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Abstract: Climate change and farmland environmental pollution have put greater pressure on the
sustainability of agricultural production. Based on the provincial panel data of mainland China from
1978 to 2018, climate variables such as precipitation, temperature, and sunshine hours are included
into the input indicators, and agricultural non-point source pollution and carbon emissions are taken
as undesirable outputs, the agricultural production efficiency (APE) under the dual constraints of
climate change and the resource environment was estimated by the super slacks-based measure
(SBM)-undesirable model. On the basis of the trajectory of the imbalanced spatiotemporal evolution
of APE shown by Kernel density estimation and the standard deviational ellipse (SDE)–center of
gravity (COG) transfer model, the spatial convergence model was used to test the convergence
and differentiation characteristics of APE. Under the dual constraints, APE presents a “bimodal”
distribution with a stable increase in fluctuation, but it is still at a generally low level and does not
show polarization, among which the APE in the northeast region is the highest. The COG of APE
tends to transfer towards the northeast, and the coverage of the SDE is shrinking, so the overall spatial
pattern is characterized by a tendency of clustering towards the north in the north-south direction
and a tendency of imbalance in the east-west direction. APE has significant spatial convergence,
and there is a trend of “latecomer catching-up” in low-efficiency regions. The introduction of spatial
correlation accelerates the convergence rate and shortens the convergence period. The convergence
rate is the highest in the central and western regions, followed by that in the northeastern region,
and the convergence rate is the lowest in the eastern region. In addition, the convergence rate in
different time periods has a phase change. The process of improving the quality and efficiency of
agricultural production requires enhancing the adaptability of climate change, balancing the carrying
capacity of the resource environment, and strengthening inter-regional cooperation and linkage in
the field of agriculture.

Keywords: agricultural production efficiency (APE); climate change; resource environment;
standard deviational ellipse (SDE); center of gravity (COG); spatial imbalance; spatial convergence

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) showed in a special report
released in 2018 that 1.5 ◦C warming may be reached early [1], and that unless emissions
of carbon dioxide and other greenhouse gases are significantly reduced in the coming
decades, the 21st century global warming will exceed 1.5 ◦C or even 2 ◦C [2]. Climate
change has a natural and strong correlation with agricultural production and exerts a direct
and far-reaching impact on it. Meteorological factors such as temperature, precipitation,
and wind speed in climate change have already affected the growth and development
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of crops, planting structure, and product quality to different degrees [3–6], and caused
differences in the geographical and environmental adaptations of different crops growing.
The spatial-temporal heterogeneous impact of climate change on agricultural production
is mainly reflected in changes in the geographical constraints of agriculture [7,8]. In
China, the increase in temperature in the north is significantly higher than that in the
south, while the decrease in sunshine in the south is significantly greater than that in
the north, and precipitation also has the characteristic of “southern flood and northern
drought” [9]. Significant differences in meteorology have led to complex and distinct
regional adaptations in grain production, with different regions adapting differently to
meteorological changes [10], and climate warming also led to the expansion of suitable
planting areas for northern crops to higher latitudes and high altitudes [11]. Under the
constraints of climate change such as temperature and precipitation in different regions,
crop planting systems also show a differentiated regional distribution of wheat, maize, rice,
etc., and the planting maturity system has undergone an evolutionary distribution of three
crops a year to one crop a year from south to north.

