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Abstract: In many organisms, cytochrome P450 enzymes are the primary detoxifying enzymes.
Enhanced P450 activity can be mediated by the emergence of new genes, increased transcription due
to mutations in the promoter regions, changes in enzyme structures and functions due to mutations
in protein-coding regions, or changes in post-translational modifications; all of these changes are
subject to insecticide selection pressure. Multiple signalling pathways and key effector molecules
are involved in the regulation of insect P450s. Increased P450 activity is a key mechanism inducing
insect resistance. Hence, downregulation of selected P450s is a promising strategy to overcome
this resistance. Insect P450 inhibitors that act as insecticide synergists, RNA interference to induce
P450 gene silencing, and the use of transgenic insects and crops are examples of strategies utilized
to overcome resistance. This article reviews the latest advances in studies related to insect P450s-
mediated agrochemical resistance, with focuses on the regulatory mechanisms and associated pest
management strategies. Future investigations on the comprehensive regulatory pathways of P450-
mediated detoxification, identification of key effectors, and downregulation strategies for P450s will
ecologically, economically, and practically improve pest management.

Keywords: cytochrome P450; insecticide resistance; molecular mechanism; effector; signalling
pathway; pest management

1. Introduction

Management of insect pests predominately relies on synthetic chemical insecticides.
Due to their widespread use, there has been a selective effect on insects, leading to the
development of insecticide resistance. Five primary resistance mechanisms have previously
been reported in insects. These are metabolic resistance, gene target resistance, epidermal
penetration resistance, behavioural resistance, and intestinal commensal bacterial resistance.
Metabolic resistance comprises three stages. The first stage involves the cytochrome P450
(CYP) enzyme system and other detoxifying metabolic enzymes that catalyse the oxidation
reaction of insecticides; the second stage involves uridine diphosphate (UDP) glucosyltrans-
ferases (UGTs), which form various conjugated metabolites through conjugation; finally, in
the third stage, the ATP-binding cassette transporters (ABC transporters) are involved in
eliminating the second-stage metabolites from cells (Figure 1).
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Figure 1. Schematic diagram of the first, second, and third stages of the insecticide metabolism 
system. Phase I is mainly involved in oxidation by P450s. Phase II forms a conjugate structure with 
the products of Phase I through UGTs. The ABC transporters in Phase III transfer the metabolites of 
Phase II from the cell. Insecticide ligands and effectors mediate the regulation of target genes by 
binding to xenobiotic response element (XRE) at different stages. 

P450s are found in diverse organisms ranging from bacteria to humans [1], that can 
catalyse a vast array of biochemical reactions including hydroxylation, O-dealkylation, 
epoxidation, and N- and S-oxidation, and metabolize structurally diverse substrates, 
including endogenous compounds (hormones, fatty acids, and the hormone hormones, 
etc.) and exogenous toxic substances (plant secondary biomass and insecticides, etc.). As 
with other animal CYPs, insect P450s are approximately 500 amino acids in length with a 
typical recognition feature of FxxGxRxCxG in the heme-binding domain [2]. There are 
four P450 clans (CYP2, 3, 4, and mitochondrial CYPs) that are present in insects [3], and 
members of these clans are involved in insect development, growth, and metabolism [4]. 
Genes in the CYP2 family are evolutionarily conserved [5], and play a role in the 
development of insect sensory organs [6] and ecdysone synthesis [7,8]. The CYP3 clan is 
divided into two relatively conservative families, namely CYP6s and CYP9s [9]. These 
mediate insecticide resistance and xenobiotic metabolism, some of which can be induced 
by insecticides and phenobarbital. CYP4 genes encode both inducible and constitutive 
isozymes, which metabolize pheromones and xenobiotics and are involved in odour 
production [10]. CYP3 and CYP4 genes are present in large numbers in insects, allowing 
allow them to cope with multiple environmental stresses such as activating moulting by 
generating ecdysteroid pulses, while the other has evolved genes with taxon-specific 
paralogous CYPs [8]. Most insect species exhibit comparable numbers of CYPs in their 
mitochondrial clans. Many members of this enzyme family play important roles in 
plant-animal warfare, as plant P450s are involved in the production of secondary 
metabolites that act as chemical defences, while insect P450s metabolise the same 
compounds to avoid toxicity. Therefore, insect P450s also provide a defensive role 
against xenobiotics, by participating in or interfering with the specific activation of 
insecticide precursors, affecting insecticide selectivity [11]. 

Frequent use of insecticides inevitably leads to resistance in insects involving P450s. 
Over the past decade, due to the development of molecular and bioinformatics 
technologies, significant progress has been made in the identifying of P450 genes in 
resistant insects and associated regulatory mechanisms mediated by P450 genes. This 
article systematically reviews the characteristics and molecular mechanisms of P450s in 
mediating insecticide resistance, with a focus on the cascade reaction that regulates the 
expression of P450s in signal pathways. In addition, proposed resistance management 
strategies are summarized, with suggestions for future pest control. 

2. P450-Mediated Insecticide Resistance 
P450-mediated metabolic resistance to agrochemicals is universally present in 

insects and has been reported for many insecticides [12], such as pyrethroids [13], 

Figure 1. Schematic diagram of the first, second, and third stages of the insecticide metabolism
system. Phase I is mainly involved in oxidation by P450s. Phase II forms a conjugate structure with
the products of Phase I through UGTs. The ABC transporters in Phase III transfer the metabolites
of Phase II from the cell. Insecticide ligands and effectors mediate the regulation of target genes by
binding to xenobiotic response element (XRE) at different stages.

