phenology using remote sensing is advantageously used for providing
spatial and temporal information on crop growth [1]. Optical satellite imagery is one of
the most interesting data types used to study the links between the photosynthetic and
optical properties of plant leaves based on spectral bands and vegetation indices [7,8].
Synthetic Aperture Radar (SAR) remote sensing is an active remote sensing method that
provides cloud-free imagery in all weather conditions, day and night [8,9] Furthermore,
SAR sensors are sensitive to the target surface’s “roughness” and “wetness”, providing
additional information on the type of vegetation cover [9].

The recent SAR Sentinel-1 and optical Sentinel-2 sensors, developed by the European
Space Agency are freely available and provide crop monitoring at a high spatial and
temporal resolution [10]. Sentinel-1A was launched in 2014 and began providing images
every 12 days, with this resolution being improved to 6 days by the launch of Sentinel-1B.
Sentinel-2A launched in 2015, providing data at a time interval of 10 days, and the launch
of Sentinel-2B allowed images to be acquired every 5 days. Additionally, the data have
a very high spatial resolution of 10 m, which is suitable for monitoring crops at the plot
level [11,12].

Many studies have evaluated the use of multi-temporal Sentinel-1 and Sentinel-2
data in identifying the phenological stages of crops. The most significant aspect of SAR
remote sensing to determine temporal changes in crop phenology is the assessment of
multi-temporal, multi-polarization, and multi-frequency synthetic aperture radar (SAR)
images [11]. In the Bekaa plain of Lebanon, Nasrallah et al. [2] revealed that the Sentinel-1
data were suitable for estimating the dates of phenological stages given the notable vari-
ations in the Sentinel-1 time series at the growth stages. The spectral indices calculated
with visible and near infrared wavelengths are highly useful for crop discrimination. There
are several tools for identifying crop phenology, with the most commonly used method
being the Normalized Difference Vegetation Index (NDVI) threshold [12]. However, the
Temporal Normalized Phenology Index (TNPI) is predicted to provide a better compre-
hension of phenological changes at two phases than utilizing single NDVI data [13]. In
India, Vaghela et al. [1] used the TNPI derived from Sentinel-2 to produce the crop growth
profiles of wheat and mustard crops.

The use of both optical and SAR data is an essential tool for the accurate monitoring
of phenological stages [14]. In Northeast Germany, Harfenmeister et al. [15] detected the
phenological stages of winter wheat and winter barley using time series of Sentinel-1 and
Sentinel-2. Moreover, Mercier et al. [16] found that the use of Sentinel-1 and Sentinel-2
allowed for the identification of the beginning and end of tillering for wheat and the
beginning and end of ripening for rapeseed in northern France.

Several methods, including biophysical crop-simulation models, crop growth models,
agrometeorological models, and machine learning models [17,18] have been developed to
forecast crop phenology parameters using remotely sensed data, where statistical regression
methods are the most commonly used approaches [19,20]. Using remote sensing data,
more complicated machine learning models have been utilized to anticipate agricultural
estimations as yield [21]. Machine learning models have the disadvantage of being less
interpretable than regression models with a priori functional form requirements. The
regression models are founded on empirical relationships between in-situ parameters,
measurements, and vegetation indices [18,22].
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Moroccan agriculture monitoring offers a lot of potential for quality improvement.
The efficiency of the recent Google Earth Engine (GEE) platform in terms of remote sensing
accessibility and reductions in processing time, computation, and automation, could aid in
the more effective monitoring of agricultural phenological information at specific stages.

Therefore, this paper was planned as follows: (1) to evaluate the temporal profiles of
Sentinel-1 and Sentinel-2 data in extracting the dates of the phenological stages of wheat
from germination tomature plant using the GEE JavaScript interface, (2) to assess the
relationship between phenological stages and optical/ SAR remote sensing indices in order
to develop an accurate phenology estimation model of wheat and extrapolate it to the
regional scale.

2. Study Area

The Tadla Irrigated Perimeter (TIP) is located between 32◦12′0′′ N 7◦0′0′′ W and
32◦24′0′′ N 6◦24′0′′ W in central Morocco and has an average altitude of 400 m (Figure 1).
The TIP is one of the most important large-scale irrigation systems in Morocco and covers
over 100,000 hectares of irrigated land. It is separated into two compartments: the Beni
Amir perimeter on the Northern bank and the Beni Moussa perimeter on the Southern
bank. Temperatures range from 6 ◦C in January to 48 ◦C in August, and the climate is arid
to semi-arid [3]. The average annual rainfall is 280 mm, with significant annual variability.
The terrain is mostly fragmented and heterogeneous, with 86% of parcels being less than
5 ha and only 5% percent being larger than 10 ha [4].

Figure 1. Location of the study area at the national scale (left). Scene of Tadla Irrigated Perimeter
(right).

3. Study Area and Datasets
3.1. Study Area

Field surveys were conducted on nine fields of wheat from November 2020 to May
2021 (Figure 2). The coordinates of the fields were recorded using a GPS. The sizes of the
plots ranged from 13 ha and 42 ha (mean = 21.41 ha, median = 17 ha). The height of the
measured plants varied from 10 cm and 140 cm throughout the growing season of the
wheat plots.
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Figure 2. Location of wheat fields for the growing season 2020/2021 (left) and calendar of the
phenological stages of wheat (right).

Seven phenological stages have been observed in the field: sowing, germination, tiller-
ing, jointing, heading, maturity, and harvesting (Figure 2). In the germination phase, wheat
seeds need appropriate temperatures and humidity to germinate. Seedling emergence
normally happens within seven days under ideal conditions. Until the first leaf develops,
the seedling will depend on the energy and nutrients contained in the seed. Concerning the
application of fertilizer, different studies have demonstrated that nitrogen can be applied
after sowing and/or during tillering. As a result, it is critical to remember that once head-
ing is reached (where the head will fully emerge from the stem), any additional nitrogen
will result in nitrogen loss and low nitrogen-use efficiency, resulting in a massive decline
in overall system efficiency and final net profit in addition to environmental effects [2].
Furthermore, wheat farmers apply fungicides as soon as the flag leaf appears and continues
to grow until it has fully expanded in the jointing phase. When the flag leaf has fully
developed, the heading phase begins, and any fungicidal application must cease at this
point. Following heading, the plant starts flowering. In the maturity stage, the plant dries
and becomes extremely rigid. A calendar of sowing, germination, heading, maturity, and
harvesting of winter cereals is presented in Figure 2.

