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Abstract: Accurate crop identification and spatial distribution mapping are important for crop
production estimation and famine early warning, especially for food-deficit African agricultural
countries. By evaluating existing preprocessing methods for classification using satellite image
time series (SITS) in Kenya, this study aimed to provide a low-cost method for cultivated land
monitoring in sub-Saharan Africa that lacks financial support. SITS were composed of a set of
MODIS Vegetation Indices (MOD13Q1) in 2018, and the classification method included the Support
Vector Machine (SVM) and Random Forest (RF) classifier. Eight datasets obtained at three levels of
preprocessing from MOD13Q1 were used in the classification: (1) raw SITS of vegetation indices
(R-NDVI, R-EVI, and R-NDVI + R-EVI); (2) smoothed SITS of vegetation indices (S-NDVI); and
(3) vegetation phenological data (P-NDVI, P-EVI, R-NDVI + P-NDVI, and P-NDVI-1). Both SVM and
RF classification results showed that the “R-NDVI + R-EVI” dataset achieved the highest performance,
while the three pure phenological datasets produced the lowest accuracy. Correlation analysis
between variable importance and rainfall time series demonstrated that the vegetation index SITS
during rainfall periods showed higher importance in RF classifiers, thus revealing the potential of
saving computational costs. Considering the preprocessing cost of SITS and its negative impact on
the classification accuracy, we recommend overlaying the original NDVI with the original EVI time
series to map the crop distribution in Kenya.

Keywords: Kenya; satellite image time series; MODIS; random forest; support vector machine;
cropland; TIMESAT; phenometrics

1. Introduction

Agriculture is one of the most important pillar industries of Kenya. According to the
World Bank, agricultural output accounted for 31% of the country’s GDP in 2014. However,
less than 20% of the land is suitable for agricultural production, of which only 12% is of high
agricultural potential (due to adequate rainfall), and about 8% is of medium agricultural
potential [1]. At the same time, Kenya is one of the countries most affected by hunger in
the world due to the severe lack of agricultural inputs and the impact of natural disasters.
According to the Global Hunger Index 2020 published by the International Food Policy
Research Institute (IFPRI), Kenya is ranked 84th out of 107 countries in terms of food
security, with hunger levels defined as “serious.” Therefore, timely and reliable mapping of
crop cultivation is essential for developing sound food policies and responding quickly to
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emerging food shortages [2]. With the rapid development of spatial information technology,
satellite imagery has been widely adopted in the fields of crop identification mapping and
growth monitoring. Its characteristics of wide coverage, timeliness, low investment, and
high return make it a reliable approach for accurately and rapidly monitoring cultivated
areas and crop growth and supporting the implementation of agricultural policies.

The typical cropping status and climatic characteristics of the Kenyan region are major
obstacles in crop distribution monitoring. Smallholder farms are the most common form of
agricultural production in sub-Saharan African countries, e.g., Kenya [3]. For example, in
an analysis of subnational census data, Samberg et al. [4] reported that 50% of food calories
in sub-Saharan Africa come from farms less than 5 ha in size. A major challenge of land
cover mapping in the tropics is the high degree of heterogeneity. It means many mixed
pixels containing multiple agricultural cover types dominated the images of the region [5].
Therefore, medium- and high-resolution images have become common data sources in
subnational studies for land cover and crop distribution mapping [6–9]. Notably, several
aspects of smallholder farming in the tropics intensified the challenges for identifying crops
using remote sensing. Firstly, Maingi and Marsh [10] and Tottrup [11] in their respective
studies indicated that the use of multispectral images acquired by satellites (such as Landsat)
showed less spectral separation among vegetation types in tropical forest areas. Secondly,
cloud-free images are difficult to achieve in the area during the crop growing season, that
is, the rainy season. According to Hashim et al. [12], 75% of the satellite images acquired
over the equator are obscured by clouds. Moreover, in the Kenyan region, the growing
season mostly overlaps with the rainy season, and each vegetation type rapidly enters the
developmental phase whenever the rainy season arrives. The frequent cloudy and rapid
response of crops to the rainy season pushes the demands for higher temporal resolution
of remote sensing imagery. Due to the trade-off between spatial and temporal resolutions,
satellites with higher spatial resolution (e.g., Landsat, SPOT, and Sentinel) cannot meet the
temporal resolution requirement of classification, specifically reflected in the high cloud
coverage of images obtained during the growing season (i.e., rainy season). Finally, the
use of high spatial and temporal resolution imagery in large-scale areas (e.g., a national
scale) requires high image costs’ and processing costs’ input, which always constrain the
application of crop mapping for most African countries that lack financial support.

Moderate Resolution Imaging Spectroradiometer (MODIS) time series has become
a common classification strategy for crop distribution mapping in tropical high-cloud
areas. Vithanage et al. [13] suggested that spectral variation throughout the year can
be a significant feature for tropical and subtropical regions dominated by agriculture,
and standard classification methods cannot account for temporal or spectral variation
across multiple seasons. For land cover mapping in the Rift Valley Province of Kenya,
Baldyga et al. [14] indicated the constraint of strong temporal variability on land cover
mapping and the importance of the time series of vegetation indices for describing this
variability. Vegetation index profiles, driven by vegetation phenology and influenced by
differences in land conditions, climatic conditions, and cropping habits, reflect unique
vegetation characteristics that can be exploited [15], and the vegetation index processing
signal varies seasonally with growth patterns. Therefore, satellite image time series (SITS)
of vegetation indices are commonly used to map crop distribution in Kenya [1,13,16–20].
Generally, SITS monitors the regional vegetation dynamics at the shortest possible time
interval, thereby addressing the problem of high cloud cover.

To map crop distribution using SITS, many studies have been conducted using differ-
ent input datasets with various classification methods. Some of these studies have utilized
smoothed preprocessed vegetation index time series (e.g., NDVI or EVI) as the dataset
involved in the classification [21–24]. The purpose of using smoothing algorithms is to elim-
inate noise levels in the original datasets, especially in tropical and subtropical regions with
substantial cloud cover, so as to provide a more reliable time-series dataset. While other
studies have focused on exploring the extraction of vegetation phenometrics (e.g., growing
season start/end, growing season length) or statistical values (e.g., mean, extreme values,
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amplitude, median, and standard deviation) from SITS, and then used as the basis for
crop identification. [1,18,25]. For example, Valero et al. [26] found that the statistical values
extracted from the NDVI profile showed their ability to improve the characterization of
some land cover categories. Chen et al. [27] calculated six phenometrics (i.e., start of season,
end of season, maximum value, amplitude, base value, and length of growing season) from
SITS of MODIS NDVI to identify crop types and cropping patterns in the state of Mato
Grosso, Brazil. Pelletier et al. [28] used the extracted nine phenometrics (including the
beginning, the peak, and the length of the season) as part of the input features to evaluate
the robustness of the machine learning classifier for accurate land cover mapping over
large areas. Nonetheless, Kuchler et al. [29] and Araujo Picoli et al. [30] questioned the
feasibility of noise cancellation and curve smoothing in mapping cropping systems and
land cover classifications, arguing that it might reduce the amount of information in the
time series of vegetation indices. Jamel et al. [31] also demonstrated the ability of advanced
classification algorithms to handle noisy high-dimensional data and, hence, advocated for
the classification of origin data when using statistical machine learning algorithms.

