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Abstract: The evaluation of rice disease severity is a quantitative indicator for precise disease con-
trol, which is of great significance for ensuring rice yield. In the past, it was usually done manually, 
and the judgment of rice blast severity can be subjective and time-consuming. To address the above 
problems, this paper proposes a real-time rice blast disease segmentation method based on a feature 
fusion and attention mechanism: Deep Feature Fusion and Attention Network (abbreviated to 
DFFANet). To realize the extraction of the shallow and deep features of rice blast disease as com-
plete as possible, a feature extraction (DCABlock) module and a feature fusion (FFM) module are 
designed; then, a lightweight attention module is further designed to guide the features learning, 
effectively fusing the extracted features at different scales, and use the above modules to build a 
DFFANet lightweight network model. This model is applied to rice blast spot segmentation and 
compared with other existing methods in this field. The experimental results show that the method 
proposed in this study has better anti-interference ability, achieving 96.15% MioU, a speed of 188 
FPS, and the number of parameters is only 1.4 M, which can achieve a high detection speed with a 
small number of model parameters, and achieves an effective balance between segmentation accu-
racy and speed, thereby reducing the requirements for hardware equipment and realizing low-cost 
embedded development. It provides technical support for real-time rapid detection of rice diseases. 

Keywords: spots segmentation; semantic segmentation; feature fusion; attention mechanism; multi-
scale 
 

1. Introduction 
Rice, as the main food crop for human beings, is widely cultivated around the world. 

Rice diseases affect its yield as well as its quality, which, in turn, has an impact on food 
security [1]. Among the rice diseases, rice blast is one of the most devastating rice diseases, 
which can cause severe yield losses and even crop failure in rice fields [2]. In China, about 
15% of the annual rice yield loss is caused by rice blast disease. The severity of rice blast 
is generally judged by the size of the area occupied by the disease spots on the leaves, and 
the traditional identification method is usually done manually, which can be subjective 
and time-consuming for determining the severity of rice blast. Therefore, rapid and accu-
rate segmentation of rice blast spots is of great significance for ensuring rice yield and 
food security. 

Sick spot segmentation methods generally include three types of image segmenta-
tion: traditional image segmentation, image segmentation by machine learning, and im-
age segmentation by deep learning. Traditional disease spot segmentation is based on the 
color and texture features of the image. Ma [3] et al. used integrated color features and an 
interactive region growth method for spot segmentation of cucumber downy mildew. Jo-
thiaruna [4] et al. proposed an advanced color feature method consisting of a color space, 
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color index, and singular value decomposition for leaf spot segmentation, with an average 
accuracy of 87%. Deng [5] et al. proposed an interactive color image segmentation method 
with grasping segmentation for spot segmentation of diseases such as maize black cob 
disease, which achieved better results in complex backgrounds. However, these tradi-
tional segmentation methods are susceptible to environmental changes, low segmentation 
accuracy, and low generality. 

In terms of image segmentation for machine learning, Wang [6] et al. proposed a seg-
mentation method based on k-means clustering, which combines the color space compo-
nents and features, iterates the clustering, and corrects the clustering results, finally con-
ducting segmentation experiments on images of cucumber diseases and soybean diseases. 
Khan [7] et al. used a hybrid contrast stretching technique for image enhancement, and 
then proposed a strong correlation-based segmentation method based on the HSI color 
space and optimized it with an expectation maximization algorithm to achieve good re-
sults in apple disease image segmentation. Trivedi [8] et al. used an ROF filter to filter and 
denoise the disease images, and then proposed a plant leaf disease spot segmentation 
method based on a color histogram and k-mean clustering algorithm. Bai [9] et al. pro-
posed a labeled watershed algorithm based on the HSI space and an improved fuzzy C-
mean algorithm for segmenting cucumber disease images, with an average segmentation 
error of 0.12%. Yu [10] et al. proposed an improved gray wolf optimization algorithm for 
multi-threshold segmentation of maize leaf spots under different thresholds. Wal-
damichal [11] et al. used the HSV color segmentation algorithm to separate the disease 
spots from the leaf background by automatically finding the optimal threshold for the 
saturation channel in color space, and the final test was performed on the coffee disease 
dataset with an average cross-merge ratio of 72.13%. Patil [12] et al. used a modified sun-
flower optimization algorithm to enhance the radial basis function neural network by re-
moving noise from the image. Chen [13] et al. used a non-local mean filtered two-dimen-
sional histogram to remove the noise in the corn disease image, followed by an improved 
particle swarm optimization algorithm to find the optimal segmentation threshold to seg-
ment the corn leaf disease. However, the segmentation method under machine learning 
requires complex image preprocessing steps, and designing the feature extractors, which 
makes the segmentation work, can be complicated and time-consuming. 

