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Abstract: Carbonate rocks are widely distributed in southwest China, forming a unique karst land-
scape. The Lijiang River Basin provides a typical example of an area with concentrated karst. Research
on the laws of hydrology and water quality migration in the Lijiang River Basin is important for the
management of the water resources of Guilin City and similar areas. In this study, we combined three
meteorological data with the soil and water assessment tool (SWAT) model and the hydrological sim-
ulation program-Fortran (HSPF) model to simulate the hydrological and water quality processes in
the Lijiang River Basin separately. We chose the Nash–Sutcliffe efficiency (NSE) coefficient, coefficient
of determination (R2), root mean square error-observations standard deviation ratio (RSR), and mean
absolute error (MAE) as the metrics used to evaluate the models. The results, combined with the
time-series process lines, indicated that the SWAT model provides a more accurate performance than
the HSPF model in streamflow, ammonia nitrogen (NH3-N), and dissolved oxygen (DO) simulations.
In addition, we divided the karst and non-karst areas, and we analyzed the differences between them
in water balance, sediment transport, and pollution load. We further identified the key source areas of
pollution load in the Lijiang River Basin, evaluated the pollution reduction effect of best management
practices (BMPs) on surface source pollution, and proposed some pollution control countermeasures.
Each scenario, especially returning farmland to forest and creating vegetation buffer zones, reduces
the NH3-N and DO pollution load.

Keywords: karst area; precipitation; SWAT model; HSPF model; water quality; best management
practices

1. Introduction

The landscape in Guilin, China, is mainly composed of the Lijiang River system, and
has become a world-famous tourist attraction because of its remarkable karst landforms [1].
The Lijiang River Basin is a developed water system with abundant runoff. In addition, its
widely distributed carbonate rocks have had strong karst development under long-term
weathering and erosion due to water flow. The karst landforms are striking. The surface of
the karst has formed stone buds, dry valleys, and karst ditches while underground, karst
caves, shafts, and funnels have been formed [2,3]. These unique karst structures create
differences in the spatial structures of the aquifer, and the surface groundwater hydrological
cycle of the karst is heterogeneous. Given this natural background, irresponsible human
activities in the area have led to vegetation damage, rocky land desertification, exposed
bedrock and soil erosion, and the natural ecology is fragile [4–6]. According to the geological
conditions of the Lijiang River Basin, a hydrological model of the karst area must be
established to study the mechanism of hydrological water quality circulation, to provide
a basis for the scientific management of water resources and to protect the ecological
uniqueness of the Lijiang River Basin.
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Due to the complexity of the watershed physical mechanism, the internal specific
hydrological cycle process is difficult to be expressed by a simple formula. The hydrological
model can use mathematical methods to abstract and generalize the complex water cycle
process, so as to accurately describe and analyze the runoff and confluence process, as well
as the water balance of the basin [7]. At present, the hydrological model has shown very
strong capabilities in solving many problems such as water resources management, flood
control, disaster reduction, and non-point source pollution [8–10].

The soil and water assessment tool (SWAT) model [11], one of the best-known semi-
distributed hydrological models, is based on physical mechanisms and it portrays some pro-
cesses empirically to simulate the hydrological and material cycle at the basin scale [12,13].
For karst landscapes with complex subsurface conditions and special hydrogeological
conditions, the SWAT model’s simple approach makes it useful in some cases, but it does
not consider the special geological formations in karst areas [14,15]. In addition, the hy-
draulic simulation program-Fortran (HSPF) model, a typical semi-distributed hydrological
model, has also been applied in karst areas [16,17]; however, studies of the SWAT and
HSPF models are relatively lacking in karst areas within the Chinese region, especially in
terms of pollutant simulation, so the applicability of the models in these areas needs to be
further validated.

To operate a hydrological model, meteorological data need to be input, one of the
most important of which are precipitation data [18,19]. The accuracy of precipitation data
seriously affects the results of model simulations and the current precipitation data are
mainly obtained from ground station observations, satellite observations, and reanalysis
of precipitation. Due to the influence of various factors, the data from surface rainfall
observation stations are often unevenly distributed, and in remote mountains and areas
with complex terrain, the observation stations are sparse, which leads to a lack of data and
difficulties in subsequent observation and maintenance [20]. Therefore, further reanalysis
of precipitation data and satellite observation data is particularly important.

The China Meteorological Assimilation Driving Datasets (CMADS) for the SWAT
model contain atmospheric assimilation meteorological data jointly researched and devel-
oped by Meng et al. [21]. The CMADS series data were sourced from the meteorological
observations of more than 30,000 ground observation stations in China and are used for
fusion calibration, which improves the availability and accuracy of the CMADS data sets in
China [22]. This high-resolution and high-quality data set covers the whole of East Asia
[23], and helps to reduce the uncertainty caused by meteorological elements’ input; the
data set has been the focus of and promoted by many researchers at home and abroad in
recent years [24]. The Global Precipitation Measurement (GPM) mission [25] is a remote
sensing satellite precipitation data product developed by NASA based on the Tropical
Rainfall Measurement Mission (TRMM) [26]. The integrated multi-satellite retrievals for
GPM (IMERG) data are the most widely used data in the GPM product series. Compared
to TRMM precipitation data, IMERG precipitation data has higher accuracy and wider
coverage, including in South China [20,27].