As a basic industry of China, agriculture has made great achievements since the reform
and opening up, and the production value and output of agriculture have grown signif-
icantly. However, under the impact of climate change, agricultural production methods
need to be actively adjusted in order to achieve the sustainable development of agricul-
ture [12], and the key to this is to improve agricultural production efficiency (APE), so that
it can actively adapt to climate change. However, in the agricultural production process,
in addition to necessary factor inputs, the carrying capacity of the resource environment
also needs to be considered to satisfy the agricultural factor inputs and achieve the bal-
anced coordination of economic benefits and environmental benefits, so as to ensure the
sustainable development of agricultural production. Additionally, climate change poses
many uncertain risks to grain production, and different climatic factors such as precipi-
tation, temperature, and sunshine will have different effects on agricultural output, and
agricultural production faces the need to adjust adaptive production behavior according to
climate change [13], so it is necessary to consider the dual constraints of climate change and
the resource environment in the measurement of APE. Therefore, considering that climate
change is able to have a direct impact on agricultural production processes by affecting
changes in crop fertility processes, suitable planting areas, cropping systems, photosynthe-
sis, etc. [14], resources such as water, soil, light, and heat are the necessary material and
energy sources for crop growth, so this paper includes climate factors as input indicators in
the measurement system of APE. Specifically, focusing on agriculture in a narrow sense,
i.e., plantations, using production factors such as machinery, fertilizers, and pesticides,
and climate factors such as precipitation, temperature, and sunshine as input variables,
agricultural output as the desirable output, and agricultural pollution emissions as the
undesirable output, re-estimated APE under the dual constraints of climate change and the
resource environment, with the aim of being able to objectively evaluate the sustainability
of agricultural production within an integrated social-natural system. It further investigates
the imbalance of the spatiotemporal evolution of APE under the dual constraints; the trans-
fer characteristic, distribution trend, and regional differentiation of APE; whether there is
convergence. The investigation can facilitate a full and comprehensive understanding of
APE and its evolution law, as well as the inter-regional differences and convergence trend,
which can provide theoretical references for further rational enhancement of agricultural
production efficiency and sustainability of agricultural production in response to climate
change and resource environment adaptation.

2. Literature Review

The current application of APE measurement methods is quite mature, and relevant
methods, including data envelopment analysis (DEA), stochastic frontier analysis (SFA),
three-stage DEA, and the SBM-undesirable model, have been widely used [15–18]. With
the growing concern of agricultural ecological environment issues, agricultural non-point
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source pollution or agricultural carbon emissions as non-expectation outputs [19–21] was
gradually applied to models for more accurate APE estimation. However, most existing
research ignored the role of climate change on agricultural production. Gao [12] considered
climate change for the first time in the input-output indicators of APE measurement but
did not consider undesirable outputs of negative environmental externalities such as
environmental pollution emissions from farmland. This limitation was improved in the
present study to make the measurement system of APE more complete. In terms of the
spatiotemporal evolution characteristics of APE, Hou and Yao [22] constructed traditional
and spatial Markov transition probability matrices to explore the spatiotemporal evolution
characteristics of agricultural eco-efficiency in China and predict the trend of its long-term
evolution. Most previous research focused on the spatiotemporal dynamic evolution and
differentiation characteristics of APE by Kernel density estimation [23], global or local
Moran’s I of exploratory spatial data analysis (ESDA) series methods, or hot spot analysis
(Getis-Ord Gi*) [24–26] based on APE measured by DEA. However, little attention has been
paid to the imbalance of the spatiotemporal transfer of the center of gravity (COG) and
standard deviation ellipse (SDE) of APE, and therefore the spatial transfer dynamics of
APE have not been deeply understood.

The convergence test was first proposed by Barro and Sala-I-Martin [27] and was
widely used in convergence analysis of economic growth gap widening or narrowing, etc.
It can also be used to test whether the gap in APE between regions is narrowing. The
research on the convergence of production efficiency has gradually attracted the attention
of scholars. Early studies applied σ-convergence or β-convergence to test the convergence
of inter-provincial agricultural productivity [28–30]. Gao and Song [31] analyzed the spatial
autocorrelation of the technical efficiency of grain production through Moran’s I and Theil
index and measured the efficiency differences between functional areas of grain production.
However, the local spatial autocorrelation of efficiency was defined as spatial convergence
in Gao’s paper. Hou and Yao [32] introduced resource and environmental constraints into
the APE measurement model and considered the spatial effect for testing the convergence
of different regions and different periods through spatial β-conditional convergence. The
present study can be regarded as a continuation and improvement of Hou’s research.
Zhuang et al. [33] studied the convergence of efficiency of rural development in China and
showed that the regional development gap has been large for a long period of time.