With the continuous development of deep learning, it is also gradually applied to the 
direction of disease spot segmentation. Chen [14] et al. proposed a method based on an 
improved u-net network to segment rice bacterial streak disease with an accuracy of 
95.6%.Wang [15] et al. used a two-stage sequential segmentation method to segment cu-
cumber downy mildew images by first mining the features through the DeepLabV3+ net-
work and then further determining the disease spot region through the U-Net network, 
with a 93.27% accuracy in leaf segmentation. Yuan [16] et al. improved the DeepLabV3+ 
network with ResNet101 as the backbone network and added a channel attention module 
in the residual block for the segmentation of black rot spots on grape leaves, with 84.8% 
accuracy. Wang [17] et al. used a segmentation method based on the U-Net network for 
segmentation of visible spectrum images of cucumber brown spot disease, with a maxi-
mum accuracy of 91.59%. Ji [18] et al. used resnet50 as the backbone network to construct 
a DeepLabV3+ semantic segmentation model and developed a fuzzy rule-based system to 
predict the damage level of black measles disease in grapes. Goncalves [19] et al. used 
multiple architectures for semantic segmentation of soybean rust images and, finally, 
FPN, U-Net, and DeepLabV3+ performed the best among the architectures, with an accu-
racy of 95%, 96% and 98%, respectively. Hu [20] et al. segmented tea wilt leaves by com-
bining U-Net and a fully connected conditional random field, with an average cross-mer-
ger ratio of 91.4%. Yuan [21] et al. constructed cascaded convolutional neural networks by 
connecting a three-level convolutional neural network model and adding spatial pyrami-
dal pooling layers to each network to segment the crop disease images under different 
conditions, with a final result of 95%. The above study illustrates that the deep learning 
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method for disease spot segmentation is feasible, omitting the preprocessing and feature 
extraction processes under the traditional and machine learning methods. 

However, existing deep learning-based spot segmentation methods pursue high ac-
curacy while leading to a large number of network model parameters, complex network 
structures, and high training and detection time costs, which cannot achieve real-time and 
fast detection. To address this problem, this study proposes a real-time semantic segmen-
tation method called DFFANet, which achieves a balance between accuracy and efficiency 
through a multi-scale feature fusion and attention mechanism. 

2. Materials and Methods 
2.1. Experimental Method 
2.1.1. DFFANet Network Model 

The overall network structure of the multi-scale feature fusion and attention mecha-
nism (DFFANet)-based rice paddy disease segmentation method is shown in Figure 1. 
The network is implemented based on an encoder and decoder structure, which mainly 
consists of a feature extraction (abbreviated to DCABlock) module, a feature fusion (FFM) 
module, and an attention mechanism (Attention) module. The encoder module is used to 
extract the shallow and deep features of rice blast disease, which mainly consists of a 3 × 
3 convolution operation with four DCABlock modules. The decoder module mainly con-
sists of three feature fusion modules, FFM, and Attention, which further fuse the multi-
level features and connect the output of each stage of the preorder to other stages of the 
postorder through dense connections to achieve reuse of features, which can integrate 
features at different scales and preserve richer rice blast information. The attention mod-
ule refines the features in the decoding process to avoid the loss of valid information dur-
ing decoding. Finally, the fused feature maps are subjected to convolution operation, and 
then the spatial information of the images is recovered by quadruple upsampling. 