3.2. DataSets
3.2.1. Optical Data

The Sentinel-2 Multi-Spectral Instrument (MSI) is positioned aboard two orbiting
satellites (Sentinel-2 A/B) which provide a high spatial and temporal resolution (10 m,
20 m, and 60 m every 5 days) [23]. The MSI includes 13 spectral bands (Table 1). This study
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used the Level-2A product, which provides Bottom Of Atmosphere (BOA) reflectance
images. The criterion for filtering the satellite imagery was that the scenes should contain
minimal or no clouds (less than 1% cloud cover). The Sentinel-2 spectral bands were used
to create the temporal profiles of spectral bands and to compute the vegetation indices.

Table 1. Characteristics of Sentinel-2 MSI L2A images.

Band Description Resolution Wavelength

B1 Aerosols 60 m 443.9 nm (S2A)/442.3 nm (S2B)
B2 Blue 10 m 496.6 nm (S2A)/492.1 nm (S2B)
B3 Green 10 m 560 nm (S2A)/559 nm (S2B)
B4 Red 10 m 664.5 nm (S2A)/665 nm (S2B)
B5 Red Edge 1 20 m 703.9 nm (S2A)/703.8 nm (S2B)
B6 Red Edge 2 20 m 740.2 nm (S2A)/739.1 nm (S2B)
B7 Red Edge 3 20 m 782.5 nm (S2A)/779.7 nm (S2B)
B8 NIR 10 m 835.1 nm (S2A)/833 nm (S2B)

B8A Red Edge 4 20 m 864.8 nm (S2A)/864 nm (S2B)
B9 Water vapor 60 m 945 nm (S2A)/943.2 nm (S2B)

B11 SWIR 1 20 m 1613.7 nm (S2A)/1610.4 nm (S2B)
B12 SWIR 2 20 m 2202.4 nm (S2A)/2185.7 nm (S2B)

3.2.2. SAR Data

Sentinel-1 is a constellation of two polar-orbiting satellites (Sentinel-1 A/B) that op-
erate day and night providing images every 6 days. The Sentinel-1 observation system
uses the wide interferometric mode (IW) as the predefined mode on land. This mode pro-
duces dual-polarized, i.e., vertical transmit/receive (VV) and vertical transmit/horizontal
receive (VH), images, with a spatial resolution of 10 m [24,25] (Table 2). In this study, the
Level-1 Ground Range Detected (GRD) was acquired in the descending orbit products.
The preprocessing of SAR imagery consists of (1) applying the orbit file; (2) GRD border
noise removal; (3) thermal noise removal; (4) radiometric calibration; (5) terrain correction
(orthorectification); and (6) conversion to a backscattering coefficient (σ0) in decibels (dB),
provided by GEE [26].

Table 2. Characteristics of Sentinel-1 images.

Band Polarization Mode Wavelength Pixel
Size

Product
Level

Product
Type

C band

Vertical transmit
and vertical
receive (VV)

Interferometric
Wide (IW)

5.6 cm 10 m
Level-1

Ground
Range
Detected

Vertical transmit
and horizontal
receive (VH)

5.6 cm 10 m

A series of 20 Sentinel-2 and 36 Sentinel-1 images covering the period from November
2020 to May 2021 were employed in this study (Table 3).

3.2.3. Meteorological Data

Rainfall and temperature affect plant growth and the rate of phenological stages [27].
For this study, the rainfall and temperature data were recorded almost every 10 days from
September 2020 to July 2021 in the TIP (Figure 3).
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Table 3. Sentinel-1 and Sentinel-2 acquisition dates.

Month
Dates of

Acquisition Sentinel-2
(MSI)

Days of Year
(DOY)

Dates of
Acquisition

Sentinel-1 (SAR)

Days of Year
(DOY)

November
2020 2, 17, 22 307, 322, 327 1, 7,13, 19, 25 306, 311, 318, 324, 330

December
2020 2, 12, 22, 27 337, 347, 357, 362 1, 7, 13, 19, 25,31 336, 342, 348, 354, 360, 366

January
2021 01, 16, 26, 31 01, 16, 26, 31 6, 12, 18, 24, 30 6, 12, 18, 24, 30

February
2021 10, 15 41, 46 5, 11, 17, 23 36, 42, 48, 54

March
2021 12, 22 71, 81 1, 7, 13, 19, 25, 31 60, 66, 72, 78, 84, 90

April
2021 01 91 6, 12, 18, 24, 30 96, 102, 108, 114, 120

May
2021 6, 11, 16, 22 126, 131, 136, 141 6, 12, 18, 24, 30 126, 132, 138, 144, 150

Figure 3. An ombrothermal diagram of climatic conditions in the TIP from September 2020 to July
2021 (precipitation is represented by the blue bars and temperature by the red line).

4. Methods

The methodological approach was developed to precisely monitor the wheat plots
and to develop a forecast phenological model based on remote sensing parameters derived
from Sentinel-1 and Sentinel-2 time series. The methodology is divided into four sections.
Firstly, the temporal profiles derived from Sentinel-1 and Sentinel-2 remote sensing data
were evaluated in terms of extracting the dates of the phenological stages in agreement
with the phenological calendar of the wheat observed in-situ. Secondly, the remote sensing
indices were used for assessing the relationships between phenological stages as input for
the estimation model of phenological stages. The dates of the phenological stages recorded
were the independent variables of the regressions. The dependent variables included the
remote sensing indices. Thirdly, the greatest optical and radar remote sensing indices in
terms of the prediction of phenological stages were deduced and chosen as input for the
estimation of phenological seasons. Fourthly, the phenological models were developed and
the mapping of the wheat of the TIP for the season 2020/2021 was obtained in order to
extrapolate the phenological estimation for the wheat fields of the season 2020/2021 at the
TIP regional scale. The methodological approach was developed and analyzed with the
GEE cloud computing platform and MATLAB software (Figure 4).
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Figure 4. Flowchart of the proposed method to predict the phenological stages of wheat using the
Google Earth Engine.