Through literature combing, we have found that previous studies have achieved sub-
stantial achievements in the measurement of APE and the analysis of its spatiotemporal
evolution and convergence. Although recently some scholars have continuously started
to pay attention to the resource and environmental constraints of agricultural production,
there is still much room for the improvement and expansion of the research on APE. First,
considering the impact of climate change on crop growth and the negative environmental
externalities faced by agricultural production mentioned in the introduction, it is neces-
sary to incorporate climate change and resource and environmental constraints into the
evaluation index system of APE measurement. Second, although ESDA can analyze the
current situation of APE pattern and spatial change characteristics, it can only do that based
on the spatial pattern in a specific year, and it is difficult to comprehensively reflect the
changing trend and the transfer trajectory of APE. Third, the decline in exchange costs
has led to the increasingly frequent spatial flow and interaction of agricultural production
factors such as rural labor transfer and cross-area operation of machinery services, coupled
with the similar climatic characteristics among neighboring regions, the correlation among
neighboring regions and spillover effects of agricultural production is enhanced. Therefore,
it is necessary to introduce spatial effects into the convergence test of APE.

In view of the above considerations, this paper incorporates the dual constraints of
climate change and resource environment into the evaluation index system of APE based
on the panel data of 30 provinces in mainland China from 1978 to 2018 to gain an in-depth
and comprehensive understanding of the current level and changing trend of APE in China.
Firstly, the super-SBM model was applied to measure the APE under the dual constraints.
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Secondly, the imbalance of spatial transfer of APE was analyzed through the Kernel density
estimation (KDE) and SDE-COG transfer model. Finally, the spatial correlation effect was
introduced into the convergence test, and established a spatial econometric model to test
the overall convergence and the convergence in different regions and different periods and
explore the differentiation characteristics of APE.

3. Materials and Methods
3.1. Methods
3.1.1. Efficiency Measurement: Super-Efficiency SBM-Undesirable Model

Agricultural production processes are not only affected by climate change, but also
have negative externalities to the environment through excessive inputs and inefficient
use of chemicals such as fertilizers and pesticides. Usually, in the agricultural production
process, the economic benefit is the desirable output, while the farmland environmental
pollution caused by the excessive use of chemical products such as fertilizers, pesticides
and agricultural films and other chemicals is the undesirable output, which mainly in-
cludes agricultural non-point source pollution and agricultural carbon emissions in this
paper. The slacks-based measure (SBM) model, which considers undesirable outputs
(SBM-undesirable model), is a non-radial, non-angle efficiency measurement model first
proposed by Tone [34]. Compared with the traditional data envelopment model (DEA), the
SBM model can effectively address the “crowding” or “slack” phenomenon of input factors
caused by the radial and angular traditional DEA model. However, the SBM-undesirable
model, like the traditional DEA model, has difficulty in further distinguishing the efficiency
differences among efficient decision making units (DMUs) for DMUs with efficiency of 1.
Based on the SBM-undesirable model, Tone further defined the super-efficiency SBM-
undesirable model [35], which combines the advantages of the super-efficiency DEA model
and the SBM-undesirable model, and can effectively further compare and evaluate the
DMUs at the frontier.

Suppose there are n DMUs, each DMU includes input vector X ∈ Rm×n= (x1, · · · , xn),
desired output vector Yd ∈ Rr1×n= (yd

1, · · · , yd
n

)
, and undesirable output vector

Yu ∈ Rr2×n =(yu
1 , · · · , yu

n), m, r1, and r2 are the elements in the input matrix, desired output
matrix, and undesirable output matrix, respectively, where X, Yd, Yu are both greater than
0. Define the set of production possibilities (p) as: P = {(x, yd, yu)|x ≥Xλ, yd ≤ Ydλ,
yu ≥ Yuλ, λ ≥ 0}, λ is the weight vector [36]. ρ is the value of agricultural production
efficiency (APE).

The super-efficiency SBM-undesirable model is constructed as

Min ρ =

1
m

m
∑

i=1
(x/xik)

1
r1+r2

(
r1
∑

s=1
yd/yd

sk +
r2
∑

q=1
yu/yu

qk

) (1)



x ≥
n
∑

j=1, 6=k
xijλj; yd ≤

n
∑

j=1, 6=k
yd

sjλj; yd ≥
n
∑

j=1, 6=k
yd

qjλj;

x ≥ xk; yd ≤ yd
k ; yu ≥ yu

k

λj ≥ 0, i = 1, 2, · · · , m; j = 1, 2, · · · , n, j 6= 0;

s = 1, 2, · · · , r1; q = 1, 2, · · · , r2;

(2)