Agricultural non-point pollution is one of the main sources of water pollution in the
Lijiang River Basin, and it seriously affects the ecological water environment. Because of
the unique karst landform in the Lijiang River Basin, soil erosion occurs frequently and
water pollution is aggravated. Therefore, it is essential to prevent and control the non-
point-source pollution in the Lijiang River Basin and implement scientific and reasonable
management measures. The best management practices (BMPs) are a series of engineering
and non-engineering measures widely used to control agricultural non-point-source pollu-
tion [28,29]. To achieve water quality goals, management measures can be screened and
evaluated using a hydrological model in advance. The SWAT model contains rich agricul-
tural management data. By modifying some parameters or directly adding agricultural
measures, the model can easily simulate the changes in non-point-source pollution, to help
formulate the BMPs for the treatment of non-point-source pollution [30,31].
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At present, although hydrological models are widely used, the accuracy and applica-
bility of various precipitation data are being gradually improved; however, the research
on hydrological models and multi-source precipitation data in the Lijiang River Basin
with karst landscape is still insufficient. In addition, in order to implement the “Beautiful
China” development strategy, it is very necessary to prevent and control non-point-source
pollution in the Lijiang River Basin. Taking the Lijiang River Basin as the study area, this
paper has the main following objectives: (1) compare and evaluate the applicability of
SWAT and HSFP models driven by ground observation precipitation data, CMADS and
IMERG, respectively, in the hydrological and water quality simulation of the Lijiang River
Basin; and (2) discuss six BMPs scenarios for non-point-source pollution prevention and
control based on the simulated results and the karst geological characteristics of the Lijiang
River Basin.

2. Materials and Methods
2.1. Study Area

The Lijiang River, located in the northeast of the Guangxi Zhuang Autonomous Region,
belongs to the Guijiang River system of the Pearl River Basin (see Figure 1). Originating
from the Bajiaotian Alpine swamp zone of the Maoer Mountain in the northwest of Xing’an
County, Guilin City, it flows from north to south, with a total length of 214 km and a
drainage area of about 5444 km2 [32]. The Lijiang River Basin has a subtropical monsoon
climate with abundant rainfall and high temperatures: the annual average precipitation can
reach 1627 mm and the annual average temperature is 19.1 ◦C. In addition, the region has an
annual average sunshine duration of 1553.09 h, frost-free period of 308 days, and an annual
average relative humidity of 80%. The area is suitable for the growth and reproduction of
animals and plants.

Figure 1. Location of the study area and distribution of sub-basins, karst and non-karst areas.

The Lijiang River is a rain-sourced river. The precipitation in the basin is affected by
monsoon activity, and the spatial and temporal distribution of precipitation is unbalanced.
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Due to the decrease in the precipitation from north to south and the regular change in
the geological characteristics from upstream to downstream in the Lijiang River Basin,
the density of the river network is characterized by top-down piecewise runoff. Affected
by rainfall, the amount of water in the basin suddenly increases and decreases, which
directly affects the water available for industrial supply, agricultural production, and
domestic use [33].

The terrain in the Lijiang River Basin is higher in the north and lower in the south, and
the river trunk is lower in the middle and higher on both sides. Most of the middle and
lower reaches are covered by carbonate, which forms unique karst landforms. The upper
reaches can be classified as non-karst areas [34], with geomorphic forms mainly including
tectonic erosion and tectonic denudation geomorphology. The middle and lower reaches of
the basin can be classified as karst areas, with geomorphic forms mainly including structure
dissolution, erosion dissolution, denudation dissolution, sedimentation dissolution, and
dissolution accumulation geomorphologies.

2.2. Data Collection

The construction of the SWAT and HSPF models requires the input of spatial geo-
graphic data (DEM, land use type, and soil type) and meteorological data (precipitation,
evaporation, temperature, runoff, etc.). Spatial geographic data are used to generate rivers,
build river networks, divide sub-basins, and generate hydrological response units. The
inputs and outputs of the watershed are described by establishing a database based on
meteorological data. To calibrate and verify the model, the measured hydrology and water
quality data (runoff, sediment, ammonia nitrogen, etc.) are also needed. The sources of the
model data are listed in Table 1.

Table 1. Data sources used in this study.