 
Figure 1. Overall network structure of DFFANet, which is mainly composed of two parts: encoder 
and decoder. 

2.1.2. Feature Extraction (DCABlock) Module 
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In the encoder stage, in order to better extract the shallow and deep features of rice 
blast disease, a four-layer DCABlock module is designed in this paper for feature extrac-
tion and learning, and the module structure is shown in Figure 2. Firstly, a 1 × 1 convolu-
tion operation is performed to up-dimension the number of feature channels to 4 times 
the original number, and then the perceptual field is increased by a 3 × 3 expansion con-
volution, and then another 1 × 1 convolution is performed to down-dimension the feature 
channels to restore the original number of channels. The information expressed in the fea-
ture map of each channel is different after the above multiple convolution operations. In 
order to pay more attention to the semantic information that is meaningful to the current 
task, this paper aggregates more global information and edge texture information by 
global maximum pooling, Maxpooling, and global average pooling, AvgPooling, and 
fuses the feature information obtained from these two operations together. The fused in-
formation is subjected to a one-dimensional convolution operation to generate more crit-
ical feature vectors, and the channel weights are multiplied by the Sigmoid function, and 
the obtained feature vectors are combined with the input features element by element to 
obtain the output features. 

 
Figure 2. Structure of the DCABlock module for feature extraction and learning. Two pooling layers 
are used to aggregate the different semantic information. 

2.1.3. Feature Fusion (FFM) Module 
Shallow features, which contain more detailed information, but their semantic infor-

mation is less and noisier, while deep features have richer semantic information, but low 
resolution and less attention to detail, so multi-scale feature fusion can effectively inte-
grate contextual and spatial information detail information [22]. 

Some existing segmentation networks such as FCN [23] and U-Net [24] fuse multi-
scale features by jumping connections, but this also brings a large number of parameters, 
which is not conducive to real-time segmentation. Aiming at the above problems, a new 
feature fusion module is designed, which can achieve the purpose of feature fusion with 
less parameters. 

As shown in Figure 3, the feature fusion module adopts the design of a bottleneck 
structure. Then, the top and bottom outputs are added together, and the number of 
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channels is restored by a 1 × 1 convolution operation. After this process, the shallow fea-
tures are fused with the up-sampled deep features and then subjected to 1 × 1 convolution. 

 
Figure 3. FFM structure used for multi-scale feature fusion, extracting shallow information using 
asymmetric convolution to reduce the number of parameters. 

For the problem of gradient disappearance due to the deepening of the network lay-
ers, we use the densely connected feature fusion module, in which the output of each stage 
is used as input for the other stages. This kind of connection can play the role of feature 
reuse, which, in turn, alleviates the gradient vanishing [25]. 

2.1.4. Attention Module 
Attentional mechanisms can use deep information to guide feature learning and have 

also been shown to facilitate semantic segmentation [26]. In this study, the DFFANet net-
work structure is designed with an attention module with only 0.15 M parameters to focus 
on the valuable parts of the current segmentation task for rice pest feature fusion, as 
shown in Figure 4. Let the input feature map X ∈ RC × H × W (where C represents the 
number of channels, H represents the feature map height, and W represents the feature 
map width); then, first generate the weight vectors AP(X) and MP(X) by global average 
pooling and global maximum pooling, respectively, and then fuse them together and pass 
the 1 × 1 convolution operation, followed by mapping them to the 0–1 interval using the 
Sigmoid function, and finally multiply the weight vectors with the input features by mul-
tiplying them. 