Since the usual preprocessing methods of SITS (time series denoising and phenomet-
rics’ extraction) are time-consuming and laborious, it is worth exploring whether such
preprocessing has a positive or negative impact on the classification results, especially
when machine learning methods were used. Therefore, this work proposed to build an
affordable method for agricultural mapping in sub-Saharan Africa that lacks financial sup-
port by evaluating the accuracy of common preprocessing methods of MODIS time series
for crop identification in Kenya. For this purpose, we derived eight datasets with different
preprocessing levels from MOD13Q1 time series data and compared the accuracies of the
classification of various types of land cover in the Kenyan region in 2018, using a widely
used machine learning classification algorithm (i.e., support vector machine and random
forest). We hypothesized that land cover classification using the random forest algorithm
for the full depth of the original time series is a robust and effective classification method
for the Kenyan region.

2. Materials and Methods
2.1. Study Area

The Republic of Kenya (04◦40′ S–05◦02′ N and 33◦56′ E–41◦34′ E) is located in the
eastern part of Africa, where the equator crosses the central part, and has an area of
582,646 km2. The southeast is bordered by the Indian Ocean, with a coastline of 536 km.
The year-round highest temperature ranges between 22–26 ◦C while the lowest temperature
ranges between 10–14 ◦C. While the whole territory is located in the tropical monsoon
region, it has a savanna climate due to higher terrain. It has significant seasonal differences
in precipitation, with a long rainy season from March to May, a short rainy season from
October to December, and a dry season for the rest of the year. According to the rainfall
distribution in Kenya, only 16% of the country receives more than 750 mm of annual
rainfall [32]. The arable land area is about 105,000 km2, mainly distributed in the areas
around Mount Elgon National Park to Aberdare Park–Mount Kenya and Lake Victoria in
the west [33].

As one of the largest maize producers in sub-Saharan Africa, Kenya has a typical maize
cropping pattern of smallholder fields intercropped with other major crops (e.g., beans,
cowpeas, sorghum, and millet) or cash crops. In addition to maize, Kenya also grows wheat,
sugarcane, tea, rice, coffee, and watermelon. In this study, we focused on extracting the
distribution of major crops throughout Kenya to achieve an accurate and rapid estimation
of crop acreage.

2.2. Data

Given the requirements of swath width (by the scale of the study area) and the
requirements of temporal resolution (by meteorological conditions), we selected Terra
MODIS Vegetation Indices (MOD13Q1) as the primary imagery data source in this study.
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With a spatial resolution of 250 m and a swath width of 1200 km, MOD13Q1 can cover
entire Kenya in four images. Through the maximum value composite (MVC), MOD13Q1
can provide the best available pixel values of daily acquisition for every 16-day period and
tackle the issue of cloud pollution to a certain extent. The complete SITS of MOD13Q1 for
2000, 2015, 2017, 2018, 2019, and 2020 were downloaded from the Google Earth Engine
(GEE) platform. The acquisition, mosaicking, cutting, and reprojection of MODIS time series
data covering the entire territory of Kenya were completed through a JavaScript interface.
Two primary vegetation indices, Normalized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) from the MOD13Q1 product, were adopted in this study.
With the spectral transformation of the visible red band (strongly absorbed by chlorophyll)
and the near-infrared band (high reflection and high transmission of leaf structure), NDVI
can serve as an excellent indicator of vegetation growth state and vegetation coverage.
EVI introduces canopy background adjustment, blue band, and atmosphere resistance to
reduce the soil background and residual atmospheric pollution. Compared with NDVI, EVI
is more sensitive to high biomass regions [34]. Eight datasets corresponding to different
preprocessing levels were considered to evaluate the effects of the preprocessing for the
vegetation index time series on crop distribution mapping in Kenya:

• R-NDVI: raw NDVI time series (23 bands, 23 NDVI image sequences per year).
• R-EVI: raw EVI time series (23 bands, 23 EVI image sequences per year).
• S-NDVI: smoothed NDVI time series (23 bands, 23 NDVI image sequences by smoothing).
• P-NDVI: phenological parameters obtained from the original NDVI time series (26 bands,

i.e., 26 vegetation phenometrics extracted from two growing seasons).
• P-EVI: phenological parameters obtained from the original EVI time series (26 bands,

vegetation phenometrics extracted from two growing seasons).
• P-NDVI-1: phenological parameters obtained from the original NDVI time series

(13 bands, i.e., 13 vegetation phenometrics extracted from the first growing season).
• R-NDVI + R-EVI: a combination of original NDVI and original EVI time series

(46 bands, 23 NDVI + 23 EVI).
• R-NDVI + P-NDVI: a combination of original NDVI time series and NDVI-derived

phenological parameters (49 bands, 23 NDVI + 26 vegetation phenometrics).

The Kenya Crop Mask data for 2000 and 2015 were obtained from the Regional
Centre for Mapping of Resources for Development (RCMRD) open dataset, which provides
the extent of cropland, area-specific major crops, and other crops being grown at the
same location. The layers were generated using Landsat 5 TM and Landsat 8 OLI in
September/October 2000 and 2015, respectively, and validated by IN SITU data. Crop
regions with no change in cropping structure during the 15 years (Figure 1a) were extracted
by crop mask files. Based on this, the sample selection for crop identification was performed
by the local experienced remote sensing interpretation experts in combination with years of
very high-resolution satellite images from Google Earth. According to the main land cover
and crop types in Kenya, the classification was defined as: (1) artificial surface; (2) bare
land; (3) coffee; (4) forest and wetland; (5) herb and shrubland; (6) maize; (7) pineapple;
(8) rice; (9) sisal; (10) sugarcane; (11) tea; (12) water body; (13) watermelon; and (14) wheat.
It should be noted that, as the most widely grown and distributed crop in Kenya, maize
is often mixed with legumes and other crops. Limited by the spatial resolution of the
images, mixed legumes, sorghum, and small amounts of sporadically grown sugarcane,
millet, vegetables, and fruits were ignored in the maize-growing areas in the classification
in this study.
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Figure 1. (a) Unchanged crop masks in Kenya between 2000 and 2015; (b) Kenya agroecological
zones (AEZs).