P450s are found in diverse organisms ranging from bacteria to humans [1], that can
catalyse a vast array of biochemical reactions including hydroxylation, O-dealkylation,
epoxidation, and N- and S-oxidation, and metabolize structurally diverse substrates, in-
cluding endogenous compounds (hormones, fatty acids, and the hormone hormones, etc.)
and exogenous toxic substances (plant secondary biomass and insecticides, etc.). As with
other animal CYPs, insect P450s are approximately 500 amino acids in length with a typical
recognition feature of FxxGxRxCxG in the heme-binding domain [2]. There are four P450
clans (CYP2, 3, 4, and mitochondrial CYPs) that are present in insects [3], and members
of these clans are involved in insect development, growth, and metabolism [4]. Genes in
the CYP2 family are evolutionarily conserved [5], and play a role in the development of
insect sensory organs [6] and ecdysone synthesis [7,8]. The CYP3 clan is divided into two
relatively conservative families, namely CYP6s and CYP9s [9]. These mediate insecticide
resistance and xenobiotic metabolism, some of which can be induced by insecticides and
phenobarbital. CYP4 genes encode both inducible and constitutive isozymes, which me-
tabolize pheromones and xenobiotics and are involved in odour production [10]. CYP3
and CYP4 genes are present in large numbers in insects, allowing allow them to cope with
multiple environmental stresses such as activating moulting by generating ecdysteroid
pulses, while the other has evolved genes with taxon-specific paralogous CYPs [8]. Most
insect species exhibit comparable numbers of CYPs in their mitochondrial clans. Many
members of this enzyme family play important roles in plant-animal warfare, as plant
P450s are involved in the production of secondary metabolites that act as chemical defences,
while insect P450s metabolise the same compounds to avoid toxicity. Therefore, insect
P450s also provide a defensive role against xenobiotics, by participating in or interfering
with the specific activation of insecticide precursors, affecting insecticide selectivity [11].

Frequent use of insecticides inevitably leads to resistance in insects involving P450s.
Over the past decade, due to the development of molecular and bioinformatics technologies,
significant progress has been made in the identifying of P450 genes in resistant insects and
associated regulatory mechanisms mediated by P450 genes. This article systematically
reviews the characteristics and molecular mechanisms of P450s in mediating insecticide
resistance, with a focus on the cascade reaction that regulates the expression of P450s in
signal pathways. In addition, proposed resistance management strategies are summarized,
with suggestions for future pest control.

2. P450-Mediated Insecticide Resistance

P450-mediated metabolic resistance to agrochemicals is universally present in in-
sects and has been reported for many insecticides [12], such as pyrethroids [13], neoni-
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cotinoids [14], organophosphates [15], and organochlorines [16]. Increased metabolism
by P450s has also been reported to influence the development of cross-resistance to
insecticides [17].

Overexpression of CYP9J28 and CYP4G16 mediates resistance to pyrethroids in Aedes ae-
gypti and Aedes albopictus, respectively [18,19]. Transcriptomic analysis of Bombyx mandarina
suggests that CYP306A mediates ecdysteroid production and insecticide metabolism [20].
Zhao et al. [21] reported that upregulation of CYP324A12, CYP321F3, and CYP9A68 expres-
sion may be involved in the development of resistance to triazophos in Chilo suppressalis.
The P450 gene CYP6ER1 in field populations of Nilaparvata lugens was significantly over-
expressed to induce resistance to trifloxystrobin and other traditional agrochemicals [22],
while the overexpression of CYP4C71 could metabolize imidacloprid in Laodelphax striatel-
lus [23]. In Plutella xylostella, expression of CYP321E1 and CYP6BG1 was upregulated in
strains resistant to permethrin and chlorantraniliprole, respectively [24].

In addition, RNA interference (RNAi)-based studies have identified several cases
of insecticide resistance involving P450s. For example, CYP6CX4 is connected with the
resistance to flupyrrolidone in Bemisia tabaci [25]; CYP6CY14, CYP6DC1, and CYP6CZ1 are
associated with Aphis gossypii resistance to acetamiprid [26]; CYP321A8, CYP321A9, and
CYP321B1 are responsible for Spodoptera frugiperda resistance to chlorantraniliprole [27]. In
Drosophila melanogaster, Cyp4g1, Cyp6g1, and Cyp12d1 play major roles in reducing DDT
sensitivity [28].

2.1. Cross Resistance

Cytochromes P450 have a wide range of substrates and, consequently, metabolic
resistance often causes insects to develop cross-resistance to other insecticides.

In southern Africa, CYP6AA1 in Anopheles funestus was found to mediate the metabolism
of various types of pyrethroids and dioxacarb [29], while the overexpression of CYP6Z1
is associated with cross resistance against pyrethroids and carbamates [30]. In Anopheles
gambiae, overexpression of CYP6P3 has been shown to be responsible for cross resistance to
pyrethroid and carbamate [31], and CYP6M2 is linked to cross resistance of pyrethroids
and organophosphates [32–35]. Lees et al. [36] found that pyrethroid-resistant strains of
A. gambiae could also metabolise complex type I inhibitors such as fenazaquin, pyridaben,
tolfenpyrad, and fenpyroximate. CYP9K1 can metabolise deltamethrin and pyriproxyfen
but not bendiocarb [37]. Zhou et al. [38] found that CYP3A overexpressed in Sogatella
furcifera under the stress of imidacloprid, deltamethrin, and triazophos. In Sichuan, China,
S. furcifera was found to be cross-resistant to chlorpyrifos and sulphur-ethyl, mostly due
to its overexpression of CYP6ER4 [39]. The overexpression of CYP6ER1 is associated
with resistance of N. lugens to the first three generations of neonicotinoid insecticides
(imidacloprid, thiamethoxam, and dinotefuran) [40], and was subsequently found that
the overexpression of this gene is cross-resistant to nitenpyram, clothianidin, sulfoxaflor,
cycloxaprid, ethofenprox, and isoprocarb [41–43]. For B. tabaci, researchers found that
CYP6CM1 could metabolise neonicotinoid insecticides and pymetrozine [44,45], and its
high expression also showed resistance to plant defence metabolites, such as nicotine [46].
In Xinjiang, China, four P450 genes in B. tabaci were found to be resistant to imidacloprid
and acetamiprid [47]. In China, a chlorantraniliprole-resistant strain of P. xylostella is also
resistant to flubendiamide, cyantraniliprole, and abamectin [48]. In addition, P. xylostella
in central China is highly resistant to indoxacarb and cross-resistant to metaflumizone,
beta-cypermethrin, and chlorfenapyr [49].