( ) ( )( )c ConvW X f AP X MP Xσ  = +   (1)

where Wc denotes the output feature, σ denotes the Sigmoid function, and fConv denotes 
the 1 × 1 convolution. 
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Figure 4. Attention structure. 

2.2. Experimental Materials and Evaluation Indicators 
2.2.1. Experimental Materials and Experimental Environment 

In this paper, an open dataset is used for experiments, and labeling was performed 
by LabelMe software, mainly labeled as rice blast disease spots and healthy leaves; the 
data labels are shown in Figure 5. In this study, 800 rice leaf images were selected for the 
experiment, and the ratio of 6:2:2 was adopted to divide the training set, validation set, 
and test set, in which 398 images were in the training set, 199 in the validation set, and 199 
in the test set, and the resolution of all images was 256 × 256. The model was trained on a 
NVIDIA Tesla A100 GPU, using an SGD optimizer and cross-entropy loss function. 

 
Figure 5. Data and labeled data: black indicates background, red indicates healthy leaves, and green 
indicates rice blast spots. 

2.2.2. Evaluation Indicators 
The average intersection rate (abbreviated as MioU), inference speed (abbreviated as 

FPS), and number of parameters (abbreviated as Params) were used as quantitative met-
rics to evaluate the segmentation model. IoU is the ratio of the intersection and union of 
the prediction result of a certain category and the real value. The higher the IoU value, the 
higher the degree of overlap between the prediction result and the real value. MIoU is the 
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most commonly used evaluation criterion in the field of semantic segmentation at present; 
it is the sum of the IoU of each category and then averaged. 
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where M is the tagging category, pii is the true value for category i and the predicted value 
for category I, pji is the prediction of category i to category j (i.e., false negative), and pij is 
the prediction of category j to category i (i.e., false positive). 

3. Results and Discussion 
3.1. Ablative Experiments 

In order to verify the performance of the DFFANet network model, and the effective-
ness of each module, an ablation experiment was designed. By gradually increasing the 
DCABlock module, the FFM feature fusion module, and the attention module, the respec-
tive effectiveness and performance of the network were verified, and the experimental 
results are shown in Table 1. 

Table 1. Results of the ablation experiments. 

Modules MioU (%) FPS Params (M) 
DCABlock 85.94 390 1.11 

DCABlock + FFM1 93.11 329 1.17 
DCABlock + FFM1 + FFM2 94.91 265 1.2 

DCABlock + FFM1 + FFM2 + FFM3 95.17 221 1.22 
DCABlock + FFM1 + FFM2 + FFM3 + Attention 96.15 188 1.4 

First, the DCABlock module is added to the base network to extract and learn fea-
tures and to upsample them for output; the average cross-merge ratio of the model is 
85.94%, the FPS is 390, and the number of parameters is 1.11 M. Further, by adding the 
FFM1 module to the base network, the average cross-merge ratio of the model is 93.11%, 
which is improved by 7.17%, the FPS is 329, and the number of parameters is 1.17 M. After 
further adding FFM2 and FFM3, the model’s average cross-merge ratio also gradually in-
creased to 94.91% and 95.17%, FPS decreased to 265 and 221, and the number of covariates 
was 1.2 M and 1.22 M, respectively. 

Adding the attention module again, the final average cross-merge ratio of the model 
reached 96.15%, which is 10.21% higher than the initial network model with only the 
DCABlock module, with an FPS of 188 and a number of parameters of 1.4M, which is only 
0.29 M higher. The connection for optimal results was borrowed from DenseNet [27] and 
DenseAspp [28], where the neurons of each intermediate feature map encode semantic 
information from multiple scales through a series of feature tandems. Since the higher the 
number of network layers, the higher the running time and memory requirements, which 
contradicts our aim of real-time lightweighting, only three feature fusion modules were 
used. The inclusion of the attention module allows to assign different weights to different 
feature channels and obtain the importance of each feature channel by automatic learning 
[29]. 