Data Resolution Period Source

DEM 90 m / Geospatial data cloud
Land use 300 m / Global land cover products of Tsinghua University

Soil 1 km / World Soil Database, HWSD

Meteorology / 2005–2016 China Meteorological Data Network, CMADS,
IMERG

Runoff / 2006–2016 Hydrological yearbook of Pearl River Basin
Sediment / 2006–2016 Hydrological yearbook of Pearl River Basin

Water quality / 2008–2016 Environmental Monitoring of China

In this study, we selected three kinds of precipitation data: ground observation data
(China surface climate data V3.0 (CSCDS)), CMADS atmospheric assimilation data, and
IMERG satellite remote sensing precipitation data. Each data set has a different spatial
resolution and starting observation year; the distribution of the number of stations in the
Lijiang River Basin also differs. The distribution of CSCDS data is particularly uneven, with
only two sites within the Lijiang River Basin, as shown in Figure 1. The spatial resolution
of CMADS is 1/3◦. We selected a total of eight grids within and around the Lijiang River
Basin as the input to the model in this study. IMERG’s spatial resolution is 0.25◦, and
precipitation data were extracted from a total of 104 grids.

As the collection of runoff and CSCDS data was limited to the time periods of
2006–2016 and 2005–2016, respectively, we selected 2005 as the warm-up period for the
model in this study, and the data from 2006 to 2016 were used for the calibration and
validation of the SWAT and HSPF models. The HSPF model needs evapotranspiration data
to operate—although the CMADS and IMERG lack evapotranspiration data, CSCDS does
not— therefore we used the CSCDS to drive the two models at the same time. Consequently,
the meteorological data except for precipitation are all based on CSCDS data, which fa-
cilitates a comparison of the impact of precipitation data on the simulation efficiency of
the model.
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Before using the three kinds of data to drive the hydrological model, we performed a
comparative analysis of their daily precipitation data using the mean average error (MAE)
and root mean square error (RMSE). We extracted CMADS and IMERG precipitation data
at the CSDCS station locations and averaged them for a more accurate comparison. The
analysis showed that the variation in the interannual precipitation trends of the CSCDS,
CMADS, and IMERG data were basically the same. Compared with the daily precipitation
of the CSCDS data, the MAE values of CMADS and IMERG data were 0.33 mm (7.04%) and
0.43 mm (9.13%), respectively; the RMSE values of CMADS and IMERG data were 8.28 mm
and 11.19 mm, respectively. The error between the two kinds of precipitation data and the
ground observation station data was small, which was controlled within 10%, indicating
that the data quality was reliable; however, the precipitation values of CMADS and IMERG
were slightly higher than those of the CSCDS. The calculation formulas of the RMSE and
MAE are as follows:

MAE =
1
n

n

∑
i=1
|Oi − Si| (1)

RMSE =

√
1
n

n

∑
i=1

(Oi − Si)
2 (2)

where Oi is the measured runoff value (m3/s); and Si is the simulated runoff value (m3/s).

2.3. Model Setup

We used the ArcGIS platform to analyze and process the DEM, generate the river
network and basin boundary, divide the sub-basins, and generate the hydrological response
units (HRUs). Simultaneously, we reclassified the land use types, soil types, and slopes.
Finally, the whole Lijiang River Basin was divided into 35 sub-basins and 370 HRUs in the
SWAT model. These preprocessed data were input into the SWAT and HSPF models for
overlay analysis. Finally, we imported the meteorological data to establish engineering
files. As the precipitation data were obtained from CSCDS, CMADS and IMERG, the other
input elements were kept unchanged, only the precipitation input was changed, and three
SWAT engineering files and three HSPF engineering files were created.

Based on the geological characteristics of carbonates and clastic rocks, we divided
all sub-basins into two categories: karst areas (carbonates rocks) and non-karst areas
(clastic rocks) [35]. The karst-area sub-basins include grids 15, 16, 18, 20–35, covering an
area of 2755 km2; the non-karst sub-basins include grids 1–14, 17, 19, covering an area
of 2689 km2, as shown in Figure 1. After calibration of the SWAT model, the simulation
of each hydrological element could be easily consulted in the output file, and the water
balance of the basin could be further analyzed. Water balance occurs when the difference
between the inputs and outputs of a certain water body (or region) in a certain period are
equal to the storage variable of the water body (or region) [36]. The water balance formula
of the SWAT model is shown in Equation (3) [35]:

∆Sw = PREC− SURQ− LATQ− PERC− ET (3)

where 4SW is the change in the water storage in the basin (mm); PREC is the rainfall
in the basin (mm); SURQ is the surface runoff in the basin (mm); LATQ is the lateral
runoff (mm); PERC is the recharge of soil to groundwater (mm); and ET is the actual
evapotranspiration (mm).

According to the measured runoff data period, we selected the period from 2006 to
2011 as the calibration period, and the period from 2012 to 2016 as the verification period.
We used SWAT Calibration and Uncertainty Programs (SWAT-CUP) software to adjust the
parameters of the SWAT model, and we used the Parameter Estimation (PEST) program
to adjust parameters of the HSPF model. The selected model hydrological parameters are
shown in Table 2.
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Table 2. Descriptions of parameters used in the SWAT and HSPF models.