4.1. Temporal Profiles of Spectral Bands

Time series remote sensing data are a useful source for monitoring and predicting the
phenological and ecological characteristics of vegetation [24]. Sentinel-2 imagery, with its
thirteen spectral bands, is effective in describing the spectral responses of vegetation [25].
In this first step, the temporal profiles of spectral bands were established and analyzed
from the multi-temporal Sentinel-2 images for the following bands: B2, B3, B4, B6, B7, B8,
B8A, B11, and B12. An average profile of each spectral band derived from the sampled
wheat was examined.
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4.2. Temporal Profiles of Vegetation Indices

The temporal profiles of the Normalized Difference Vegetation Index (NDVI), the
Enhanced Vegetation Index (EVI), the Weighted Difference Vegetation Index (WDVI), and
the Sentinel-2 Red Edge Position (S2REP) were plotted based on the mean values derived
from the sampled wheat.

The Normalized Difference Vegetation Index (NDVI) is one of the most important
vegetation indices [1,26,27]. The NDVI time series curve is a practical method for identifying
the phenological stages and growing conditions of crops, such as germination, tillering,
jointing, heading, maturity, and harvesting. NDVI is derived from reflectances in the red
(R) and near-infrared (NIR) portions of the spectrum [28] (Table 4).

The Enhanced Vegetation Index (EVI) has attracted considerable attention in the con-
text of monitoring the quality and quantity of vegetation. It is represented as an optimized
vegetation index to provide an improved vegetation signal with higher sensitivity in areas
with dense biomass [29]. The EVI is calculated from reflectances in the red (R), blue (B),
and near-infrared (NIR) portions of the spectrum [28] (Table 4).

The Weighted Difference Vegetation Index (WDVI) is distinct from ratio indices, as it
is a distance-based index that was developed for correcting the near-infrared reflectance of
soil background [30–32] (Table 4).

The Sentinel-2 Red Edge Position (S2REP) developed especially for Sentinel-2 [33]
demonstrates the difference between maximum absorption in the red part and reflectance in
the NIR portion [34]. The S2REP red-edge index is based on a linear interpolation approach
based on the work of Guyot and Baret [35] by using Sentinel-2 bands 8 and 4 [36] (Table 4).

Table 4. Vegetation indices calculated from Sentinel-2 images. R = Red, RE = Red-Edge, NIR = Near-
infrared, NDVI = Normalized Vegetation Index, EVI = Enhanced Vegetation Index, WDVI = Weighted
Difference Vegetation Index, S2REP = S-2 Red-Edge Position index.

Index Equation S-2 Bands Used Original
Author

NDVI (NIR − R)/(NIR + R) (B8 − B4)/(B8 + B4) [37]

EVI 2.5(NIR − R)/(NIR + 6R − 7.5BLUE + 1) 2.5(B8 − B4)/(B8 + 6B4 − 7.5B2 + 1) [38]

WDVI (NIR − 0.5 × R) (B8–0.5 × B4) [30]

S2REP 705 + 35 × (((NIR + R)/2)-RE1)/(RE2 − RE1)) 705 + 35 × (((B7 + B4)/2) − B5)/(B6 − B5)) [35]

4.3. Temporal Profiles of Backscattering Coefficients

The use of the backscattering coefficient, provided by the Sentinel-1, yielded additional
information for monitoring crop phenology [16]. In this context, two modes of polarization
were processed: vertical transmit/receive (VV) and vertical transmit/horizontal receive
(VH), which have been used for computing the backscatter (σ◦) of the difference (VH–VV)
polarization.

4.4. Phenological Sages Separability Using Optical and SAR Parameters

To investigate the separability of the phenological stages, the scatterplot of the field
samples including the vegetation indices and the VH, VV, and VH–VV polarization was
analyzed. For this purpose, the combinations of (NDVI, EVI), (NDVI, WDVI), (NDVI,
S2REP), (VH, VV), (VH, VH–VV), and (VV, VH–VV) were selected.

4.5. Sensitive Analysis between Remote Sensing Indice and Phenological Stages

In this research, a sensitive analysis between Sentinel-1 and Sentinel-2 indices and
the dates of phenological stages was evaluated by the coefficient of determination (R2),
the Root Mean Square Error (RMSE), and the normalized nRMSE. The R2 measures the
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prediction quality of the regression model. The RMSE error represents the mean difference
between the ‘estimated’ and ‘measured’ dates of phenological stages.

R2 = 1− ∑n
i=1(Pi −Mi )

∑n
i=1(M−Mi)

(1)

RMSE =

√
n

∑
i=1

(Pi −Mi)
2/n (2)

nRMSE =
RMSE

M
× 100 (3)

* where n, Pi, Mi, and M represent numbers of samples, predicted values, measured values,
and the mean value of Mi, respectively.

4.6. Crop Classification

To upscale the monitoring of phenological stages from the nine wheat fields to the
entire study area, a crop classification map for the TIP was performed. This map was
generated by employing the pixel-based image classification of the multi-temporal Sentinel-
1 and Sentinel-2 data and RF classifier. The Random Forest (RF) algorithm developed
by Breiman et al. [39] can be defined as an ensemble of several decision trees, with each
tree contributing a single vote for the most frequent class [40]. The RF classifier is more
competent, and it avoids the overfitting problem associated with, Decision Tree (DT)
classifiers by building a set of DTs [39]. Practically speaking, RF develops several DT
classifiers for the training and outputting of classes for each tree. [41]. Several studies on
crop classification have proved the performance of RF in crop identification [26].