Asymmetric cross-resistance was first proposed for Pectinophora gossypiella. The labor-
atory-selected P. gossypiella strain resistant to Cry2Ab is cross-resistant to Cry1Ac, but the
laboratory-selected strain resistant to Cry1Ac showed no cross resistance to Cry2Ab [50].
This phenomenon is referred to as “asymmetric cross-resistance” [50]. Helicoverpa armigera
also exhibits asymmetric cross-resistance for these two toxins. The asymmetric cross resis-
tance of P. xylostella is reflected in a tebufenozide-resistant strain that is cross-resistant to
abamectin, while an abamectin-resistant strain is not resistant to tebufenozide [51]. CYP4M7
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and CYP6K1 induce tebufenozide and abamectin resistance, respectively. The selection
of tebufenozide enhanced CYP4M7 expression as well as CYP6K1 expression; conversely,
results from a resistance experiment of an anti-abamectin strain to tebufenozide showed
that CYP6K1 expression was increased, whereas CYP4M7 expression was downregulated
with no cross-resistance observed [52].

2.2. Evolutionary Adaptability

Evolutionary adaptability is also known as biological adaptability. Even under the
stress of the same insecticides in different populations of the same insects, the resistance-
related cytochrome P450s evolutionarily selected differ. A specific P450 may be resistant to
multiple insecticides, or two or more P450s may be resistant to one insecticide. Therefore,
resistance is a characteristic of biological evolution.

RNA sequencing transcription profile analysis of mosquitoes throughout Africa found
that CYP9K1 is highly overexpressed in Uganda [53], CYP6P5 and CYP6P4a/b are both
overexpressed in Ghana, CYP325A, CYP9J11 and CYP6N1 is overexpressed in Cameroon,
while CYP315A1 is overexpressed in all locations except Malawi [54,55]. Subsequently, ex-
cessive transcription of P450s were also found in resistant populations of A. aegypti [56], and
CYP9J28 and CYP6BB2 were frequently detected in research on pyrethroid resistance [57].
Conversely, CYP9J28 showed the highest resistance to pyrethroids in Pakistan [19], while
CYP9J32 showed the highest resistance to deltamethrin and cypermethrin in Thailand, Mex-
ico, and Vietnam, CYP9J24 and CYP9J26 had the highest resistance to pyrethroids in Latin
America, and CYP9M6 and CYP4D24 mediates resistance to pyrethroids in Asia [58,59].
Different Drosophila strains utilize different genes in DDT resistance. Canton-S (susceptible
strain) and 91-R (resistant strain) are mediated by Cyp6g1, and Cyp6a2, while Cyp12d1
is only overexpressed in 91-R and Wisconsin (resistant strains) [60–62]. CYP6AY1 and
CYP6ER1 are the main reasons for N. lugens and S. furcifera resistance to imidacloprid [63],
among which, CYP6AY1 can effectively metabolise imidacloprid, and the expression of
CYP6ER1 increases under the influence of imidacloprid [64]. The resistance of L. striatel-
lus to deltamethrin is related to the oxidative and detoxification effects of CYP6FU1 and
CYP439A1v3 [65,66]. Overexpression of multiple P450 genes is associated with deltamethrin
resistance of H. armigera in field lines with different resistance levels in West Africa [67],
and the high-level of resistance in H. armigera from different field strains in northern China
to fenvalerate is also related to multiple P450 genes, as CYP332A1, CYP6B7, and CYP9A12
were found to be overexpressed in all field strains [68–70]. Shi et al. [71] found that all
members of the CYP6AE subfamily, except CYP6AE20, could effectively convert fenvalerate
to 4′-hydroxyfenvalerate.

3. Molecular Mechanisms of P450-Mediated Insecticide Resistance

Increased cytochrome P450 activity is associated with the development of insect re-
sistance, as reflected by the increased enzyme expression due to new gene evolution or
promoter region mutations affecting transcription, changes in the amino acid sequence
of protein-coding regions, or changes in enzyme functions due to post-translational mod-
ifications such as phosphorylation changes, usually generated under selective pressure
from insecticides.

3.1. Upregulation of Enzyme Expression

Increased enzyme expression can be attributed to changes in the gene copy number
caused by the evolution of new genes, such as through gene amplification or gene duplica-
tion, and the influence of cis-acting elements and trans-regulatory factors of transcriptional
regulation in the promoter region.