The above experiments show that the DFFANet network model using the feature ex-
traction module, feature fusion module, and attention mechanism module, designed in 
Sections 2.1.2, 2.1.3, and 2.1.4 of this study, can provide faster detection while effectively 
improving recognition accuracy and precision, significantly reducing the detection time, 
making the detection model easier to train, and occupying less running memory. 
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Achieving the goal of effectiveness and lightness for rice blast disease identification pro-
vides the possibility of real-time detection. 

Figure 6 shows the effect of rice blast disease segmentation and recognition, which 
more visually represents the performance of the modules and models designed in this 
study. As shown in the Figure 6fis the network with only a DCABlock module, whose 
segmentation effect is the worst, not segmenting out all the disease spots. With the in-
crease in feature fusion modules, with Figure 6eshowing the addition of the FFM1 mod-
ule, Figure 6dshowing the addition of the FFM1 and FFM2 modules, and Figure 6cshow-
ing the addition of the FFM1, FFM2, and FFM3 modules, the segmentation effect becomes 
better and better, indicating that by adding the feature fusion modules and using a dense 
connection to integrate the contextual and spatial information of the rice blast disease im-
ages, we can better perform the segmentation. Thus, the content of rice blast images can 
be better recognized and perceived by adding the feature fusion module. Figure 6b shows 
the segmentation effect after further addition of the attention mechanism module, where 
the third row in Figure 6, due to the similarity of the shaded leaf in the lower left corner 
of the original image Figure 6a with the background environment, causes this area to be 
more difficult to be segmented. 

 
Figure 6. Segmentation effect of rice blast disease: (a) original image of disease spot; (b) segmenta-
tion effect of the DCABlock + FFM1 + FFM2 + FFM3 + Attention model; (c) segmentation effect of 
the DCABlock + FFM1 + FFM2 + FFM3 model; (d) segmentation effect of the DCABlock + FFM1 + 
FFM2 model; (e) the DCABlock + FFM1 model segmentation effect; (f) the DCABlock model seg-
mentation effect. 

3.2. Comparison with Existing Models 
In order to verify the performance of the method in this study, the results were com-

pared with existing semantic segmentation models under the same data set and the same 
experimental parameter configuration as shown in Table 2. 
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Table 2. Performance comparison with existing models. 

Models MioU (%) FPS Params (M) 
ENet [30] 89.54% 88 0.36 M 

SegNet [31] 91.73% 250 0.94 M 
BiSeNet [32] 93.26% 260 5.8 M 
ERFNet [33] 93.52% 105 2.06 M 
CGNet [34] 94.97% 101 0.49 M 

LEDNet [35] 95.57% 65 0.91 M 
DABNet [36] 94.28% 174 0.75 M 

DFFANet(ours) 96.15% 188 1.4 M 

The segmentation accuracy, model running speed, and number of parameters were 
used to compare the performance between the models. The segmentation accuracy of the 
method designed in this study is 96.15%, the speed is 188 FPS, and the parameter size is 
1.4 M. Compared with the ENet model, the accuracy is increased by 6.61%, the speed is 
increased by 100 FPS, and the number of model parameters is increased by 1.04 M. Com-
pared with the SegNet model, the accuracy is increased by 4.42%, the speed is increased 
by 62 FPS, and the number of model parameters is increased by 0.46 M. Compared with 
the BiSeNet model, the accuracy is increased by 2.89%, the speed is increased by 72 FPS, 
and the amount of model parameters is reduced by 4.4 M. Compared with ERFNet, the 
accuracy is increased by 2.63%, the speed is increased by 83 FPS, and the amount of model 
parameters is reduced by 0.66 M. Compared with the CGNet model, the accuracy is in-
creased by 1.18%, the running speed is increased by 87 FPS, and the number of model 
parameters is increased by 0.91 M. Compared with the LEDNet model, the accuracy is 
increased by 0.58%, the running speed is increased by 123 FPS, and the amount of model 
parameters is increased by 0.49 M. Compared with the DABNet model, the accuracy is 
increased by 1.87%, the running speed is increased by 13 FPS, and the number of model 
parameters is increased by 0.65 M. 