Precipitation data were obtained from CHIRPS Daily (Climate Hazards Group Infra-
Red Precipitation with Station data) to analyze the correlations between the importance
of classifier variables and rainfall. As a quasi-global daily precipitation dataset, CHIRPS
combines 0.05◦ resolution satellite imagery and in situ station data to form a gridded
precipitation time series for trend analysis and seasonal drought monitoring [35].

2.3. Methods

Here the general approach of the classification is displayed in Figure 2. To identify the
best dataset for extracting crop distribution information in Kenya, eight datasets containing
raw time series of vegetation indices (R-NDVI, R-EVI, and R-NDVI + R-EVI), smoothed
time series of vegetation indices (S-NDVI), and vegetation phenology data (P-NDVI, P-EVI,
and P-NDVI-1) were used. Random Forests’ algorithms were used to generate crop spatial
distribution maps based on the eight datasets, respectively.
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2.3.1. Vegetation Index Time Series Smoothing and Phenometrics’ Extraction

The S-NDVI and P-NDVI/EVI datasets were obtained from original NDVI or EVI
datasets after image smoothing using the Matlab-based TIMESAT package [36]. TIMESAT
supports three different filters for smoothing time series datasets, i.e., adaptive Savitzky–
Golay filter, asymmetric Gaussian filter, and double logistic functions. The GUI controls for
this process determine the necessary settings based on the fitness of the smoothed curve
to the original time series of vegetation indices. Regarding the choice of filtering method,
Jönsson and Eklundh [36], the developers of TIMESAT, and many studies have picked the
most appropriate filter in their respective study area depending on the research purpose
and the nature of noise in the time series [22,37].

By comparing the fitness of these three filtering methods to the time series vegetation
indices, the adaptive Savitzky–Golay filter was finally selected as the filtering algorithm for
time-series vegetation indices’ smoothing and phenometrics’ extraction. The settings of the
model parameters determined by the fit effect of the crop sample time series curves are
shown in Table 1. As proposed by Richard et al. [38] in extracting the vegetation phenology
of the Kenyan region, setting the percentage amplitude parameter of the smoothing function
at the season start/end values at 20% can optimize the error caused by varying start and
end dates of a season in different locations across the whole study area. Therefore, the same
setup was used in our study.

Table 1. Optimal parameter setting for curve fitting model.

Parameters Settings

Curve-fitting model Savitzky–Golay filtering
Seasonality parameter 0 (0 will attempt to fit two seasons)

Spike method 3 (STL original)
No. of envelope iterations 1

Adaptation strength 3
Window size

Season start/end values
4 (only for Savitzky–Golay filtering)

0.2

Once the best curve fitting model and its optimal settings were determined, the filtered
S-NDVI and S-EVI datasets were then generated from the SITS of vegetation index over the
entire study area. From above, as indicators to describe the vegetation phenological phase
(i.e., P-NDVI and P-EVI), 13 phenometrics (e.g., the beginning times, the largest value, the
length of the seasons, etc.) were extracted from the smoothed vegetation indices profile by
TIMESAT software. P-NDVI/EVI 2018 were obtained from MOD13Q1 time series from
2017 to 2019. The meanings of the phenometrics of vegetation index (P-VIs) are as follows:

1. Beginning of the season: The date from the minimum value at the left edge to a
user-defined value (usually a proportion of the seasonal amplitude).

2. End of the season: The date from the minimum value at the right edge to the user-
defined value.

3. Length of the season: Days from the beginning to the end of the growing season.
4. Base level: The average of the minimum values around the complete growing season.
5. Time for the mid of the season: The average of the dates corresponds to the increase

to 80% of the peak and the decrease to 80% of the peak.
6. Largest data value for the fitted function during the season: The peak of the fitted

growing season curve.
7. Seasonal amplitude: The difference between the growing season peak and the base value.
8. Left derivative: The ratio of the difference between 20% and 80% of the left peak to

the corresponding time difference.
9. Right derivative: The absolute value of the ratio of the difference between 20% and

80% of the peak on the right side and the corresponding time difference.
10. Large seasonal integral: The integral value of the fitted curve from the beginning to

the end of the growing season.
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11. Small seasonal integral: The integral value of the difference between the fitted curve
and the base value from the beginning to the end of the growing season.

12. Value for the beginning of the season: The value of the curve fit corresponding to the
beginning of the growing season.

13. Value for the end of the season: The curve-fit value corresponding to the end of the
growing season.

2.3.2. Classification Strategy

Appropriate classification strategies should be selected to reduce the dispersion of
samples in spectral dimensions and phenological periods, especially when conducting
large-scale land use/land cover change studies. In this study, the study area covered entire
Kenya and spanned across different climatic zones, resulting in different timings for the
onset of the rainy season, especially for the second rainy season (i.e., the short rainy season).
Some sample sites across the country typically experience single-peak rainfall (one rainy
season), while others experience double-peak rainfall (two rainy seasons) in a calendar
year. This variability in the rainy season can lead to differences in phenological parameters
among the same vegetation type during the second rainy season [38]. To address this
situation, Richard et al. [38] and David et al. [39] proposed using only the phenological
parameters extracted during the first growing season in the classification, corresponding to
the P-NDVI-1 dataset in this study. However, the above approach disregards the vegetation
information of the short rainy season, which could weaken the classification accuracy
when identifying crop species. To make full use of all the information provided by the
time-series vegetation indices and reduce the heterogeneity of phenological parameters
and vegetation spectra among sample sites due to climatic differences, we selected samples
within the respective agroecological zones (AEZs) in Kenya only (Figure 1b) for crop
classification based on that zone. According to previous studies [18,40,41], these AEZs
delineate the production characteristics of the primary sector in different regions of the
country and thus contain similar cropping structures and climate conditions within the
same zone. These AEZs include four suitable crop areas with significant planting scale:
(1) coast, (2) high rainfall, (3) semi-arid north, and (4) semi-arid south; three cropless areas:
(1) arid north, (2) arid south, and (3) Turkana; and major metropolitan areas: Nairobi and
Mombasa (named cities). This study will verify the rationality of our classification strategy
by comparing the accuracy of the independent classification for each AEZ with the national
level classification.