In Drosophila virilis, which has multiple copies of Cyp6g1, one copy confers DDT
resistance while another confers nitenpyram resistance, which indicates that the protein
sequence differences between the copies after replication affect enzyme activity [72]. The
CYP6A5 and CYP6A5v2 alleles from the pyrethroid-resistant strain of Musca domestica have
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extremely high amino acid sequence similarities [73]. Overexpression of the CYP6CM1 gene
in B. tabaci is closely correlated with imidacloprid resistance, while carriers of the r-Q allele
(CYP6CM1 allele of B. tabaci resistance Q biotype) are more resistant to imidacloprid [74].

Cases of P450 gene amplification are limited; both heterogeneous replication and homo-
geneous amplification of CNV (copy number variation) in A. gambiae mediates insecticide
resistance [75,76]. However, gene amplification is more common in A. aegypti. For example,
CYP9M6 gene amplification has been found in permethrin-resistant populations [75,77]. In
Laos, the CNV of CYP6BB2 and CYP6P12 in A. aegypti may be related to pyrethroid and
DDT resistance [78], while the overexpression of CYP9J in pyrethroid-resistant strains in
the Caribbean is partly attributed to gene amplification [79].

Transcriptional regulation, the most important mechanism involved in the regulation
of enzyme expression in eukaryotes, is mostly achieved through complex interaction of
basal transcriptional elements (BTF), cis-acting elements and the trans-regulatory factors
(Figure 2). The increase in Cyp6g1 gene expression in D. melanogaster correlates with the
long-terminal repeat of the Accord retrotransposon inserted upstream of the transcription
initiation site [80–82], and it was later discovered that the induction of Cyp6a8 by caffeine,
phenobarbital (PB) and DDT was mediated by cis-acting elements located in -11/-199
DNA [83], while the transcription factor Nrf2/Maf binding site in the core sequence of
5′-promoter enhanced the constitutive transcription of Cyp6a2 and raised the resistance to
DDT [84,85]. A novel alternative splicing site in the 5′-untranslated region of CYP6AY1 in N.
lugens leads to increased activity of the CYP6AY1 promoter and causes enhanced resistance
to buprofezin and imidacloprid [86], and then it was found that an alternative 5′-UTR
in CYP6ER1 confers resistance to imidacloprid in N. lugens, and this newly discovered
transcript used different transcription initiation sites in the alternative promoter compared
with the previous transcript [87,88]. The promoter activity of CYP6FU1 in a deltamethrin-
resistant strain of L. striatellus is upregulated via multiple cis-acting elements [89]. The
induction of H. armigera CYP321A1 also requires multiple cis-acting elements to be medi-
ated [90]. Subsequently, the cis-acting elements of CYP6B7 induced by 2- tridecanone in
the CYP6B7 promoter were found to be located between −280 and −257 bp [91]. CncC
and Maf transcription factors are not only responsible for P450-mediated fenpropathrin
metabolism in Tetranychus cinnabarinus [92], but also mediate the P450-related resistance to
imidacloprid in potato beetles, Leptinotarsa decemlineata [93]. In addition, the overexpression
of four CYP (CYP6BB2, CYP6Z8, CYP9M5, and CYP9M6) genes in A. aegypti is caused by
trans-regulatory factors [94]. CYP6D1 in M. domestica is also regulated by a trans-regulatory
factor, and its expression is induced in response to the prototype P450 inducer phenobarbi-
tal (PB) in strains susceptible to insecticides [95]. The transcription factor FTZ-F1 and the
cis-acting elements are involved in the overexpression of CYP6BG1 in chlorantraniliprole
resistant P. xylostella, and the cis-acting element may be located in the −680 downstream
region of the promoter [96].
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Figure 2. A speculative model of P450 gene regulating insecticide resistance in resistant strains.
The interaction of P450 gene in resistant strains with basic transcription factor (BTF) and cis-acting
element(cis- element) or trans-regulatory factor (TRF) in insecticide resistance [97].

In addition, it has been reported that some insecticides are activated upon metabo-
lization by P450s, therefore the downregulation of the expression of these CYPs leads to
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resistance. Some P450 enzymes have been reported to mediate the oxidation of organophos-
phate insecticides into more toxic structures that inhibit acetylcholinesterase. In the presence
of organophosphate insecticides, it could be a good strategy for the survival of insects to
reduce the expression levels of CYP genes [98]. Subsequently, in Chironomus tentans, the
chlorpyrifos activity is increased due to the enhancement of the oxidation process from
chlorpyrifos, to chlorpyrifos oxygenation via CtCYP6EX3. When compared with the control
larvae, the mortality of C. tentans larvae to chlorpyrifos and the mixture of atrazine and
chlorpyrifos decreased by 24.1% and 20.5%, respectively, after the expression of CtCYP6EX3
was partially inhibited (53.1%) [99].

However, the production of new active P450s can also lead to resistance. Multiple
recombination at two P450 (CYP337B2 and CYP337B1) sites led to the overall resistance of H.
armigera to pyrethroids [100]. The resistance of the Australian H. armigera strain to fenvaler-
ate originates from the special P450 chimeric enzyme CYP337B3 produced by an unequal
cross between two parental P450 genes, CYP337B2 and CYP337B1, that can metabolize
fenvalerate to 4′-hydroxyfenvalerate, which is not toxic to susceptible larvae. The presence
of CYP337B3 in this strain of resistant insects alone confers resistance to fenvalerate [101].
In addition, this mechanism also exists in the cypermethrin-resistant strains of Pakistan.
CYP337B3 has independently evolved twice through unequal crosses between CYP337B2
and two different CYP337B1 alleles, with resistance to cypermethrin being approximately
7-fold [102]. In Brazil, chimeric CYP337B3 is the source of pyrethroid resistance in the
Brazilian H. armigera population [103]. However, in the Chinese H. armigera population,
P450-mediated fenvalerate resistance level variation is unrelated to the CYP337B3 geno-
type [104]. In addition, polymorphic Cyp12a4/Cyp12a5 chimaeras were only found in
Drosophila and are involved in insecticide resistance [105].