The traditional bands (Blue, Green, and Near Infrared), SWIR bands, red-edge bands,
vegetation indices (NDVI and EVI), and the backscattering at co-polarization VV (vertical–
vertical) and at cross-polarization VH (vertical–horizontal) were used as inputs. The
training data included 736 plots, where 512 were for training (70%) and 224 were for
validation (30%). The overall accuracy (OA), Kappa coefficient, user’s accuracy, producer’s
accuracy, and F1 score were used to validate the accuracy of the classification. To generate
the wheat land cover over the study area, the wheat class from the crop classification result
was extracted and converted to vector format.

4.7. Validation of the Crop Classification

The accuracy of the crop classification result was assessed using five confusion metrics,
including overall accuracy (OA), Kappa coefficient, user accuracy (UA), producer accuracy
(PA), and F1 score. For each class, 70% of the ROIs were randomly selected for training,
and the remaining 30% of ground survey points were used to analyze the accuracy. The
OA was calculated by summing the number of correctly classified cells and dividing this
by the total number of cells, while the Kappa coefficient measures the proportion of errors
that are minimized by classification and completely random classification.

The PA is the conditional probability that the classification output of a particular
location on the classification map is compatible with any random sample in the test data.In
contrast, the UA consists of selecting a random sample with the same conditional probability
as the actual type of ground from the classification results [42]. PA and UA were computed
from the error matrix of classification.

The F1 score is an important metric that balances the difference between PA and UA
for each class by the formulation of the harmonic mean of PA and UA [43]. These accuracies
were calculated as presented in the equations below.

OA(%) =
∑n

i=1 pii

N
× 100 (4)
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Kappa =
N ∑n

i=1 pii −∑n
i=1(pi+ × p+i)

N2 −∑n
i=1(pi+ × p+i)

(5)

UA(%) =
pii
pi+
× 100 (6)

PA(%) =
pii
p+i
× 100 (7)

F1 score(%) =
UA× PA
UA + PA

× 2 (8)

* where n is the total number of columns of the confusion matrix; pii is the number of correct
classifications of the upper crop-type sample in the i row and i column of the confusion
matrix, pi+ and p+i are the total number of crop-type samples in row i and column i, and N
is the total number of samples used for verification.

4.8. Computation of TNPI and Temporal Change Analysis

The TNPI is a temporal index that quantifies the change between two periods. When
employed to the start and the peak of the vegetative cycle, it evaluates the growth between
these two times. Unlike other phenological indices, the TNPI only requires two time
steps rather than the complete temporal sequence of the vegetation period, resulting in a
reduction in the amount of time-series data to be analyzed. The proposed temporal index
is predicted to improve knowledge of phenological changes at two phases when compared
with utilizing single NDVI data [13]. The TNPI can be computed as follows:

TNPI =
NDVIMax − NDVIMin
NDVIMax + NDVIMin

(9)

* where NDVIMin is the minimum and NDVIMax is the maximum NDVI value of the
vegetative cycle.

For this purpose, the NDVI growth profile for the entire wheat crop season was used
to create a composite image from three dates, including the minimum value NDVI during
the beginning growth phase, the maximum value NDVI during the peak growth stage, and
the minimum value NDVI before the harvesting phase. Temporal Normalized Phenology
Index (TNPI) images were computed to monitor TNPI-based crop growth changes in
the TIP agricultural region, reflecting an increase in TNPI and a decrease in TNPI. The
values generated were scaled between 0 and 1. This scale indicates the temporal change in
vegetation greenness throughout wheat areas, with 0 representing no temporal change and
1 being the largest temporal change.

5. Results
5.1. Sentinel-2 Temporal Profiles
5.1.1. Temporal Profiles of Sentinel-2 Spectral Bands

The mean values in each spectral band for wheat crops were computed for various
dates to identify specific growth stages where the temporal behavior of the spectral bands
differs between phenological stages. Predominantly, the spectral–temporal profile of
wheat crops (Figure 5) matches the typical spectral profile of the photosynthetic vegetation,
showing decreasing values in the Red (B4) and SWIR (B11, B12) bands and increasing values
in the NIR (B8, B8A) bands and red-edge bands (B6, B7) over time (based on the vegetation
development). The highest signal variations were observed for the red-edge and NIR bands,
while the lowest signal variations were noted for the RGB bands. From Figure 5, it can be
considered that the growth period begins from the 337 DOY, when the reflectance values of
NIR and red-edge bands start to increase, symbolizing the germination stage. The highest
vegetation development was rerecorded between 41 DOY and 81 DOY, corresponding to
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the heading stage, a phase in the growth of plants marked by the emergence of a head from
the sheath of the upper leaf.

Figure 5. Mean temporal profiles of Sentinel-2 reflectance (a) and main phenological stages for wheat (b).

5.1.2. Temporal Profiles of Vegetation Indices

The mean temporal profiles of Sentinel-2 vegetation indices for wheat plots were
generated during the growing season (Figure 6). The profiles include on each date, the
average vegetation index of the reference plots. The NDVI, EVI, WDVI, and S2REP values
began to increase at the beginning of germination until the heading stage, while they all
decreased during maturity and harvesting. NDVI showed maximum values compared to
EVI and WDVI.
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Figure 6. Mean temporal profiles of Sentinel-2 vegetation indices (a–d) main crop phenological
stages survey for wheat plots and measured height of wheat plant (e–i). NDVI = Normalized
Vegetation Index, EVI = Enhanced Vegetation Index, WDVI = Weighted Difference Vegetation Index,
S2REP = S-2 Red-Edge Position index.