2.3.3. Statistical Learning Algorithm

Two widely used advanced statistical learning classifiers, i.e., support vector machine
(SVM) and random forest (RF), were selected to investigate the potential of these eight
vegetation index time series datasets in crop identification. Briefly, statistical learning refers
to the class of algorithms used for classification and regression analysis, including linear
and quadratic discriminant analyses, SVM, RF, and neural networks [30]. These classifiers
are robust for handling high-dimensional data characterized by strong intercorrelation and
high redundancy and have been successfully applied to mapping crops in Africa [42,43].
Previous studies have demonstrated that in crop identification based on time series data, RF
is characterized by high accuracy, fast calculation speed, and easy adjustment of parameters
compared to other machine learning methods, such as SVM [44,45]. Moreover, RF has been
found to produce more robust mapping results in fragmented small-scale farming areas
in Africa compared to other methods [46]. However, this result cannot be generalized,
e.g., Shao and Lunetta (2012) [47] compared the classification performance of SVM, neural
network, and CART algorithms using MODIS time series data and concluded that SVM
outperforms other algorithms in land use classification. Therefore, we chose SVM and RF
as the classifiers for crop identification in this paper.

The SVM is a classification system derived from statistical learning theory. The SVM
algorithm uses non-linear mappings (i.e., kernel function) to project the input vectors to a



Agriculture 2022, 12, 79 8 of 22

very-high-dimension feature space, then creates a linear decision surface (i.e., hyperplane,
Cortes and Vapnik (1995) [48]) in this new feature space to minimize errors and distinguish
data classes. RF is an ensemble learning algorithm based on classification and regression
tree (CART), where each of the CART classification trees is trained with some samples
and features through random sampling with replacement from the training set and finally
generating the final prediction result by the voting principle.

Operationally, the algorithms used in this experiment were based on EnMAP-Box,
a QGIS software package developed by the Environmental Mapping and Analysis Pro-
gram (EMA) project team in Germany. The main hyper-parameters in SVM include kernel
function, kernel coefficient γ, and penalty parameter C. The kernel functions are generally
linear, polynomial, radial basis (RBF), and sigmoidal functions. According to the rela-
tionship between the number of samples and the number of features in the training set,
RBF was selected as the kernel function of the SVM in this study, and the optimal global
parameters (γ and penalty parameter C) of the classifier were determined by grid search
and cross-validation; the parameter setting of RF uses the default parameter in EnMAP-Box
(n_estimators = 100).

2.3.4. Accuracy Assessment

Five-fold cross-validation was used to evaluate the accuracy of RF classification [49],
where the algorithm performs five different training and accuracy evaluations, with 80% of
the samples in each training and evaluation being used to train the model, and the remain-
ing 20% of the samples being used to predict the classification accuracy of the model, after
which the accuracy of all five classifications is averaged to obtain the 5-fold cross-validation
of the final accuracy. As a common method for evaluating the performance of machine
learning models, k-fold cross-validation avoids the errors caused by randomness and
overfitting of the model by selecting the test set multiple times to evaluate the classification
results, thus making the machine learning model more robust.

Overall accuracy (OA) and Kappa coefficient were selected as parameters for accuracy
evaluation. Briefly, OA is a fundamental statistic with probabilistic significance for the error
matrix. It expresses the probability that the classified result is consistent with the actual
type of the area corresponding to the ground for each random sample. The shortfall of OA
is that the small change of pixel category may change its percentage, and its objectivity
depends on the samples and sampling methods. Kappa analysis uses a discrete multivariate
technique, which considers all the factors of the error matrix (misclassification error and
leakage error) to overcome the shortcomings of OA. Therefore, OA and Kappa coefficient
(Kappa) were generally calculated simultaneously to obtain more accurate information.
The OA and Kappa of the classification results for the eight datasets were evaluated using
cross-validation to obtain the best preprocessing steps for crop identification and planting
area extraction based on MODIS data in Kenya.

2.3.5. Variable Importance Analysis

RF classification focusing only on the dominant variables might not significantly
reduce accuracy compared to using the full set of SITS features. Performing a variable
importance analysis provides some advantages in data storage and computational pro-
cessing costs and improves the interpretability of the classification model. According to
the unique phenological characteristics of crops in Kenya, where the growing season is in
sync with the rainy season, an assumption that the SITS of vegetation index during the
rainy season has higher importance for the classifier compared to the dry season was intro-
duced in this study. Additionally, the variable importance of the classifier that achieved
the best classification results and correlated it with the rainfall data of the corresponding
period (at the end of this study) was then calculated to test the assumption. The out-of-bag
samples were permuted in the respective variable for each decision tree to calculate the
out-of-bag error. The accuracies of the permuted out-of-bag samples were subtracted from
the accuracies of the original samples. The average of the differences of the accuracies of a
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variable gave the raw importance of these variables. Raw variable importance divided by
the respective standard deviation gave us the normalized variable importance. It should be
noted that the higher the accuracy of the model, the more trustworthy is the importance of
the variables. Daily rainfall data for 2018 were obtained from CHIRPS Daily. To maintain
consistency with the temporal resolution of the vegetation index time series, the CHIRPS
daily rainfall data were aggregated to the same time intervals as the MOD13Q1 MVC to
obtain the 16-day cumulative rainfall. Then, we divided them according to AEZ to get the
16-day cumulative average rainfall time series data within each AEZ. A significant linear
relationship with the variable importance of the best classification model was found; thus,
a linear fit was performed to explore the correlation between them.

3. Results
3.1. Raw Vegetation Index Time Series, Smoothing Effect, and Phenological Images

Figure 3a,b shows the R-NDVI time series of Kenya’s main land cover types, calculated
as the mean of the NDVI values over the randomly selected classification samples. In
Figure 3a, the NDVI value of bare land and artificial surface shows no apparent seasonal
variation. The curve of bare land was closer to a straight line, with the NDVI value around
0.15. In contrast, the NDVI of the artificial surface was higher than that of bare land, as
a mixed image element may contain artificial vegetation such as lawn. The time series
of forest & wetland and tea are also relatively straight, but the NDVI value remained at
0.7–0.8, and forest & wetland had a slightly higher NDVI value than tea. The NDVI time
series between sisal and wheat was similar. The growth period of sisal is earlier than that of
wheat: The NDVI peak of sisal is at the end of April and that of wheat is at the beginning
of June. In Figure 3b, sugarcane, maize, rice, herb & shrub have two growing seasons, with
the growth period corresponding to the long rainy season from March to May and the short
rainy season from October to December, respectively. In addition, maize and herb & shrub
have very similar phenological periods, differing only in the overall level of NDVI (the
NDVI of maize in all growth seasons is higher than that of herb & shrub). Figure 3c gives
the original NDVI time series of double-crop maize and its smoothed effect by adaptive
Savitzky–Golay filtering. After smoothing, the irregular sawtooth fluctuation in the curve
due to the effects of water vapor, clouds, and aerosols being removed from the curve
facilitated the interpretation of phenological periods and computation of phenometrics
(Figure 3d).