3.2. Changes of Enzyme Functions

P450-mediated insecticide resistance may also be related to changes in the amino acid
sequence in the protein-coding regions or post-translational modifications of the protein,
such as phosphorylation, thereby enhancing the activity of the related detoxifying enzymes.

The protein truncation of three P450s (Cyp6a2, Cyp316a1, and Cyp6a14), resulting from
fixed non-synonymous mutations, has been identified in the D. melanogaster strain resistant
to DDT [106], and three point mutations of Cyp6a2 are considered to be responsible for
1,1,1-trichloro-2,2-bis-(4′-chlorophenyl)ethane (DDT) resistance in the RDDTR strain of D.
melanogaster [107]. Three amino acid changes in the CYP6P9b resistance alleles in Anopheles
cause the pyrethroid resistance mutations [55,108]. In addition, the polymorphism analysis
of CYP6Z1 and CYP6Z3 showed 19 amino acid changes in CYP6Z1 and 9 amino acid
changes in CYP6Z3, which identified potential mutations related to pyrethroid resistance
in Anopheles [109]. It has recently been discovered that the overexpression of a variant
CYP6ER1 with amino acid substitutions and deletions in N. lugens populations in East and
Southeast Asia is associated with imidacloprid resistance [110].

Insect P450s-mediated resistance is also related to phosphorylation regulation, a type of
protein post-translational modification (PTM) [111]. Phosphorylation is involved in almost
all biological processes [112]. In eukaryotic cells, approximately one-third of the proteins are
modified by phosphorylation. The addition or removal (dephosphorylation) of phosphate
groups may activate or inactivate the target protein, thereby regulating the related biological
activities [113,114]. Previous studies have shown that phosphorylation is involved in almost
all life processes including signal transduction, cell membrane function, mitochondrial
function, transcription, cell cycle [115–118]. However, there are not many reports on
insect phosphorylation-mediated resistance. One example is known for regulation of
acetylcholine receptor (nAChR) signaling, where resistance to imidacloprid is regulated
by intracellular phosphorylation [119]; P. xylostella-specific PKA phosphorylation sites
may regulate insect ryanodine receptor function [120]. There are limited cases of P450
regulation. An example is that, when Bombyx mori is exposed to chlorantraniliprole, Akt in
the PI3K pathway in vivo may decrease Keap1 expression and increase CncC expression
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due to dephosphorylation.Thus, the P450 enzyme activity downstream of the pathway
is significantly increased, thereby enhancing detoxification [121]. CYP6CM1-mediated
imidacloprid resistance in B. tabaci directionally activates CREB protein through ERK and
p38 factor phosphorylation in the MAPK pathway, and subsequent binding to the CRE
site results in the upregulation of the expression of this gene [122]. Recently, it has been
reported that this pathway can also mediate the differential expression of downstream
genes through the phosphorylation of related proteins in P. xylostella, making it highly
resistant to Bacillus thuringiensis (Bt) insecticidal protein [123].

4. Effector Molecules and Signal Pathways of P450s Expression Regulation

Recently, to better understand the detoxification and metabolism of P450s, research
has shifted from initial functional identification to upper and lower regulation cascade
reactions. An increasing number of signal pathway regulation pathways and important
effector molecules in the pathways have been discovered, which provided new ideas to
improve our understanding of the potential resistance mechanisms of insects and to help
formulate more specific and efficient control measures. The following is a summary of the
reported regulatory pathways (Figure 3).

Agriculture 2022, 12, 53 7 of 19 
 

 

discovered that the overexpression of a variant CYP6ER1 with amino acid substitutions 
and deletions in N. lugens populations in East and Southeast Asia is associated with 
imidacloprid resistance [110]. 

Insect P450s-mediated resistance is also related to phosphorylation regulation, a 
type of protein post-translational modification (PTM) [111]. Phosphorylation is involved 
in almost all biological processes [112]. In eukaryotic cells, approximately one-third of 
the proteins are modified by phosphorylation. The addition or removal 
(dephosphorylation) of phosphate groups may activate or inactivate the target protein, 
thereby regulating the related biological activities [113,114]. Previous studies have 
shown that phosphorylation is involved in almost all life processes including signal 
transduction, cell membrane function, mitochondrial function, transcription, cell cycle 
[115–118]. However, there are not many reports on insect phosphorylation-mediated 
resistance. One example is known for regulation of acetylcholine receptor (nAChR) 
signaling, where resistance to imidacloprid is regulated by intracellular phosphorylation 
[119]; P. xylostella-specific PKA phosphorylation sites may regulate insect ryanodine 
receptor function [120]. There are limited cases of P450 regulation. An example is that, 
when Bombyx mori is exposed to chlorantraniliprole, Akt in the PI3K pathway in vivo 
may decrease Keap1 expression and increase CncC expression due to 
dephosphorylation.Thus, the P450 enzyme activity downstream of the pathway is 
significantly increased, thereby enhancing detoxification [121]. CYP6CM1-mediated 
imidacloprid resistance in B. tabaci directionally activates CREB protein through ERK 
and p38 factor phosphorylation in the MAPK pathway, and subsequent binding to the 
CRE site results in the upregulation of the expression of this gene [122]. Recently, it has 
been reported that this pathway can also mediate the differential expression of 
downstream genes through the phosphorylation of related proteins in P. xylostella, 
making it highly resistant to Bacillus thuringiensis (Bt) insecticidal protein [123]. 