Model Parameter Description

SWAT CN2 Runoff curve number
ALPHA_BF Base flow regression coefficient
GW_DELAY Groundwater delay time

GWQMN The threshold depth at which shallow aquifers produce “base flow”
RCHRG_DP Seepage coefficient of deep aquifers

OV_N Overland flow Manning coefficient
SOL_Z Depth of soil surface to bottom
CH_K2 Effective hydraulic conductivity of the main riverbed

REVAPMN Re-evaporation water level threshold
ESCO Soil evaporation compensation coefficient

HSPF LZSN Rated accumulation of lower soil layer
UZSN Rated accumulation of lower soil layer
INFILT Infiltration coefficient
KVARY Influencing factor of groundwater subsidence coefficient

AGWRC Groundwater regression coefficient
INTFW Outflow coefficient in soil

IRC Soil flow regression coefficient
BASETP Percentage of base flow evapotranspiration
DEEPER Proportion of underground outflow into deep groundwater
SLSUR Average slope of overflow over slope

2.4. Scenario Setting of BMPs

BMPs are used to control pollution by changing environmental conditions in the
basin through engineering and non-engineering measures. Engineering measures are
mainly used for pollution reduction, sand reduction, flood control, and other measures
with certain physical structures, such as sedimentation ponds, filter strips, wetland buffers,
vegetation hedges, etc. Non-engineering measures are the operational procedures for new
management measures or improvements to existing management measures, such as tillage
management, nutrient management, landscape management, etc. In the SWAT model,
the implementation of BMPs can be simulated by changing the values of one or more
specific parameters in the .mgt and .ops files in the “subbasins data” module. By artificially
setting some scenarios to change the pollutant load, we evaluated the most effective single
or comprehensive measures to reduce the pollution load and identified solutions for the
prevention and control of water pollution.

Based on the actual agricultural fertilization, planting patterns, and land use in
the Lijiang River Basin, we simulated and evaluated six kinds of BMPs, including non-
engineering, engineering, and landscape measures. In the initial scenario (scenario 0), no
measures were applied, non-engineering measures were implemented in scenarios 1–2,
engineering measures were implemented in scenarios 3–5, and landscape measures were
considered in scenario 6. Table 3 describes the specific scenario settings.

Table 3. Scenario settings of best management practices.

BMPs Scenario Description of Measures Parameter Adjustment

Initial 0 None None
Nonengineering

measures
1 No tillage Add tillage to .mgt
2 Stubble mulching Add Harvest Only to .mgt

Engineering
measures

3 Vegetation buffer zone 10 m FS is set to 10 in .ops
4 Grass-planted waterways Add grassed waterway in .ops
5 Contour hedgerow Set FILTERW to 1 in .mgt

Landscape
measures 6 Returning farmland to forest

(>25◦)
Classify cultivated land with a
slope above 25◦ as forest land
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2.5. Evaluating Indicators

The goodness of fit index is used to evaluate the degree of fit between simulated and
measured values. The commonly used evaluation indexes are the Nash–Sutcliffe efficiency
(NSE) coefficient and coefficient of determination (R2). A SWAT model simulation is
generally considered satisfactory when the NSE coefficient and R2 are greater than 0.5, and
the closer their values to 1, the better the simulation effect [37,38]. We also adopted this
criterion in this study for the evaluation of the HSPF simulation results. In addition, we
used the MAE and RMSE-observations standard deviation ratio (RSR) [39]. The optimal
value of RSR is 0. An RSR less than 0.5 indicates that the model performs very well. Lower
RSR values indicate a lower root mean square error normalized to the standard deviation
of the observations, indicating the accuracy of the model simulation. The NSE, R2, and RSR
calculation formulas are, respectively, as follows:

NSE =1− ∑n
i=1 (Oi − Si)

2

∑n
i=1 (Oi −O)

2 (4)

R2 =

[
∑n

i=1
(
Oi −O

)(
Si − S

)]2
∑n

i=1 (Oi −O)
2
∑n

i=1 (Si − S)2 (5)

RSR =

√
∑n

i=1(Oi − Si)
2√

∑n
i=1
(
Oi −O

)2
(6)

where Oi is the measured runoff value (m3/s); Si is the simulated runoff value (m3/s);
O is the average value of measured runoff (m3/s); S is the average value of simulated
runoff (m3/s); and n is the total number of observation series.

In the evaluation of the simulated management measures, we used the pollution load
reduction efficiency as the evaluation index to evaluate the control effect of seven kinds
of BMPs on surface source pollution. Reduction efficiency is defined as the ratio of the
reduction in pollution load relative to the initial scenario and the pollution load under the
initial scenario [40]. The reduction efficiency calculation formula is:

R =
PreBMPs −AftBMPs

PreBMPs
× 100% (7)

where R is the reduction efficiency (%); PreBMPs is the pollution load intensity (t/km2) under
the initial scenario; and AftBMP is the pollution load intensity (t/km2) after implementing
BMP measures.

3. Results and Discussion
3.1. Flow Comparison

The SWAT and HSPF models were driven by CSCDS, CMADS, and IMERG precipi-
tation data to simulate daily runoff. The simulation results are shown in Figures 2 and 3.
Table 4 compares the simulation results of the two models driven by the three types of
precipitation data.