3.2. Classification Accuracy

Figure A1 presents the learning curve of the RF model at each AEZ when different
preprocessing level datasets were input. The learning curve reflected the relationship
between out-of-bag accuracy and the number of CART classification trees. At each AEZ, the
generalization error decreased as the number of classification trees (n-estimators) increased,
and the out-of-bag accuracy increased and converged to the best accuracy that the model
could achieve before n-estimators = 100.
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Figure 3. (a,b). Annual time series of the mean MODIS NDVI calculated for major land cover types.
(c) Example of NDVI time series acquired over a maize field pixel, before and after filtering using
Savitzky–Golay algorithm. (d) Raster data of phenometrics calculated by TIMESAT (obtained from
the first growing season).

Tables 2 and 3 show the OA and Kappa of the RF and SVM classifications obtained
from the SITS of the vegetation index dataset with different preprocessing levels at each
AEZ. From the box plots of OA and Kappa (Figure 4), both the classification results of RF
and SVM showed that S-NDVI-involved classification accuracy was lower than that of
R-NDVI, and the classification accuracy of P-NDVI obtained from S-NDVI was the lowest
one in the dataset of the three preprocessing levels. The above phenomenon also appeared
in the classification results of SITS based on EVI. The addition of the original EVI time
series substantially improved the classification accuracy of R-NDVI; however, the addition
of the phenological data had minimal effect on the accuracy.
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Table 2. Accuracies (Overall Accuracy and Kappa Accuracy) were achieved for RF in different AEZs
and different datasets.

R-NDVI +
R-EVI

R-NDVI +
P-NDVI R-NDVI P-NDVI S-NDVI R-EVI P-EVI P-NDVI-1

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

Arid North 73.78 62.27 69.85 56.88 70.7 58.03 66.35 52.22 69.72 56.65 68.09 54.13 66.64 52.6 65.48 50.88
Arid South 78.14 56.96 77.11 55.23 77.27 55.49 75.35 51.9 76.87 54.72 78.17 56.83 78.38 51.92 74.92 51.24

Cities 82.86 75.1 82.14 73.92 82.86 75.06 78.57 68.64 80.48 71.42 82.38 74.35 78.57 68.84 78.33 68.57
Coast 73.31 61.75 73.63 62.33 73.23 61.72 67.36 53.47 71.64 59.56 71.17 58.65 68.39 55 63.22 47.66

High Rainfall 73.24 57.17 68.57 49.79 68.74 49.53 65.66 46.4 67.09 48.14 70.05 51.76 65.86 46.56 63.82 44.26
Semi-Arid North 72.63 57.45 67.78 49.97 66.9 48.47 63.8 43.57 65.51 47.35 68.13 50.57 64.37 44.19 63.2 42.91
Semi-Arid South 72.99 63.17 67.5 55.76 68.02 56.19 64.79 52.35 67.01 55.38 65.02 51.9 65.23 52.86 61.62 48.22

Turkana 80.16 68.74 64.62 44.6 65.88 49.94 64.23 43.93 63.84 43.37 70.76 54.2 64.49 44.44 62.79 41.85

Table 3. Accuracies (Overall Accuracy and Kappa Accuracy) were achieved for SVM in different
AEZs and different datasets.

R-NDVI +
R-EVI

R-NDVI +
P-NDVI R-NDVI P-NDVI S-NDVI R-EVI P-EVI P-NDVI-1

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa

Arid North 74.49 63.9 66.4 52.95 67.75 54.68 64.9 50.31 69.12 56.29 64.8 50.44 64.27 50.0 64.53 49.61
Arid South 77.41 57.62 75.85 54.5 75.58 53.93 75.65 53.16 73.59 50.97 73.95 51.49 74.62 52.0 73.36 49.22

Cities 82.62 74.72 77.86 67.77 83.1 75.38 77.38 66.91 79.52 70.12 81.9 73.81 79.29 69.64 79.05 69.4
Coast 72.99 61.69 70.85 58.72 72.76 61.02 63.86 48.51 71.8 59.9 69.9 57.03 64.65 49.66 60.92 44.39

High Rainfall 71.76 58.4 61.59 45.52 64.79 47.3 58.89 41.44 62.55 46.11 65.37 48.95 58.82 41.71 60.37 41.06
Semi-Arid North 73.26 59.96 68.73 52.53 66.52 49.36 63.04 44.13 67.63 50.25 67.53 50.66 62.15 42.75 61.58 41.31
Semi-Arid South 73.33 64.82 65.41 54.44 65.31 54.11 63.4 51.54 66.03 54.96 64.17 52.62 63.4 51.54 59.84 46.8

Turkana 78.85 66.7 65.8 46.31 67.62 49.37 63.84 43.35 65.27 45.57 71.28 54.95 63.58 42.96 61.88 40.41
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Figure 4. Box plot of classification accuracy for each dataset: (a) overall accuracy; (b) Kappa accuracy.

Due to the difference of SVM and RF classification accuracy on various datasets
showing consistency, and because RF classifier had higher performance, we introduced
only the RF results. As the most effective dataset for RF classifier, R-NDVI + R-EVI obtained
the best results (OA = 82.86%) in cities, followed by Turkana (OA = 80.16%), arid south
(OA = 78.14%), arid north (OA = 73.78%), coast (OA = 73.31%), high rainfall (73.24%), and
semi-arid south (72.99%); semi-arid north had the lowest classification accuracy, with an
OA of 72.63%. The classification maps of each AEZ were mosaicked together to obtain the
LULC map of Kenya in 2018 (Figure 5).
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Figure 5. RF classification of Kenya in 2018.

3.3. Validation of Classification Strategy

Independent samples within the eight AEZs performed RF classification and 5-fold
cross-validation on the vegetation index dataset R-NDVI + R-EVI for entire Kenya. The
final classification results (OA = 62.82%, Kappa = 50.52%) were lower than that of any AEZ.
Figure 6 illustrates the common differences between the two classification strategies in
the entire study area by taking a typical case of extracting tea and wheat in the northeast
of Narok County. Figure 6a shows the results of independent classification of each AZE.
Figure 6b presents the results of RF classification at the national level. Figure 6c displays
the Google Earth high-resolution image of the area, where the distribution of tea and wheat
was provided by Crop mask 2015. As can be seen in Figure 6a,c, the tea-growing area
(in the black-highlighted part) and the wheat area (in the white-highlighted part) were
successfully classified. In contrast, Figure 6b shows that the RF classification misidentified
the crop types of the two mentioned growing areas as maize.