In summary, although the model proposed is not the best in terms of speed and num-
ber of parameters, it has the highest accuracy and achieves a better balance of accuracy, 
speed, and number of parameters. The accuracy of the LEDNet model is similar to that of 
DFFANet, but the speed is only 65 FPS. The DFFANet model is better than the faster mod-
els, such as BiSeNet and SegNet, in terms of accuracy and number of parameters. 

In order to compare the test results of different models more intuitively, scatter plots 
of the accuracy and speed of each of the above models are given in this study, as shown 
in Figure 7. From the figure, it can be seen that the model proposed achieves real-time 
segmentation of rice blast spots while also maintaining an excellent segmentation accu-
racy, achieving a faster detection speed while maintaining a good segmentation accuracy, 
significantly reducing the detection time, and occupying less running memory. 
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Figure 7. Comparison of the accuracy and speed of the different methods. 

From the segmentation results in Figure 8, it can be seen that the method can achieve 
accurate identification of the location of the disease spots and can segment the spots from 
the leaves. In the first row, the segmentation results are similar, but the segmentation re-
sults of ENet, SegNet, CGNet, and DABNet have slight errors in the edge part. The seg-
mentation results in the second row show that the segmentation results of the method in 
this paper are also good for smaller lesions. In the segmentation results of the third row, 
the segmentation results of this study method are more complete and better for the similar 
parts of the leaves and backgrounds, indicating the effectiveness of this method in disease 
segmentation in natural environments, with better interference resistance. 

 
Figure 8. Segmentation results of different methods. (a) Sick spot image; (b) Enet segmentation re-
sult; (c) SegNet segmentation result; (d) BiseNet segmentation result; (e) ERFNet segmentation re-
sult; (f) CGNet segmentation result; (g) LEDNet segmentation result; (h) DABNet segmentation re-
sult; (i) DFFANet segmentation result. 
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4. Discussion 
In the existing rice disease research, most of the research is to discriminate rice dis-

eases and identify rice disease types, and there are few studies on disease segmentation 
and subsequent disease severity estimation [37–39]. In the literature [14], the segmentation 
of bacterial leaf disease in rice has been studied, and the final segmentation effect is as 
follows: the average intersection ratio is 95.6%, and the inference speed is 48 FPS. Com-
pared with our research, the average intersection ratio differs by 0.55%, but the inference 
speed differs by 132 FPS. The results show that our research can help accurately segment 
rice diseases in real time; it is also a lightweight method, which lays the foundation for 
evaluating the severity of rice diseases. At the same time, the real-time and lightweight 
features can facilitate our research on future desktop applications. 

5. Conclusions 
To address the problem that some existing disease spot segmentation methods can-

not achieve an effective balance between real-time and segmentation accuracy, this study 
proposes a lightweight, real-time rice blast disease spot segmentation method by design-
ing a feature extraction module, DCABlock, a multi-scale feature fusion module, FFM, 
and an attention module, Attention, as well as constructing a lightweight network model 
of DFFANet using the above modules. Our proposed method has a Miou of 96.15%, an 
inference speed of 180 FPS, and a model parameter number of 1.4 M, which is better than 
current segmentation models such as Enet, DABNet, and BiSeNet, and lays the foundation 
for subsequent disease classification. At the same time, the method has better interference 
resistance and is lightweight in terms of parameters, which provides technical support for 
the model to be deployed on IoT and mobile devices, and provides technical support for 
real-time segmentation and identification operations of rice blast disease in the field in a 
practical context, achieving high efficiency, high accuracy, and low hardware cost for au-
tomated rice disease detection. The method in this paper considers only one type of rice 
disease, and the next step will be to extend the application of the model to multiple types 
of rice diseases as well as diseases of multiple crops. 
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