Sowing had taken place in late November, after rain events, ensuring sufficient soil
moisture for germination. The germination period was recorded between 327 DOY and
337 DOY, which corresponds to the phenological phase when the plant first arises from a
seed. During the germination process, the plant does not grow taller than 10 cm. From
this stage, the vegetation indices values continue to increase, ensuring the development of
the plant.
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Constant vegetation indices values were observed from 26 DOY to 31 DOY. This
corresponds to the winter dormancy phase, which is marked by a temporary slowing
of the growth cycle. Following this period, the vegetation indices values rise once more
until reaching a maximum peak recorded on 71 DOY, ensuring the heading of the plant, a
phase in the growth of plants characterized by the emergence of a head from the sheath
of the upper leaf. The height measured in the field at heading for the wheat plants was
from 60 cm to 100 cm. The increased plant biomass, leaf chlorophyll concentration, and
nitrogen content during the heading stage are reflected in the higher NDVI, EVI, WDVI,
and S2REP values.

At the maturity phase, the plat dries and presents a straw color with a rigid kernel.
This stage lasts from 81 DOY to 126 DOY. Consequently, the decline in vegetation indices
values at the end of the season was related to physiological maturity, crop color change,
and leaf senescence. Harvesting can be carried out after the 126 DOY, when the crop is
physiologically mature.

5.2. Temporal Profiles of SAR Backscattering in VH, VV, and VH–VV Polarizations

In this section, the Sentinel-1 polarizations (VV, VH, VH–VV) were evaluated in terms
of the detection of each phenological phase (Figure 7). The profiles include, on each date,
the average SAR backscatter (σ◦) in VH, VV, and VH–VV polarizations of the reference
plots. The VH–VV backscatter looks to be more stable over time than VH or VV. Although
the VH and VV profiles appear to be complicated, the majority of their variations can be
explained physically [14]. During the winter, the vegetation is short and sparse, and VV and
VH are primarily influenced by changes in soil backscatter caused by surface roughness.
Rainfall events in the germination, tillering, and jointing period may explain the slight
increase in the backscatter. Then, until the beginning of the maturity stage, a slight decrease
in VV and VH backscatters is recorded, which can be explained by the soil backscatter
attenuated by the increase of vegetation.

The SAR backscatter (σ◦) in VH–VV polarizations began to increase at the beginning of
germination until the heading stage, while it decreased during the maturity and harvesting
periods. The period between November and December saw heavy rainfall, reaching 16 mm
on 306 DOY, which favored the germination of the wheat plant. Following the optical
parameters, the periods of germination, tillering, jointing, heading, maturity, and harvesting
was recorded using the VH–VV polarization difference, with an increase in backscatter
values with the growth phase of the plant (from germination to heading) followed by
a decrease in values after heading. The results show that the backscatter signals of the
VH, VV, and VH–VV polarization over wheat crops ranged from −14.52 to −23.92, from
−9.25 to −16.27, and from −8.50 to −5.27, respectively, during the complete life cycle of
wheat crops.

Figure 7. Cont.
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Figure 7. Mean of the Sentinel-1 backscattering coefficients at VH (a), VV (b), VH–VV (c) polarizations,
(d) the ombrothermal diagram of climatic conditions in the TIP, (e) main crop phenological stages
survey for wheat plots and measured height of wheat plant.

5.3. Scatter Plot of the Field Samples Comprising Optical and SAR Parameters for the Different
Phenological Stages

From the phenological dates, a scatterplot of the nine field samples was created in a
space including the NDVI and EVI, NDVI and WDVI, NDVI and S2REP, VV and VH, VV
and VH–VV, VH and VH–VV values (Figures 8 and 9).
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Figure 8. The scatterplot of the field samples of the wheat plots in a space including the NDVI and
EVI (a), NDVI and WDVI (b), NDVI and S2REP (c) for the different dates of wheat stages.

The germination stage was more accurately identified using the NDVI and S2REP
combination, as the wheat plots showed low NDVI and S2REP values (<0.2 and <715).
In the tillering period, the NDVI and S2REP values were discriminated, with the wheat
plots showing greater NDVI values (from 0.2 to 0.3) and lower S2REP values (from 710 to
715) than during germination. Using the NDVI and WDVI space combination, the jointing
phase was accurately identified. The NDVI and S2REP values for the heading period were
distinct, with wheat plots having higher NDVI and S2REP values (>0.8 and >725). The
maturity period was discriminated with the NDVI and WDVI space combination. When
the crop is mature physiologically, the NDVI and WDVI as well as the NDVI and S2REP
space combination, assisted to distinguish the harvesting phase.

However, compared to optical parameters, the combination of VH, VV, and VH–VV
polarization was not very effective at differentiating the phenological stages of wheat crops.
The germination stage was better identified using the VV and VH–VV space combination,
in that VV and VH–VV exhibited lower values (<−10 and <−10). In comparison to other
combinations, VV and VH values were more easily distinguished during the tillering
period. The jointing phase was more easily distinguished using the VV and VH–VV
space combination. The VV and VH–VV values for the heading period were also distinct,
with the wheat plots having higher VH–VV and lower VV values (>−8 and <−15). The
maturity period was discriminated with the VV and VH space combination. When the
crop reached physiological maturity, the VH and VH–VV space combination contributed to
distinguishing the harvesting phase.
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Figure 9. The scatterplot of the field samples of the wheat plots under consideration in a space
including the VV and VH (a), VV and VH–VV (b), VH and VH–VV (c) for the different dates of
wheat stages.

5.4. Phenology Estimation Model

In this section, four vegetation indices (NDVI, EVI, WDVI, and S2REP) and the tree
mode of polarization (VV, VH, and VH–VV) were examined to develop an accurate phe-
nology estimation model. The LR was used as technique to deduce the optimal models,
where the vegetation indices and the backscatter were the independent variables and the
phonological stages were the dependent variable. The phenological stages are represented
as ordinal variables from 1 to 5 (1: germination (337 DOY), 2: tillering (347 DOY), 3: jointing
(26 DOY), 4: heading (71 DOY), 5: maturity (91 DOY)). The individual Sentinel remote
sensing indices from germination to maturity were evaluated to develop the phanology
estimation model equations (Figure 10). The results show that the models had R2 values
ranging from 0.03 to 0.84, an RMSE between 1.39 to 0.56, and an nRMSE from 46% to 18%
(Table 5). The model with a higher R2 value and lower RMSE value represents the most
suitable model for phenological stage estimation. The best model based on Sentinel-2 vege-
tation indices was obtained when using WDVI, with an R2 = 0.70, RMSE = 0.77, and nRMSE
= 26%, while the most suitable model based on Sentinel-1 polarizations was generated
when using the VH–VV difference, with an R2 = 0.84, RMSE = 0.56, and nRMSE = 18%.
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Figure 10. The correlations between phenological stages and optical / SAR remote sensing indices.
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Table 5. Phenological models for wheat using optical / SAR remote sensing indices.