4. Effector Molecules and Signal Pathways of P450s Expression Regulation 
Recently, to better understand the detoxification and metabolism of P450s, research 

has shifted from initial functional identification to upper and lower regulation cascade 
reactions. An increasing number of signal pathway regulation pathways and important 
effector molecules in the pathways have been discovered, which provided new ideas to 
improve our understanding of the potential resistance mechanisms of insects and to help 
formulate more specific and efficient control measures. The following is a summary of 
the reported regulatory pathways (Figure 3). 

 
Figure 3. Model of the theoretical signalling pathway for insecticide resistance induced by insect 
P450s. Some insecticides can be sensed by the membrane receptor GPCR, which then stimulates 

Figure 3. Model of the theoretical signalling pathway for insecticide resistance induced by insect
P450s. Some insecticides can be sensed by the membrane receptor GPCR, which then stimulates
downstream effectors to bind to specific sites in the cytoplasm and nucleus that trigger compensatory
responses that affect P450 activity; other insecticides can diffuse into the cell and be transferred to the
nucleus by NR or AhR in the cytoplasm binds to nuclear receptor sites. The black arrow indicates
the cascade of effectors in the signalling pathway. AKH, adipokinetic hormone; GPCRs, G protein-
couple receptors; ROS, reactive oxygen species; Keap1, Kelch-like ECH-associated protein 1; CncC,
Cap‘n’ Collar isoform C; MafK, Musculoaponeurotic fibrosarcoma K; ARE, Antioxidant responsive
element; PI3K, phosphoinositide-3-kinase; PDK, 3-phosphoinositide-dependent kinase; Akt, protein
kinase B; Gas, G protein alpha unit which stimulates adenyl cyclase; AC, adenyl cyclase; cAMP,
cyclic adenosine monophosphate; PKA, protein kinase A; TF, Transcription factor; XRE, xenobiotic
response element; MAPK, mitogen-activated protein kinase; ERK, extracellular regulated protein
kinase; P38, P38 mitogen-activated protein kinase; CREB, c-AMP response element binding protein;
-P, phosphorylation; CRE, cAMP response element; NR, nuclear receptor; AhR, aryl hydrocarbon
receptor; Hsp90, heat shock protein 90; ARNT, aryl hydrocarbon receptor nuclear translocator;
XRE-NR, xenobiotic response element-nuclear receptor; XRE-AhR, xenobiotic response element-aryl
hydrocarbon receptor.
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4.1. GPCRs Pathway

G protein-coupled receptors (GPCRs) are an important family of transmembrane pro-
teins that transmit extracellular ligand signals to specific intracellular signalling pathways
through the cell membrane thus playing an important role in the regulation of insect biol-
ogy, physiology, and behaviour. Investigation of GPCRs is profviding new directions for
insecticide development [124–127].

Ma et al. [128] detected the gene expression profiles of three M. domestica strains and
found that when compared with the control strain, five GPCR genes were upregulated
in N-IRS (imidacloprid-resistant near-isogenic strains) and eight in IRS (imidacloprid-
resistant field population). The transgenic strains of D. melanogaster with GPCR genes
have significantly upregulated tolerance to imidacloprid and increased expression of the
cytochrome P450 genes [128]. Cao et al. [129] cloned the full length of a methylcellulose-
like GPCR gene (Ldmthl1) from Lymantria dispar and described the secondary and tertiary
structures of Ldmthl1. RNAi with Ldmthl1 leads to a decrease in the resistance of L. dispar
to deltamethrin and inhibits the expression of the downstream gene P450 [129]. Subse-
quently, Sun et al. [130] studied the physiological functions of L. dispar ocular albinism type
1 (OA1), and used transgenic technology to overexpress the gene of L. dispar (LdOA1) in
D. melanogaster. The deltamethrin exposure test showed that the increased tolerance of
transgenic D. melanogaster to deltamethrin when compared with the control strain was due
to the significant upregulation of LdOA1 expression and the upregulation of downstream
P450 genes, suggesting that LdOA1 might be involved in P450-mediated detoxification
metabolism [130]. NYD-OP7, a mosquito opsin gene within Culex pipiens pallens, mediates
moderate resistance to deltamethrin. Knockdown of NYD-OP7 and its downstream effector
phospholipase C (PLC) can increase the susceptibility of Cx. pipiens pallens to deltamethrin
and reduces the expression of P450 genes [131,132]. Li et al. [133] reported for the first time
that the expression of P450 genes is mediated by GPCR-related genes in Culex quinquefascia-
tus. When the four upregulated GPCR-related genes, (CYP6AA7, CYP9M10, CYP9J34, and
CYP9J40) in the high-resistance Cx. quinquefasciatus strain were inhibited by RNAi, the re-
sistance to permethrin was reduced [133]. Further research found that interference with the
rhodopsin-like GPCR gene in Cx. quinquefasciatus decreased the expression of two protein
kinase A genes (PKAs) and four resistance-related P450 genes, thereby decreasing perme-
thrin resistance [134]. Subsequently, the downstream effectors Gαs and ACs of the GPCR
signalling pathway could also reduce the expression of PKA and the resistant P450 genes
after interference, resulting in an increase in the sensitivity of Cx. quinquefasciatus to perme-
thrin, and revealing that the GPCR/Gαs/AC/cAMP- PKA-mediated regulatory pathways
control P450 gene expression in Cx. quinquefasciatus [135]. This regulatory pathway has also
been identified in field collected and laboratory-susceptible Cx. quinquefasciatus, indicating
the general role of the GPCR regulatory cascade in the susceptibility of Cx. quinquefasciatus
to insecticides, and its influence on the development of resistance through P450-mediated
detoxification [136]. Overall, these results demonstrate the universal regulatory role of
GPCR/Gαs/AC/PKA in insecticide resistance by showing that GPCR/Gαs/AC/PKA can
regulate the expression of P450 genes related to insecticide resistance in insects such as Cx.
quinquefasciatus, D. melanogaster, and S. frugiperda [137].