Both the SWAT and HSPF models obtained satisfactory results for runoff simulations
driven by CSCDS precipitation data, with NSE and R2 above 0.7 for both the calibration and
validation periods. The HSPF model was more accurate for some peak flows, whereas the
SWAT model simulations better fit the baseflow processes. Driven by CMADS precipitation
data, the evaluation indices of both hydrological models were slightly higher than that
of CSCDS, with NSE and R2 above 0.75, and the errors of the simulation results were
smaller. Like the CSCDS data-driven models, the HSPF model fit slightly better than the
SWAT model at high flow levels during the calibration period, whereas the SWAT model fit
better than the HSPF model overall during the validation period. Driven by the IMERG
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precipitation data, both models performed somewhat worse than when the other two data
sets were input, with the NSE and R2 above 0.65, while the errors in the simulation results
were larger.

Figure 2. Comparison of the flow hydrograph results produced with the SWAT and HSPF model
with (a1,a2) CSCDS, (b1,b2) CMADS, and (c1,c2) IMERG inputs.

Overall, all three data-driven SWAT and HSPF models met the runoff simulation
requirements of the Lijiang River Basin, but as precipitation is the most important cause of
runoff, the runoff results of the models differed due to the differences in the precipitation
data. For the same model, the CMADS data produced a more accurate simulation effect
than CSCDS and IMERG data. For the same precipitation data, the SWAT model was more
accurate than the HSPF model. We found that the best combination was using CMADS
precipitation data to drive the SWAT model, which produced the most accurate simulation
effect; however, in some special cases, such as the peak part of the validation period, when
driven by IMERG precipitation data, the simulation results of the HSPF model were more
accurate than those of the SWAT model. The main reason for this may be that the measured
runoff was small, and the average precipitation value in the IMERG data in this period
was less than those of CMADS and CSCDS, therefore the runoff value generated by the
IMERG-driven model was also small, resulting in a higher consistency with the measured
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value. When driven by CMADS precipitation data, the runoff simulation effect of the model
was the most accurate. This conclusion laid a foundation for the water quality simulation
that followed.

Figure 3. Comparison of the percentage of days when the SWAT and HSPF model results exceeded a
certain flow with (a1,a2) CSCDS, (b1,b2) CMADS, and (c1,c2) IMERG inputs.
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Table 4. Comparison of the simulation results of two models driven by three types of precipitation data.

Model
Precipitation

Input
Calibration Validation

NSE R2 RSR MAE NSE R2 RSR MAE

SWAT
CMADS 0.78 0.78 0.49 64.30 0.76 0.78 0.52 79.33
CSCDS 0.73 0.74 0.55 70.38 0.75 0.76 0.54 80.10
IMERG 0.66 0.66 0.62 87.41 0.67 0.67 0.63 98.00

HSPF
CMADS 0.75 0.76 0.53 72.68 0.76 0.77 0.50 79.98
CSCDS 0.73 0.74 0.55 77.46 0.74 0.76 0.54 82.67
IMERG 0.66 0.66 0.62 80.24 0.71 0.73 0.59 82.35

3.2. Pollution Loading Simulation

According to the previous analysis results, the SWAT and HSPF models, when driven
by CMADS precipitation data, produced the most accurate runoff simulation results in the
Lijiang River Basin. Therefore, we chose to continue water quality simulations based on
CMADS-data-driven hydrological simulations. Based on the runoff simulation results, we
used the SWAT and HSPF models for monthly sediment simulation, and the simulation
results are shown in Figure 4 with the statistical analysis provided in Table 5.

For the sediment simulation, the NSE and R2 for the SWAT model simulations were
all above 0.7, both in the calibration and the validation periods. The NSE and R2 for the
HSPF model simulations were above 0.6. The index value of simulation showed that both
the SWAT and HSPF models produced ideal results. Compared to the HSPF simulation
results, the SWAT model had a higher NSE and R2, smaller RSR, and a similar MAE. In
general, the SWAT model is better than the HSPF model for sediment simulation.

Ammonia nitrogen (NH3-N) is a nutrient found in water bodies. Too high an ammonia
nitrogen concentration will lead to eutrophication of the water body. Its decomposition
and transformation consume oxygen in water, and it is toxic to aquatic animals and plants.
Overall, the SWAT model more accurately simulated NH3-N than the HSPF model. In
addition, the average concentration of NH3-N was simulated as 0.16 mg/L, which is in line
with the national class II water quality standard in China (0.15–0.5 mg/L).

The amount of DO in water is an index used to measure the self-purification ability of
a water body. We used the SWAT and HSPF models to simulate DO, and the simulation
results are shown in Figure 4. The results showed that the simulations of the two models
for sediment, NH3-N, and DO were ideal and met the simulation requirements. Overall,
the simulation effect produced by the SWAT model was more accurate than that of the
HSPF model.