MLR Models Equations R2 RMSE nRMSE
(%)

Model 1 y = 3.59 × NDVI + 0.94 0.6 0.89 30%
Model 2 y = 4.24 × EVI + 1.30 0.62 0.87 29%
Model 3 y = 7.9 ×WDVI + 0.92 0.7 0.77 26%
Model 4 y = 0.17 × S2REP − 121.4 0.64 2.07 69%
Model 5 y = −0.53 × VV − 3.7 0.69 0.86 29%
Model 6 y = −0.21 × VH − 1.26 0.03 1.39 46%
Model 7 y = 0.75 × (VH − VV) + 8.45 0.84 0.56 18%

5.5. Upscaling the Monitoring of Phenological Stages from the Field to the Regional Scale

The monitoring of wheat phenological stages was upscaled to the entire study area
using the wheat crop classification map derived from the RF classification. This map was
created by employing the pixel-based image classification of multi-temporal Sentinel-1
and Sentinel-2 data in the early season (from September 2020 to March 2021). The overall
accuracy as well as the wheat accuracy parameters, are presented in Table 6.

Table 6. Overall accuracy; Kappa index; wheat user and producer accuracy, and F1 score of the
classification result.

Accuracy Index Accuracy Values

Overall accuracy 95.02%

Kappa index 0.93

Wheat user accuracy 94.61%

Wheat producer accuracy 93.83%

Wheat F1 score 94.22%

5.6. Computation of Temporal Normalized Phenology Index (TNPI)

The NDVI profile was examined to deduce the NDVIMin1, NDVIMax, and NDVIMin2
(Figure 11). The temporal changes in the NDVI were examined by determining the TNPI
between different growth phases using Equation (1) in Section 4.5. The TNPI increase
(Equation (10)) and TNPI decrease (Equation (11)) were calculated to detect changes in
phenological phases from minimum to maximum NDVI values during the wheat growing
season. The NDVIMin1 at germination (337 DOY), the NDVIMax at heading (71 DOY),
and the NDVIMin2 prior to harvesting (DOY 126) were computed for the TIP study area
(Figure 11).

Figure 11. NDVI growth profile of wheat. Min 1: first minimum NDVI, Min2: second minimum
NDVI, and Max: maximum NDVI.
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TNPIincrease =
NDVIMax − NDVIMin1

NDVIMax + NDVIMin1
(10)

TNPIdecrease =
NDVIMax − NDVIMin2

NDVIMax + NDVIMin2
(11)

The increase in TNPI from the germination phase (337 DOY), at Min1 NDVI values, to
the heading phase (71 DOY), at Max NDVI values, was computed for the entire study area
(Figure 12). Similarly, the decrease in TNPI from heading (71 DOY) to prior to harvesting
(DOY 126), at Min2 NDVI values, as shown in Figure 13, was also generated using Equation
(3) to monitor changes in crop growth.

The TNPI increase quantifies the change between the germination and heading period.
The TNPI increase values obtained are evenly distributed throughout the study area,
ranging from 0.08 to 0.58 (Figure 12). The class with a rate of change between 0.25 and 0.41
was the most dominant in the northern compartment. However, some plots in the southern
part of the northern compartment showed a significant phenological change (from 0.41 to
0.58). whereas the rate of growth in the southern compartment was lower (from 0.08 to
0.41) than in the northern compartment.

Figure 12. NDVIMin1, NDVIMax, and NDVIMin2 for the TIP region.
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Figure 13. Crop growth increase based on TNPI during two phenological phases (germination
and heading).

The TNPI decrease quantifies the change between the heading and harvesting period.
The TNPI decrease values achieved ranged from 0.58 to 1 (Figure 13). The plots in the
western part of the southern compartment showed the greatest rate of change (from 0.84 to
1). When compared to the phase between germination and heading, the phase between
heading and harvesting showed a significant difference. Greater TNPI increase values
indicate improved crop growth and vitality, while higher TNPI decrease values indicate a
rapid decline in NDVI values at maturity stages.

5.7. Extrapolation of the Phenology Estimation Model from the Field to the Region Scale

The most accurate optical and SAR models (Model 3, with an R2 = 0.70 and Model 7,
with an R2 = 0.84) were selected and applied for upscaling and mapping the five phono-
logical stages of wheat across the full research area according to the phenological calendar
of wheat (Figure 2). The extrapolated models produced ten phenological maps that were
classified into five classes: 0–1: germination, 1–2: tillering, 2–3: jointing, 3–4: heading, 4–5:
maturity. For this reason, a color bar was generated in which a unique color code is matched
with each phenological stage. For example, since the first recorded germination date at
the field scale was 330 DOY, the same color code was applied to all plots that experienced
germination between 330 DOY and 337 DOY, and so on. This allowed a better comparison
and statical analysis afterwards. Figures 14 and 15 show the produced maps.
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Figure 14. Crop growth increase based on TNPI during two phenological phases (heading and
maturity).

Figure 15. Maps of the five phenological stages of wheat for the TIP region deduced from Sentinel-2
(Model 3). The color bar represents the 0–1: germination, 1–2: tillering, 2–3: jointing, 3–4: heading,
4–5: maturity phases.