Agriculture 2022, 12, 79 13 of 22
Agriculture 2022, 11, x FOR PEER REVIEW 13 of 22 
 

 
Figure 6. Comparison of the two classification strategies in extracting tea and wheat in northeastern 
Narok County. (a) The results of independent classification of each AZE; (b) the results of RF clas-
sification at a national scale; (c) Google Earth high-resolution image of the area. Note that the distri-
bution of tea and wheat was provided by Crop mask 2015. 

3.4. Planting Area Extraction 
Crop acreage estimation was calculated using the classification strategies with the 

SITS of vegetation indices in 2000 and 2015 in Kenya and compared with the farmland 
area provided by the Kenya Crop Mask (RCMRD, 2018) (Figure 7). Figure 7 shows that 
the RF classifier overestimated the acreage of maize and sugarcane and gave various de-
grees of underestimation of tea, wheat, rice, and watermelon. 

Coff
ee

Pine
app

le
Sisa

l

Wate
rm

elo
n

Rice
Whea

t

Sug
arc

ane Tea
Maiz

e
0.0
0.1
0.2
0.3

1

2

3

4

5

6
80
90

100

A
re

a 
(1

03  ×
 k

m
2 )

2000

Coff
ee

Pine
app

le
Sisa

l

Wate
rm

elo
n

Rice
Whea

t

Sug
arc

ane Tea
Maiz

e
0.0
0.1
0.2
0.3

1

2

3

4

5

6
80
90

100

 RF Classification
 RCMRD crop mask 

A
re

a 
(1

03  ×
 k

m
2 )

2015

 
Figure 7. MOD13Q1: Acreage estimation of coffee, pineapple, sisal, watermelon, rice, wheat, sugar-
cane, tea, and maize in Kenya using RF classification and RCMRD crop mask. 

Figure 6. Comparison of the two classification strategies in extracting tea and wheat in northeastern
Narok County. (a) The results of independent classification of each AZE; (b) the results of RF
classification at a national scale; (c) Google Earth high-resolution image of the area. Note that the
distribution of tea and wheat was provided by Crop mask 2015.

3.4. Planting Area Extraction

Crop acreage estimation was calculated using the classification strategies with the
SITS of vegetation indices in 2000 and 2015 in Kenya and compared with the farmland area
provided by the Kenya Crop Mask (RCMRD, 2018) (Figure 7). Figure 7 shows that the RF
classifier overestimated the acreage of maize and sugarcane and gave various degrees of
underestimation of tea, wheat, rice, and watermelon.

Agriculture 2022, 11, x FOR PEER REVIEW 13 of 22 
 

 
Figure 6. Comparison of the two classification strategies in extracting tea and wheat in northeastern 
Narok County. (a) The results of independent classification of each AZE; (b) the results of RF clas-
sification at a national scale; (c) Google Earth high-resolution image of the area. Note that the distri-
bution of tea and wheat was provided by Crop mask 2015. 

3.4. Planting Area Extraction 
Crop acreage estimation was calculated using the classification strategies with the 

SITS of vegetation indices in 2000 and 2015 in Kenya and compared with the farmland 
area provided by the Kenya Crop Mask (RCMRD, 2018) (Figure 7). Figure 7 shows that 
the RF classifier overestimated the acreage of maize and sugarcane and gave various de-
grees of underestimation of tea, wheat, rice, and watermelon. 

Coff
ee

Pine
app

le
Sisa

l

Wate
rm

elo
n

Rice
Whea

t

Sug
arc

ane Tea
Maiz

e
0.0
0.1
0.2
0.3

1

2

3

4

5

6
80
90

100

A
re

a 
(1

03  ×
 k

m
2 )

2000

Coff
ee

Pine
app

le
Sisa

l

Wate
rm

elo
n

Rice
Whea

t

Sug
arc

ane Tea
Maiz

e
0.0
0.1
0.2
0.3

1

2

3

4

5

6
80
90

100

 RF Classification
 RCMRD crop mask 

A
re

a 
(1

03  ×
 k

m
2 )

2015

 
Figure 7. MOD13Q1: Acreage estimation of coffee, pineapple, sisal, watermelon, rice, wheat, sugar-
cane, tea, and maize in Kenya using RF classification and RCMRD crop mask. 
Figure 7. MOD13Q1: Acreage estimation of coffee, pineapple, sisal, watermelon, rice, wheat, sugar-
cane, tea, and maize in Kenya using RF classification and RCMRD crop mask.
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The mean absolute percentage error (MAPE) was calculated for the area of each crop
in 2000 and 2015:

MAPE =
1
n

n

∑
t=1

∣∣∣∣ actualt − f orecastt

actualt

∣∣∣∣× 100% (1)

where actual is the crop acreage from Crop Mask, forecast is the predicted area obtained
from the RF model, n is the number of observations, and t is the iteration of observations.
MAPE is an average of the absolute percentage errors from model predictions, i.e., the
average of the ratio of the absolute area error with the actual area.

The MAPE values of maize, wheat, rice, tea, sugarcane, watermelon, sisal, pineapple,
and coffee were 8.5%, 10.7%, 14.2%, 4.9%, 4.0%, 12.1%, 27%, 10.7%, and 17.8%, respectively.
Most of the main crops were well identified with MAPE no more than 15%. The classifica-
tion method proposed in this study is suitable for mapping the distribution of major crops
in Kenya. Therefore, we applied the model to extract the distribution of major crops in
Kenya in 2020. The area of major crops is shown in Table 4 using pixel statistic models.

Table 4. Area distribution of major crops in Kenya in 2020 obtained using RF classifier (unit: km2).