Through the comparative analysis of the water quality simulation effect of the two
models and the evaluation of various water quality factors, we found that the water quality
in the Lijiang River Basin can be categorized as class II water quality, and that the SWAT
model is more suitable for water quality simulation. This laid the foundation for analyzing
the sensitivity and uncertainty of the model parameters and provides a basis for the decision
making regarding what agricultural management measures to implement.

3.3. Water Balance Analysis for Karst vs. Non-Karst Areas

We statistically analyzed the water balance of both karst and non-karst areas and
the results are shown in Table S1, which shows that the average annual precipitation of
the whole basin was approximately 1767.78 mm. The average annual precipitation in the
karst and non-karst areas was approximately 1718.27 and 1817.29 mm, respectively. The
precipitation trends in the two areas are similar, and the distribution of precipitation in the
Lijiang River Basin was relatively uniform. The average annual evapotranspiration of the
two areas was 530.56 and 532.20 mm, respectively, indicating that the evapotranspiration
of the whole basin was relatively uniform. For surface runoff, the average annual surface
runoff was approximately 677.33 mm in the karst areas and 749.61 mm in non-karst areas.
The surface runoff in non-karst areas was larger than in karst areas, and this phenomenon
was not only reflected in the average of many years, but also in the surface runoff in
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non-karst areas being larger than in the karst areas for almost every year. The minimum
difference in the surface runoff between the areas was approximately 17.77 mm, and
the maximum difference was 204.29 mm. The reason for this difference is mainly the
different geological landforms. The non-karst areas are dominated by clastic rock, the karst
development is not obvious, the precipitation is mostly discharged in the form of surface
runoff, and the recharge to groundwater is less than that in karst areas. The karst areas
are mainly composed of hydrochloride rock with many pores and fissures, and the surface
water can be quickly converted into groundwater. Our study of groundwater recharge
confirms this finding. The average annual groundwater recharge was 492.72 mm in the
karst areas and 358.46 mm in non-karst areas. The groundwater in the karst areas is active,
and the amount of groundwater supplied by the surface every year is more than in the
non-karst areas.

Figure 4. Comparison of the simulation results of two models: (a1,a2) sediment; (b1,b2) NH3-N;
(c1,c2) DO (calibration period: left; verification period: right).
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Table 5. Summary of the water quality simulation indices used to evaluate the SWAT and HSPF
models.

Parameters Model
Calibration Validation

NSE R2 RSR MAE NSE R2 RSR MAE

Sediment
SWAT 0.74 0.75 0.60 3.74 0.62 0.70 0.59 8.86
HSPF 0.70 0.70 1.03 5.32 0.61 0.70 0.60 8.25

NH3-N SWAT 0.63 0.71 0.63 32.73 0.60 0.70 0.55 47.19
HSPF 0.61 0.66 0.75 37.26 0.60 0.68 0.57 48.40

DO
SWAT 0.85 0.90 0.39 1210.50 0.88 0.91 0.33 1066.30
HSPF 0.73 0.81 0.39 1382.00 0.80 0.83 0.34 1150.82

Figures 5 and 6 show the water balance distribution of each sub-basin and the percent-
age that each water balance term contributed to the total precipitation for the karst and
non-karst areas. The two figures display some differences between the water balance in
karst and non-karst areas. The proportion of surface runoff and lateral flow in the non-karst
areas was 46.00%, but only 41.42% in the karst areas, which shows that more runoff is
generated in the former than in the latter. In addition, the percentages of groundwater
recharge in non-karst and karst areas were 24.53% and 28.21%, respectively, and more
water in the latter was used to recharge the groundwater. The ratio of karst and non-karst
areas in this study area is close to 1:1, so the reason for this finding is mainly the difference
of the geographical characteristics.

Figure 5. Water balance distribution map of the sub-basins (mm). SURQ is the surface runoff in
the basin; LATQ is the lateral runoff; PERC is the recharge of soil to groundwater; and ET is the
actual evapotranspiration.
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Figure 6. Percentage each water balance term contributed to total precipitation in karst and
non-karst areas.

3.4. Pollution Load Analysis for Karst vs. Non-Karst Areas

Based on the water quality results output by the SWAT model, i.e., the sediment, we
statistically analyzed the NH3-N and DO pollution load per unit area in the karst and non-
karst areas in the basin (Table 6). Figure 7 shows the distribution of pollution load per unit
area in each sub-basin. For sediment, the sediment yield per unit area in the Lijiang River
Basin was approximately 25.02 t/km2, and the total sediment transport was approximately
13.62 × 104 t. The sediment yield per unit area was approximately 30.36 and 19.68 t/km2 in
the karst and non-karst areas, respectively. For NH3-N, the load per unit area in the karst
and non-karst areas was approximately 0.102 and 0.039 t/km2, respectively; the total NH3-
N load in the karst and non-karst areas was approximately 281.01 and 104.87 t, respectively.
The DO load per unit area in the karst and non-karst areas was approximately 4.930 and
4.203 t/km2, respectively; the total DO load was approximately 1.36 × 104 and1.13 × 104 t,
respectively.

Table 6. Statistical table of unit pollution load in karst and non-karst areas (unit: t/km2).