According to Figures 15 and 16 and Table 7, during germination (330 DOY–337 DOY),
Sentinel-2 had the potential to predict the germination phase and around 40% of the plots
completed this stage. From Figure 15, however, this stage was less discriminated when
using the Sentinel-1 model, with only 28% of the plots being assigned to germination. As
for the tillering and jointing stages (337 DOY–05 DOY and 10 DOY–25 DOY), Sentinel-2 had
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the ability to predict these phases. In terms of tillering, around 40% of the plots completed
this stage. In terms of jointing, around 69% of the plots completed this stage.

Figure 16. Maps of the five phenological stages of wheat for the TIP region deduced from Sentinel-1
(Model 7). The color bar represents the 0–1: germination, 1–2: tillering, 2–3: jointing, 3–4: heading,
4–5: maturity phases.

Table 7. Estimated area of wheat phenological stages in the TIP region using Sentinel-1 (Model 7)
and Sentinel-2 (Model 3): 0–1: germination, 1–2: tillering, 2–3: jointing, 3–4: heading, 4–5: maturity.

Phenological
Stage

Phenological
Model 0–1 1–2 2–3 3–4 4–5

0–1

Sentinel-1
(Model 7) 13,391 ha 28% 13,472 ha 29% 8817 ha 18% 6222 ha 13% 4720ha 10%

Sentinel-2
(Model 3) 18,737 ha 40% 1458 ha 3% 22,494 ha 48% 3387 ha 7% 485 ha 1%

1–2

Sentinel-1
(Model 7) 16,499 ha 42% 11,419 ha 25% 9491 ha 20% 4790 ha 10% 1363 ha 3%

Sentinel-2
(Model 3) 189 ha 0.4% 18665 ha 40% 26,383 ha 57% 1205 ha 2.5% 46,561 ha 0.2%

2–3

Sentinel-1
(Model 7) 11,730 ha 25% 10,085 ha 21% 11,693 ha 25% 8631ha 18% 4423 ha 9.5%

Sentinel-2
(Model 3) 0 ha 0% 4881 ha 10.5% 32,003 ha 69% 9131 ha 20% 545 ha 1%

3–4

Sentinel-1
(Model 7)) 1358 ha 3% 3344 ha 7% 9905 ha 21% 16,887 ha 36% 15,063 ha 32%

Sentinel-2
(Model 3) 0 ha 0% 329 ha 0.1% 14,616 ha 31% 28,609 ha 61% 3008 ha 6.5%

4–5

Sentinel-1
(Model 7) 1345 ha 2.9% 3185 ha 6.84% 8604 ha 18% 15,942 ha 34% 17,486 ha 37.5%

Sentinel-2
(Model 3) 0 ha 0% 247 ha 0.5% 34,714 ha 74% 11,462 ha 25% 139 ha 0.2%
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However, during the heading and maturity stages (32 DOY–46 DOY and 79 DOY–120
DOY), Sentinel-1 was more efficient in predicting these stages, with around 36% of the plots
achieving closed heading and 37.5% of the plots completed maturity. During these periods,
Model 7, deduced from Sentinel-1, was not accurate in the discrimination between these
phases, with about 36% of the plots having ended heading and 37.5% having completed
maturity. Although, during these periods, Model 3, derived from Sentinel-2, was not
accurate in discriminating between these stages. In terms of heading, 60% of the plots
reached this stage, and 6.5% of plots reached maturity, which shows that the occupation
attributed to heading exceeds its typical distribution, which results in a low accuracy in
terms of predicting the ultimate phase of maturity.

6. Discussion

This research paves the way for a method to monitor the temporal behavior of wheat
in the TIP region using Sentinel-1, Sentinel-2, and GEE cloud computing. To construct a
phenological estimation model and extrapolate it from layers to the entire region, this work
examined seven remote sensing indices and the computational capacity of GEE.

6.1. Sentinel-1 and Sentinel-2 Temporal Behavior

This study revealed that the spectral-temporal profile of wheat crops was consistent
with those noticed by Veloso et al. [44], with decreasing values in the Red (B4) and SWIR
(B11, B12) bands and increasing values in the NIR (B8, B8A) bands and red-edge bands (B6,
B7) during the growing season of wheat. The signal variances were highest in the red-edge
and NIR bands, while they were lowest in the RGB bands. The NDVI, EVI, WDVI, and
S2REP values varied depending on the crop calendar recorded in the field (Figure 2). They
all increase when the chlorophyll content was saturated at the tillering phase, while they all
decreased at maturity, as the plant color changes and dries. The detailed analysis of these
profiles allowed for the identification of the dates for tillering, jointing, heading, maturity
as well as germination and harvesting. In the Bekaa plain of Lebanon, Nasrallah et al. [2]
also discriminated the germination, heading, and soft dough phonological stages of wheat
by analyzing the NDVI profile.

In this research, 20 Sentinel-2 images were acquired, as compared to 36 Sentinel-1
images within the same phonological growth period. The majority of the variability in
the backscattering profiles can be physically understood by variations in the physical
characteristics of plants [14]. This variability was adjusted by the VH–VV profile, which
also provided a more accurate description of the phenological stages (Figure 7).

The phenological stages of wheat crops were also successfully discriminated from the
scatterplot of the field samples of the wheat plots in a space including the NDVI and EVI,
NDVI and WDVI, and NDVI and S2REP values, while these stages were not discriminated
by the combination of VH, VV, and VH–VV polarization.

The Sentinel-1 and Sentinel-2 dense time series data were also used to produce a wheat
map of the entire TIP region by generating the RF classifier, with an overall accuracy of
%. From this map, a detailed investigation of the NDVI profile obtained was generated
by extracting the TNPI increase and TNPI decrease. The achieved TNPI increase values
revealed that the change between the germination and heading stages ranged from 0.08
to 0.58, representing an intermediate rate of change between these stages. The obtained
TNPI decrease values ranged from 0.58 to 1, showing an important rate of change between
the heading and harvesting periods. A higher increase in the TNPI value means improved
crop growth and vitality, whereas a higher decrease in the value indicates a rapid decline
in NDVI values at maturity. Similarly, Vaghela et al. [1] examined the phenological growth
stages of wheat by computing the Temporal Normalized Phenology Index (TNPI) of
growth stages.
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6.2. Phenology Estimation Model

To quantitatively extract the phenological stages of wheat using Sentinel-1 and Sentinel-
2 data, the seven optical and radar remote sensing indices were evaluated to develop an
accurate phenology estimation model using the LR technique. The models created with
WDVI as the independent variable were found to be the most accurate in predicting the
phenological stages (R2 = 0.76, RMSE = 0.77, nRMSE = 26%) when using Sentinel-2. In the
case of Sentinel-1, the greatest phenological estimation model was the one that uses the
VH–VV difference polarization (R2 = 0.84, RMSE = 0.56, nRMSE = 18%).