4.2. MAPK Pathway

The mitogen-activated protein kinase (MAPK) pathway is a conserved serine/threonine
protein kinase that responds to most extracellular stimuli and controls processes such as
cell proliferation, apoptosis, and movement [138]. In vitro and in vivo experiments using
B. tabaci by Yang et al. [122] showed that the ERK and p38 factors in the MAPK pathway
are activated by the phosphorylation of the 111 serine of the CREB protein. The CREB
protein then activates CYP6CM1 by binding to the CRE-like site in the promoter of this
gene, leading to an increase in its expression and resistance to imidacloprid [122].
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4.3. PI3K Pathway

The PI3K pathway mediates cell proliferation, survival, and signal transduction
through the phosphorylation of multiple substrates, including related kinases, signal
proteins, and transcription factors [139]. Mao et al. [121] continuously fed B. mori larvae
with chlorantraniliprole-impregnated mulberry leaves and found that the transcription
levels of PI3K, PDK, Akt, CncC, and Keap1 in the PI3K signalling pathway were signifi-
cantly upregulated. However, Akt was inhibited at the protein level, which decreased the
expression of Keap1 and increased that of CncC and P450 enzyme activity downstream of
the pathway [121].

4.4. CncC Pathway

Drosophila Nrf2 orthologous CncC is the central regulator of the detoxification reaction
of heterologous organisms. Changing the operation of CncC or its negative regulator Keap1
will lead to the expression of xenobiotic-inducible genes; interruption of Keap1 function
in any major metabolic organ will lead to significant resistance to pharmaceuticals [140].
When Spodoptera litura was exposed to lambda-cyfluthrin, P450 activity and CYP6AB12
transcription levels increased. Double-stranded RNA (dsRNA) injection of piperonyl
butoxide (PBO) inhibits the activity of P450s and silences CYP6AB12, reducing the tolerance
of larvae to lambda-cyfluthrin. Lambda-cyhalothrin exposure induced the expression of
CncC and Maf and increased the content of hydrogen peroxide and activity of antioxidant
enzymes. Intake of the reactive oxygen species (ROS) scavenger N-acetylcysteine can
reduce the accumulation of HO, inhibit the expression of CncC, Maf, and CYP6AB12,
and increase the sensitivity of larvae to lambda-cyfluthrin. Lambda-cyhalothrin has been
shown to induce cytochrome P450 CYP6AB12 by causing ROS bursts and activating the
CncC pathway in S. litura [141]. Studies have also shown that the anti-stress response
of insects induced by insecticides is mediated by adipokinetic hormones (AKHs) [142].
CYP6ER1 and CYP6AY1 confer resistance to neonicotinoid imidacloprids in N. lugens,
and the neuropeptide adipokinetic hormone (AKH) negatively regulates the expression
of CYP6ER1 and CYP6AY1 and inhibits imidacloprid resistance by inhibiting P450 gene
expression. After RNAi and AKH peptide injection, exposure to imidacloprid inhibited
the AKH cascade and cause a burst of ROS, but activated the effectors CncC and MafK to
induce the expression of CYP6ER1, but the pathway of ROS-mediated CYP6AY1 expression
is still unknown [143].

4.5. Nuclear Receptors

Nuclear receptors (NRs) are ligand-dependent transcription factors (TFs) widespread
in various organisms. Typically, insects contain 21 genes that encode nuclear receptors.
As transcription regulators, they mediate insect development, which has been intensively
studied in the model organism D. melanogaster [144]. Increasing evidence has shown that
the resistance of insects to synthetic insecticides is regulated by nuclear receptors. hormone
receptor 96 (HR96) regulates phenobarbital induction of M. domestica P450 CYP6D1 in
Drosophila S2 cells [145] and the basal expression of DDT metabolism by CYP6G1 and
GSTE1 in D. melanogaster [146]. Lu et al. [147] used RNAi technology to interfere with HR83
in N. lugens and found that the expression of four uridine diphosphate glycosyltransferase
(UGT) genes, three P450 genes, and four carboxylesterase (CarE) genes were significantly
reduced, and the resistance to chlorpyrifos was weakened, indicating the phenomenon of
hormone receptor 83 (HR83) mediated resistance. Meanwhile, Cheng et al. [148] discovered
that inhibiting hepatocyte nuclear factor 4 (HNF4) could significantly upregulate the
expression levels of UGT-1-7, UGT-2B10, and CYP6ER1, and improve the resistance of N.
lugens to imidacloprid. In addition, the P8 nuclear receptor gene of Tetranychus urticae
responds to the stress caused by exposure to acaricides. RNAi experiments have shown
that the P8 nuclear receptor regulates the activity of P450 enzymes, and that mites are
sensitive to acaricides [149]. In P. xylostella, the orphan nuclear receptor FTZ-F1 mediates
the expression of CYP6BG1, which is resistant to chlorantraniliprole [96].
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Aromatic hydrocarbon receptors are ligand-activated transcription factors that belong
to the nuclear receptor superfamily and are related to HSP90, a molecular chaperone
in the cytoplasm [150]. The AhR/ARNT complex can alter transcription by binding to
homologous response elements or other transcription factors [151]. The AhR/ARNT
pathway in insects has been intensively studied in the CYP6B1 and CYP6B4 promoters of
Papilio polyxenes and Papilio glaucus [152–154]. It has also been reported that the tolerance
of A. gossypii to gossypol and spirotetramat underlying CYP6DA2, and, AhR and ARNT
mediate the regulation of CYP6DA2 [155]. It was also subsequently demonstrated that
AhR and ARNT conferred nicotinic adaptability to tobacco by Myzus persicae through the
synergistic regulation of the transcript levels of CYP6CY3 and CYP6CY4 [156].