Coffee Maize Rice Sugarcane Tea Watermelon Wheat Sisal Pineapple

Area (km2) 169.96 93006.65 1600.44 2493.80 5531.54 743.04 3491.75 253.40 191.31

3.5. Variable Importance Analysis

According to the distribution of crops in Kenya (Figure 5), the high-rainfall area,
which has the wealthiest crop types, was selected for the variable importance analysis
because rich features place a higher demand on the discriminatory ability of the classifier
variables. Figure 8 presents the QA summary images of the SITS from MOD13Q1 during
the long and short rainy seasons of 2018 in the high-rainfall area. Benefitting from MVC,
high-quality images were obtained in this region during both the long and short rainy
seasons and enabled us to explore the contribution difference of vegetation index time
series in classification between various seasons. The variable importance of NDVI time
series in the model as histograms and the superimposed 16-day cumulative average rainfall
time series data are shown in Figure 9a. The importance of NDVI variables (see Figure 9a)
demonstrated a clear consistency with rainfall in both the long and short rainy seasons.
From the onset of the rainy season, crops enter a rapid growth phase. The differences
between the time series of vegetation indices of each crop showed explicitly that the
importance of vegetation index variables increased significantly in this period compared
with the dry season. To quantify the correlation between the season and the categorical
contribution of the vegetation index in the corresponding time, a linear fitting between
rainfall and the importance of NDVI variables was conducted (see Figure 9b). In the high-
rainfall region, rainfall experienced a significant positive linear relationship (p < 0.05), with
NDVI variable importance of r2 = 0.35.
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Figure 8. MOD13Q1 QA summary for the high-rainfall area in the long rainy season and short rainy
season. 0: good data, use with confidence, 1: useful marginal data, 3: pixel fully covered by clouds.
Only three images had more than 10% cloud cover during the rainy season: 23 April, 9 May, and
25 May (15.3%, 15.1%, and 13.7%, respectively).
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Figure 9. (a) Normalized variable importance of NDVI and 16-day cumulative mean rainfall data in
the high-rainfall area and (b) the linear relationship between them.

4. Discussion

Among the eight VI datasets, the highest mean (RF OA = 75.89%, RF Kappa = 62.82%)
and median (RF OA = 73.55%, RF Kappa = 60.01%) classification accuracies were obtained
for the R-NDVI + R-EVI involved in each AEZ. The original vegetation index time series
(R-NDVI, R-EVI) outperformed the smoothed time series (S-NDVI) to some extent and also
performed better than the classification accuracy of the datasets of phenological parameters
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(P-NDVI, P-EVI) obtained from the respective vegetation indices. Accuracy assessments
showed that the adaptive Savitzky–Golay filter reduced the mean OA and Kappa of the
original NDVI time series by 1.43% and 2.23%, respectively, in eight AEZs. This outcome
demonstrated that original vegetation indices can provide more information than smoothed
vegetation indices for advanced statistical learning classifiers in the Kenyan region, which
is in agreement with the results of Araujo Picoli et al. [30]. Our result is also consistent
with the findings of Kuchler et al. [29] in mapping the main cropping systems in the
northern region of the state of Togrosso, Amazonas, Brazil, where the authors achieved the
highest classification accuracy in both RF and SVM classifications using original MODIS
vegetation index products without noise reduction processing. Chen et al. [27] suggested
that Savitzky–Golay filtering reduces the interference from clouds and atmosphere in the
vegetation index time series on the one hand but also filters out important information,
on the other hand, thus hindering the separation of crop types because of their spectral
similarity. The drawback mentioned above is particularly significant when using an RF
classifier, which has the advantage of identifying the most discriminative variables when
dealing with strongly intercorrelated data. When smoothing the time series using a filtering
algorithm, discriminative information from one band (temporal phase) of the time series can
be transferred to adjacent bands. Moreover, in our case, two rainy seasons per year imply
high cloud coverage, and the critical discriminative information is likely to be corrupted in
the process of removing the cloud interference.

In addition, despite reducing the data input by half, the classification accuracy of
P-NDVI-1 was not significantly lower than that of two full growing seasons’ phenology
(P-NDVI), proving that the proposal of Richard et al. [38] and David et al. [39] using
only the first growing season’s phenology parameters for crop classification is reasonable.
Nevertheless, neither of these types of phenological information can meet the requirements
because the dataset always performs worse in the classification (RF accuracy of P-NDVI:
mean OA = 68.26%, mean Kappa = 51.56%; RF accuracy of P-NDVI-1: mean OA = 66.67%,
mean Kappa = 49.45%). The reason for the low classification accuracy of the phenological
dataset might be the similar VI profiles of various crops in Kenya, where most vegetation
types (including crops, grassland and shrubs, and forest) enter the growing season rapidly
after the onset of the rainy season, and the phenological differences among crops are not
sufficient for crop discrimination, i.e., the phenological data from the vegetation index
reflect seasonal changes more than differences in physiological processes for vegetation.

Furthermore, a comparison of the classification accuracies of R-NDVI and R-EVI found
similar identification abilities of these vegetation indices in the study area. In the Turkana
area, R-EVI slightly outperformed R-NDVI (RF OA = 64.88%, RF Kappa = 49.94%) with RF
OA = 70.76% and RF Kappa = 54.2%, probably due to the canopy background adjustment
factor L in EVI, which weakened the sensitivity of EVI to most canopy backgrounds except
snow [50]. Thus, R-EVI achieved higher classification accuracy in Turkana, where sparse
grassland and bare ground are dominant types. In summary, the conclusion reached by
Hastie [51] was confirmed in a study of crop classification in the Kenyan region: The
machine learning algorithm based on statistical learning theory is more likely to yield the
best results when using raw datasets than smoothed data.

Although Semi-Arid North and Semi-Arid South have relatively simple land cover
types in eight AEZs (mainly herb & shrub, maize, and forest), their OA in the dataset that
achieved the highest accuracy (i.e., R-NDVI + R-EVI) was less than 75%. This result was
expected, as shown in Figure 3b, where maize and herb & shrub have very similar NDVI
time series curves, showing only numerical differences. We found that these two AEZs
have lower planting densities than other regions. Specifically, according to the maize yield
data published by the Kenya Ministry of Agriculture, Livestock, Fisheries and Irrigation
(MOALFI), harvested areas in Makueni and Kitui (major maize planting counties of Semi-
Arid North and Semi-Arid South) were as high as 137,330 ha and 83,177 ha, respectively.
In contrast, yields were only 0.56 mt/ha and 0.36 mt/ha, respectively. Large regions of
sparsely planted maize growing areas are reflected as low values on NDVI, which reduces
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the difference between maize and herb & shrubs in the NDVI time series, leading to their
misclassification by RF.