These models were extrapolated at the regional scale. A statical analysis of results
obtained from model 3 and model 7 at the regional scale showed that model 3 deduced from
Sentienl-2 was preferred in the prediction of the germination, tillering, and jointing phases,
while model 7 deduced from Sentinel-1 was superior in the prediction of the heading
and maturity stages. Audrey et al. [16] deduced that the SAR signal is affected by the
geometry and wetness of the examined wheat and rapeseed targets, while the optical signal
is sensitive to their physiology. Thus, this study revealed that the phases from germination
to jointing were better discriminated by the physiology of the wheat field rather than its
structure. From heading to maturity, the structure of the wheat became rigid and drier, and,
as a result, these phases were better identified with Sentinel-1 remote sensing indices.

Almost 40% of the plots in TIP region achieved germination throughout the period
between 25 November 2020 (330 DOY) and 2 December 2020 (337 DOY) (Figure 14, Table 7).
Given that the wheat plots were primarily planted on the ten last day of November, and
that the germination of wheat seeds begins 5–7 days after planting and lasted for 7 days,
this founding would appear to be reasonable and acceptable.

Regarding the tillering time (Figure 14), the estimated stage revealed that between
December 2 (337 DOY) and January 05 (05 DOY), 2020/2021, 40% of the wheat plots
(Table 7) experienced tillering. This area is a typical tillering period in the relevant location
(Tadla Irrigated Perimeter).

The third mapped phenological phase after tillering was the jointing phase. By looking
at Figure 14 and Table 7, around 69% of wheat plots completed jointing between 10 January
(10 DOY) and 25 January 2021 (25 DOY).

The fourth mapped phenological period after jointing was the heading phase. By
analyzing Figure 15 and Table 7, around 36% of wheat plots experienced heading between
01 February (32 DOY) and 15 March (46 DOY), 2021. As for the maturity season, in the TIP
region, maturity happened between the ten last days of March (79 DOY) and the ten last
days of April (120 DOY). Harvesting can be carried out from the 1st week of March when
the crop has reached physiological maturity.

Furthermore, these results revealed that the phonological phases in the TIP region are
mutually dependent. Wheat plots that experienced early germination reached the tillering,
jointing, heading, and maturity stages earlier than those which achieved late germination.
Table 8 presents an overview of recent work results on the monitoring of the phenological
stages of wheat using Sentinel-1 and Sentinel-2 remote sensing data.
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Table 8. Overview of recent works results on the monitoring of the phenological stages of wheat
using Sentinel-1 and Sentinel-2 remote sensing data.

Author Year Problem
Definition

Targeted
Crop Dataset Model/Tools Score

Ali Nasrallah
et al. [2] 2019

Monitoring and
mapping wheat

phenology
Wheat Sentinel-1

time series

Smoothing and fitting the
temporal series with Gaussian

functions

RMSE =
2.9–5.5 days

Audrey et al.
[16] 2020

Prediction of
phenological

stages

Wheat
and

rapeseed

Sentinel-1 and
Sentinel-2
time series

-Analysis of spectral
temporal profiles

-Incremental approach for
estimating the remote sensing

indices contribution to the
classification of principal and

secondary phenological stages.

Mean kappa =
0.53–0.82 (wheat),

0.74–0.92
(rapeseed)

Katharina
et al. [15] 2021

Detection of
phenological
development

stages

Wheat
Sentinel-1 and

Sentinel-2
time series

The sensitivity of remote sensing
features to phenological

development
<5 days

Linlin et al.
[45] 2014

Prediction of
phenological

stages
Wheat

SPOT-
VEGETATION

data
Double-Gaussian model R2 = 0.53

7. Conclusions

• The use of remote sensing indices and cloud computing is still in its infancy when
it comes to agriculture policy and practices in the Tadla Irrigated Perimeter region.
This was the first time a Linear Regression model (LR) derived from remote sensing
indices was developed to estimate crop production in the TIP. More specifically, it was
found that the dense time series of Sentinel-2 (NDVI, EVI, WDVI, and S2REP) and
Sentinel-1 (VH, VV, and VH–VV) were able to precisely identify phenological stages,
i.e., germination, tillering, jointing heading, maturity, and harvesting, with the support
of rainfall temperature data as well as a ground data penological survey. Thus, a more
accurate monitoring of the phenological development of wheat was achieved.

• Despite the phenological similarity between phenological phases, it was possible
to identify stages in which these phases can be differentiated using scatter plots of
field samples of wheat plots in a space comprising the vegetation indices and the
backscattering coefficient.

• The suggested TNPI temporal index provided a better level of comprehension in terms
of phenological changes at two phases than utilizing single NDVI data, resulting in a
reduction in the amount of time series data to be analyzed.

• Google Earth Engine cloud computing should be further explored, as it provided very
good performance in terms of accessing remote sensing products and reducing the
processing time, computation, and automation.

• The optimal models for predicting phenological stages were generated from the WDVI
and VH–VV remote sensing indices, resulting in an R2 equal to 0.70 from germination
to jointing and an R2 equal to 0.84 from heading to maturity

• Many prospective investigations related to crop monitoring based on Sentinel-1 and
Sentinel-2, such as dynamic crop mapping and biophysical parameter estimates, will
benefit from a deeper knowledge of optical and SAR temporal behaviors in real-time
under varying agricultural practices and environmental conditions.
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