Year
Sediment NH3-N DO

Karst Non-Karst Karst Non-Karst Karst Non-Karst

2006 25.2 14.05 0.098 0.032 5.023 4.463
2007 14.64 9.89 0.066 0.024 3.812 3.299
2008 26.81 22.51 0.117 0.048 5.126 4.498
2009 20.49 9.46 0.07 0.024 4.409 3.166
2010 16.09 14.27 0.079 0.035 4.632 3.715
2011 7.36 4.73 0.043 0.015 2.759 2.196
2012 34.59 30.64 0.145 0.061 4.996 4.196
2013 32.79 19.88 0.12 0.044 4.928 4.315
2014 35.49 18.58 0.107 0.041 5.171 4.479
2015 59.54 33.4 0.153 0.057 7.578 6.599
2016 60.94 39.02 0.122 0.054 5.796 5.312

Average 30.36 19.68 0.102 0.039 4.93 4.203
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Figure 7. Spatial distribution of unit pollution load in each sub-basin (t/km2): (a) sediment;
(b) NH3-N; and (c) DO.

Figure 8 shows that the annual average sediment yield, NH3-N, and DO pollution
load in the karst areas were higher than in the non-karst areas. On the one hand, compared
to clastic rock, carbonate rock is soluble, therefore the karst areas have a double-layer
hydrogeological structure. This kind of geological structure leads to soil and water loss
in a karst area through not only surface runoff with sediment carried by rainfall, but
also by the leakage of soil particles into underground runoff through karst fissures and
underground pipelines with rainfall. Similarly, the double circulation mechanism of the
surface and the underground, pollutes both of them in a karst area at the same time, thereby
increasing the amount of pollution. On the other hand, the area of cultivated land in the
karst areas is approximately 1361 km2, and that in the non-karst area is approximately
606 km2. Therefore, there is more non-point-source pollution in the karst areas, leading to
a higher pollution load of NH3-N and DO.

Figure 8. Diagram of the difference in annual average pollution load between the karst and non-karst
areas.
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3.5. Effect Evaluation of BMPs Reduction
3.5.1. Identification of Key Source Areas of Pollutants

The water quality in the Lijiang River Basin is relatively high, and the water quality
assessments of the water source areas shows that the quality met the national standard;
however, the overall water quality of the tributaries is lower than that of the main streams,
and some of them have excessive pollution loads [41]. Due to the special geological and
geomorphic forms of the karst areas, as well as the domestic sewage, animal husbandry,
farmland fertilization, and so on, in the area, the problems of soil erosion and agricultural
non-point-source pollution still exist in the Lijiang River Basin. Using the SWAT model to
simulate and evaluate management measures is an effective method to prevent and control
non-point-source pollution.

To ensure management measures are accurate and effective, the locations and sources
of pollutants must be identified first, that is, the key sources of pollutants must be identified.
The study area mainly includes four areas: Xing’an County, Lingchuan County, Guilin
City, and Yangshuo County. The fertilization of farmland in the four counties and cities is
planned after consulting the data [42]. The pollutants we studied were NH3-N and DO, and
the main types of fertilizer applied in the area are nitrogen, phosphorus, and compound
fertilizer (N:P:K = 1:1:1). We converted the amount of fertilizer according to the proportion
of cultivated land area in each sub-basin to the planting area of the four counties and cities.
Figure 9a,b depicts the distribution map of cultivated land area and the fertilization amount
in each sub-basin, respectively. Combined with the area of cultivated land, the amount of
applied fertilizer, and the distribution of unit pollutant load, we identified the key source
areas of pollutants as six sub-basins: 26, 29, 31, 32, 34, and 35. Table 7 lists the cultivated
land area, fertilization amount, and pollutant load in these six sub-basins.

Figure 9. Maps of the distribution of (a) cultivated land (km2) and (b) fertilization (t/a) in
each sub-basin.
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Table 7. Statistical table of cultivated land area, fertilization amount, and pollutant load amount in
key source areas.

Sub-Basin
Number

Cultivated Land Area
(km2)

Fertilization
(t/a)

Sediment
(t/km2)

NH3-N
(t/km2)

DO
(t/km2)

26 355.07 20,458.36 23.31 0.299 5.304
29 95.57 5506.68 49.93 0.196 4.711
31 59.42 3423.84 50.34 0.224 5.407
32 173.07 9972.17 47.38 0.059 4.995
34 80.72 4650.72 45.7 0.043 5.071
35 113.54 6541.98 44.73 0.239 5.336

3.5.2. Evaluation of the Effect of BMPs on Pollution Reduction

In this study, we evaluated the effects of seven scenarios on the reduction in NH3-N
and DO pollution loads at the sub-basin scale. The results are shown in Table 8 and
Figure 10. In general, the efficiency of BMPs in reducing NH3-N load, in descending
order was: returning farmland to forest > vegetation buffer zone > contour hedgerow >
grassed waterway > stubble mulching > no tillage. The efficiency of DO load reduction,
in descending order was: vegetation buffer zone > grass channel > returning farmland to
forest > equal height hedgerow > stubble cover > no tillage.