The misclassification of crop types into maize (refer to Figure 6) is not unexpected
in the results of training and classification at the national scale. The phenomenon above
may be attributable to several factors. The first one is related to spectral heterogeneity
among the same vegetation types due to differences in land conditions, climatic conditions,
and cropping habits. With maize being the most widely grown crop in Kenya, the above
differences can make it difficult for its vegetation index time series to stay consistent across
the country. Additionally, statistical learning classifiers trained using highly heterogeneous
samples showed low sensitivity in recognition of other crops during the classification
process, manifested by misclassifying a large number of image elements as maize. The
second one is related to the class imbalance problem in machine learning. To ensure the
training effect, the classification samples should be evenly distributed throughout the
study area. Due to the disparity in the scale of cultivation between different crops, the
number of maize samples across Kenya differs by up to 500 times from that of other crops
(e.g., coffee), and the classifier based on the national scale inevitably faces the sample
imbalance problem, which mainly exists in supervised machine learning. The statistical
model, with overall classification accuracy as the learning goal, focused too much on the
majority class, thus degrading the classification performance of the minority class samples.
Through cross-validation and comparison of the classification effects, we demonstrated that
the influence of spectral heterogeneity among the same vegetation types due to differences
in land conditions, climate conditions, and cropping habits on the classification results
could be solved to a certain extent through a simple classification strategy. The AEZ
division balances the ratio of samples in the training set, effectively solving the challenge
of training RF classifiers under class imbalance.

It can be deduced that the errors in the extraction of cropland area using the RF classi-
fier, e.g., the overestimation of maize area, might originate from the mixed pixel of MODIS
images. The spatial resolution of MODIS imagery and the agricultural scale of smallholder
farms in Kenya lead to a high degree of heterogeneity of features exhibited within a single
pixel, i.e., the phenomena of mixed pixels are particularly severe. Furthermore, mixed
cropping and intercropping could also increase the spectral heterogeneity of mixed pixels,
e.g., maize, which is widely grown in Kenya, is usually mixed with beans, cowpeas, green
grams, sorghum, millet, and wheat. The spectral characteristics of mixed and intercropping
areas are more complex than those of mono-cropping areas, making it easier to misclassify
the image pixels in the area. However, the selection of MODIS imagery was dictated by
both the research objectives and the requirements of image spatio-temporal resolution
in the Kenyan region. On the one hand, as mentioned in the introduction, data source
selection can be limited by cloudiness, the rapid response of crops to the rainy season,
and the scale of the study area. Through the MVC, the maximum value of vegetation
indices was extracted for each pixel over every 16-day period in MODIS daily observation
to avoid cloud pollution. Traditional high-spatial-resolution images would fail to meet
the demand in terms of temporal resolution (e.g., the revisit period of Sentinel-2 is 5 days
with two satellites), and commercial satellites with high spatial and temporal resolution
require high input costs. The limitation of swath width also made a vast number of images
required for crop monitoring of the above satellites at a national scale, which significantly
increased the processing costs. On the other hand, Kenya urgently needs timely crop
distribution mapping. Compared with the improvement of the classification accuracy of
particular farmland, policy makers might pay more attention to the dynamic changes of
crop distribution in the country. We believe the approach proposed in this study can detect
nationwide LULC change at a low cost, which is meaningful for countries lacking financial
support, such as Kenya.

The variable importance analysis confirmed the conjecture that in Kenya, where the
crop growing season overlaps with the rainy season, the vegetation index time series of the
rainy season is more important (compared to the dry season) for crop classification using
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machine-learning algorithms based on statistical learning theory. Besides, it also provides
us with a direction for future research by posing the question of whether a machine-learning
algorithm can be achieved using only the vegetation index time series during the rainy
season for the purpose of reducing the computational cost.

It is also noteworthy that the original data selected in this study is a MODIS vegetation
index 16-day synthetic product, which has been widely used for crop identification, growth
monitoring, and planting area extraction around the world. However, in a study on
temporal sampling for monitoring vegetation condition, Alexandridis et al. [52] indicated
that the optimal time resolution for managing vegetation is 7 days, a time interval close to
that of the MODIS surface reflectance 8-day synthetic product. In future studies, it would
be interesting to study the usage of the MOD09Q1 surface reflectance product to improve
the temporal resolution of the NDVI time series from 16 days to 8 days and explore the
ability of more frequent observations to detect differences in spectral profiles with similar
phenological crops. When estimating crop acreage at the national scale, the application
of the dataset that achieved the best performance (i.e., R-NDVI + R-EVI) could also result
in relatively poor classification accuracy in some parts of Kenya (e.g., OA = 72.63% in
the semi-arid north region). One of the critical reasons for that is related to the cropping
pattern in Kenya. The dominant cropping pattern in this region is smallholder farming
with a fragmented distribution of cropland, where the landscape contains a high degree of
heterogeneity. Mixed pixels containing multiple land cover types in a single pixel usually
dominate satellite images [5]. Therefore, more research is needed to investigate the mixed
pixel problem in crop classification and planting pattern recognition in large-scale areas
with arable patch sizes smaller than the pixel size of MODIS data.

5. Conclusions

In this study, the effectiveness of different preprocessing methods of the MODIS time
series for mapping the distribution of major crops in Kenya was investigated, and the
most appropriate crop distribution extraction algorithm for the region was obtained. The
reliability of the method was then tested at the statistical area level. Results demonstrated
that, compared to the application of the original vegetation index time series, smoothed veg-
etation index time series and vegetation phenometrics reduce the classification accuracy of
RF and SVM. Modern statistical learning classifiers (such as RF and SVM) exhibit excellent
robustness when handling high-dimensional data characterized by strong intercorrelation
and high redundancy and can produce satisfactory results when using original datasets
containing noise in the Kenyan region. Finally, the relationship between the importance
of variables in the best RF classifier and the unique climatic characteristics of Kenya was
analyzed, and the results of the linear fit showed a significantly positive correlation between
rainfall and the NDVI importance of variables, demonstrating the high significance of the
time series of the vegetation index during the rainy season for the RF classifier in Kenya,
where the crop-growing season and the flush period overlap. Considering the reduction in
labor and computational cost, we believe that the accuracy of the model is reasonable for
the extraction of major crops’ distribution in the Kenyan region. Therefore, we propose
the application of the time-series dataset of the original NDVI overlaid with EVI for crop
identification using the statistical learning classifier in the Kenya region. For large-scale
regional crop identification, we recommend dividing the monitoring area with available
auxiliary data (such as climate information and agricultural zoning) before performing the
classification, and each zone should be classified independently.

This study can be used as a basis for accurate crop identification in Kenya. All the sam-
ple data used in this study were derived from high-resolution Google Earth imagery paired
with Crop mask files. The classification results can be further improved by considering
additional ground truthing data.
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Figure A1. Learning curves of RF classification for each AEZ. With an increasing number of trees, the
out-of-bag accuracy increases and converges to a threshold.
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