5. Management of P450-Mediated Insecticide Resistance

The mechanisms underlaying insecticide resistance are complex, and over time, differ-
ent mechanisms increase the probability of resistance to multiple insecticides as a result of
high selective pressure. Therefore, appropriate resistance management strategies are re-
quired to overcome insect resistance [157]. Regarding the participation of P450s, the use of
pesticide synergists and RNAi-based technology seems to be the most promising approach.

Deployment of a mixture of insecticides with different modes of action to target pests
improves the efficacy. The combined use of bifenthrin and abamectin or spinosyn and
indoxacarb can significantly increase its toxic potency in insect field populations [158].
However, the combination of bifenthrin and chlorpyrifos showed similar effects when
using either of the two insecticides alone. In addition, the combination of insecticides may
lead to multiple resistances that are difficult to control, therefore, alternative strategies are
required. Piperonyl butoxide (PBO) has been used as an insecticide synergist, long before
its inhibitory effects on xenobiotic metabolising enzymes were known [159]. PBO has low
specificity for inhibiting P450s in many insects, which may explain its wide application.
However, since the P450s of some insects play a more important role in other physiological
process besides detoxification, exposure to PBO (or similar compounds) may have toxic
effects on useful insects. Therefore, it is advisable that we develop more specific insect
P450 inhibitors to further reduce the side effects on other insects while having a stronger
selective effect on pests.

The use of RNAi to trigger host-induced gene silencing (HIGS) is considered a po-
tential next-generation pest control strategy [160]. RNAi specifically targets the desired
pest species and enhances their sensitivity to phytotoxins and chemical pesticides [161,162],
including the expression of pest-targeted dsRNA in transgenic plants to control pest popu-
lations [163]. Transgenic tobacco plants have been created to express dsRNA transiently
against the dicer gene of the plant and the midgut gene of Manduca sexta larvae. The results
showed that the plant expressed longer CYP6B46 dsRNA, which mediates the inhibition of
target genes in the larvae and increases toxicity [164]. Similarly, the feeding of H. armigera
on cotton plants expressing H. armigera cysteine protease and P450 genes weakened the
barrier effect of the peritrophic matrix (PM), resulting in insects being more susceptible
to virus infection [165]. Silencing the CYP6B6 gene by expressing dsRNA in bacteria, and
using these bacteria to feed H. armigera larvae can increase larval mortality by 27% [166].
Differences in the efficiency of RNAi at the gene, tissue, and species levels, as well as the
lack of reliable dsRNA delivery methods, have limited the development and utilisation
of RNAi-based strategies for controlling herbivorous pests [167]. Another limitation is
that the cellular uptake process of dsRNA and systemic diffusion into the host can lead
to off-target effects [168]. New methods for constructing dsRNA, selection of target genes,
and technologies to enhance the stability of dsRNA are therefore underway, with the aim
of improving the efficiency of RNAi to improve pest management and provide improved
pest control [169].
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6. Summary and Prospects

This review comprehensively updates information about the involvement of P450s
in insecticide resistance, highlights latest findings of molecular mechanisms underlying
P450-mediated agrochemical resistance, and provides a reference for future research into
the mechanisms of insecticide resistance. The continuous development of bioinformatics
and functional research technologies has facilitated the investigation of cytochrome P450-
mediated insect resistance, and consequently, an increasing number of P450 genes have
been identified and analysed. However, since P450s are complex multifunctional enzyme
systems, most studies have been conducted at a descriptive level for metabolism or synergy
related to insecticide resistance, and only a few studies have investigated the molecular
mechanisms of gene actions. A deeper understanding of the resistance stability, cross-
resistance, and detoxification mechanisms of different insect P450s, as well as the insect-
resistant strains selected in the laboratory, will help to inhibit or at least slow down the
evolution of resistance in field populations of insects. In addition, there is a need to better
understand the P450s of beneficial insects, such as bees, to minimize the harmful effects
for them. With the discovery of the potential functions of different regulatory pathways in
insecticide resistance and their regulatory functions in the expression of resistance-related
P450 genes, future research should focus on the upstream and downstream factors of
regulatory pathways to identify the key regulatory factors and the interactions between
different regulatory pathways. To finally obtain a complete regulatory pathway for insect
P450 genes participating in the detoxifying metabolism, the inhibition of other factors
while inducing the P450s expression by insecticides also warrants further investigation.
Great progress has been made in overcoming resistance to insecticides by using insecticide
mixtures or HIGS. In the future, the determination of high-resolution crystal structures of
insect P450s would provide more accurate templates for the design of selective inhibitors
that specifically target pest P450s. Further development of pest-specific P450 inhibitors,
RNAi technology, and genetic-based strategies is expected to improve pest management in
a manner that is ecologically more acceptable, economically beneficial, and practical.
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