Table 8. The rates of NH3-N and DO reductions by implementing BMPs in different scenarios.

BMPs
Scenario

NH3-N (t/km2) DO (t/km2)

Load Reduction Reduction
Rate Load Reduction Reduction

Rate

0 (Initial) 0.081 — — 4.567 — —
1 (No tillage) 0.075 0.006 7.41% 4.514 0.053 1.16%

2 (Stubble mulching) 0.069 0.012 14.81% 4.503 0.064 1.40%
3 (Vegetation buffer

zone) 0.058 0.023 28.40% 4.377 0.19 4.16%

4 (Grassed waterway) 0.063 0.019 23.46% 4.401 0.166 3.63%
5 (Contour hedgerow) 0.061 0.02 24.69% 4.490 0.077 1.69%
6 (Returning farmland

to forest) 0.053 0.028 34.57% 4.425 0.142 3.11%

Figure 10. Reduction rate of NH3-N and DO load by implementing BMPs in different scenarios.

In scenario 1, NH3-N and DO loads were reduced 7.41% and 1.16%, respectively; in
scenario 2, the loads were reduced 14.81% and 1.40%, respectively. Stubble mulching was
more effective than no-till measures in reducing pollution loads, and both practices were
more effective in reducing NH3-N than DO. The reduction efficiency of NH3-N and DO
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loads in scenario 3 was 28.40% and 4.16%, respectively, and 23.46% and 3.63%, respectively,
in scenario 4, demonstrating the increased reduction effect of these two measures. It may be
because planting aquatic plants can intercept pollution on the one hand, and, on the other
hand, the process of aquatic plant growth and respiration can absorb nitrogen and consume
dissolved oxygen to reduce the eutrophication of water bodies. The reduction efficiency
of scenario 5 on NH3-N and DO loads was 24.69% and 1.69%, respectively. This measure
mainly indirectly controls pollution loads by reducing soil erosion, so the reduction effect
is slightly inferior to that of vegetated buffer strips and grassed waterways. Scenario 6 can
directly reduce the arable land area and effectively control the surface source pollution,
and the reduction efficiency of NH3-N and DO loads was 34.57% and 3.11%, respectively.
Its pollution load reduction rate is effective, especially for the NH3-N load.

In summary, the six scenarios reduced the NH3-N and DO pollution load, and the
reduction in NH3-N was more obvious than that of DO; however, the reduction rate is
low, with a maximum of 34.57%. For NH3-N, the main reason is that nitrogen-containing
pollutants include organic nitrogen, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen,
etc., and ammonia nitrogen only accounts for a part of the total. The proportion of am-
monia nitrogen in chemical fertilizer is low, therefore, although the amount of farmland
fertilization in the basin is large, the total amount of ammonia nitrogen pollutants is low,
resulting in a low reduction rate. For DO, water bodies have a strong self-purification
ability; aquatic animals and plants can quickly consume excess DO, so that the DO reaches
a balanced state without the implementation of external measures. Planting trees and grass
can speed up the process.

4. Conclusions

In this study, we first evaluated the performance of three meteorological data-driven
SWAT and HSPF models for runoff and water quality simulations in the Lijiang River
Basin. The simulation results showed that the combination of the three meteorological
data and the two models can meet the requirements for simulating runoff in the Lijiang
River Basin, but the simulation results differed due to the differences in meteorological
data resolution and values. Amongst the considered data, the CMADS data performed the
best, the CMADS-driven SWAT model was able to achieve an NSE and R2 above 0.75, and
the errors represented by RSR and MAE were the smallest, indicating that this combination
is the most suitable amongst the considered combinations. In addition, sediment, NH3-N,
and DO were simulated well for the Lijiang River Basin. The CMADS data can be used for
similar areas where ground-based observation sites are sparse or missing.

Because of the special geological formation of the Lijiang River Basin, we divided the
basin into karst and non-karst areas to analyze more targeted water resource management
measures. Due to the karst areas having more pores and fissures, the recharge of ground-
water by precipitation is greater in these areas than that in non-karst areas. The surface
runoff in non-karst areas is higher than that in karst areas; the sediment yield, NH3-N, and
DO loads per unit area in karst areas are higher than in non-karst areas. Therefore, the need
for the prevention and control of non-point-source pollution in karst areas is greater.

Finally, we set up six BMPs scenarios in the extracted critical pollution source areas to
evaluate the effects of different management measures on reducing NH3-N and DO loads.
Among them, the reduction effects of two measures, returning farmland to forest and a
vegetation buffer zone, were the most obvious, with the highest reduction efficiency of
34.57% and 4.16% being achieved for NH3-N and DO, respectively. There are various types
of agricultural surface pollutants, but due to our insufficient information on water quality,
only two types of pollutants were selected in this study. Representative pollutants such as
total nitrogen and total phosphorus will be selected as control objects when available, and
more accurate management measures will be developed based on this study.
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