3.1.2. Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE) belongs to density mapping, which is essentially a
process of surface interpolation through discrete sampling points, that is, through a smooth
method, a continuous density curve is used instead of a histogram to better describe the
distribution pattern of variables. It is more accurate and better smoothed than histogram
estimation by virtue of its excellent statistical properties. Its specific basic principle is: KDE,
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as a non-parametric estimation method, can use continuous density curves to describe
the distribution pattern of random variables. We set the density function of the random
variable to be f(x), and for the random variable X with n independent identically distributed
observations, x1, x2, · · · , xn, respectively, x is their mean value. The estimate of the Kernel
density function is

f (x) =
1

nh

n

∑
i=1

K(
xi − x

h
) (3)

Among them, n is the number of study regions and h is the bandwidth.
K is a random kernel function, which is a weighting function or a smooth conversion

function, including Gaussian (Normal) kernel, Epanechnikov kernel, Triangular kernel,
Quartic kernel, and other types. It usually satisfies

lim
x→∞

K(x)·x = 0

K(x) ≥ 0
∫ +∞
−∞ K(x)dx = 1

supK(x) < +∞
∫ +∞
−∞ K2(x)dx < +∞

(4)

The choice of bandwidth determines the smoothness of the estimated density function.
The larger the bandwidth, the smaller the variance of the KDE and the smoother the density
function curve but the larger the estimated bias, and, conversely, the smaller the bandwidth,
the less smooth the density function but the higher the estimated accuracy. Therefore, the
optimal bandwidth must be chosen in a trade-off between the variance and bias of the
kernel estimate so that the mean square error is minimized. At this time, the corresponding
optimal window width h = cN−0.2 (c is a constant) [37]. In this paper, the kernel density
function of Gaussian normal-terminus distribution is used, and the window width is set
to h = 0.9SeN−0.2 (c = 0.9Se, Se is the standard deviation of observed values to the random
variables)

3.1.3. Standard Deviational Ellipse-Center of Gravity Transfer Model

Standard deviational ellipse (SDE) is an effective method that can accurately reveal the
overall characteristics of the spatial distribution of geographic elements [38,39]. It describes
the spatial distribution characteristics of geographic elements and their spatiotemporal
evolution process from a global and spatial perspective through a spatial ellipse that takes
the center, long axis, short axis, and azimuth as basic parameters [40]. SDE takes the
distribution COG of the geographical element as the center, i.e., mean center, the main
trend direction of the element distribution as the azimuth (the angle of clockwise rotation
of the long axis of the ellipse from due north), and the standard deviation of element in
the X and Y directions as the ellipse axis to construct the spatial distribution ellipse of the
geographical element. By the construction of the ellipse, SDE describes and elucidates the
spatial distribution characteristics of the geographical element, such as centrality, direction,
and spatial distribution pattern [41]. The center of the ellipse is the relative position of
the spatial distribution of an economic phenomenon in two-dimensional space and is also
the COG of spatial distribution. It can reflect the trajectory change and spatial transfer
characteristics of the COG of an economic phenomenon in a certain region so that the
development direction of the economic phenomenon can be understood more intuitively.
The calculation formula of major parameters of the SDE-COG transfer model is:

X =
n

∑
i=1

ωixi/
n

∑
i=1

ωi, Y =
n

∑
i=1

ωiyi/
n

∑
i=1

ωi (5)

σx =

√
n

∑
i=1

(ωix∗i cos θ −ωiy∗i sin θ)2/
n

∑
i=1

ω2
i , σy =

√
n

∑
i=1

(ωix∗i sin θ −ωiy∗i cos θ)2/
n

∑
i=1

ω2
i (6)
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tan θ =

( n

∑
i=1

ω2
i x∗2i −

n

∑
i=1

ω2
i y∗2i

)
+

√√√√( n

∑
i=1

ω2
i x∗2i −

n

∑
i=1

ω2
i y∗2i

)2

− 4
n

∑
i=1

ω2
i x∗2i y∗2i

/2
n

∑
i=1

ω2
i x∗i y∗i (7)

where (X, Y) is the coordinate of the COG of an economic phenomenon; (xi, yi) is the
spatial coordinate of the study region;

(
x∗i , y∗i

)
is the coordinate of each region relative

to the COG of the region; ωi is the weight and, in this paper, the concentration of grain
production; σxσy are the standard deviations along the x axis and y axis, respectively; θ is
the ellipse azimuth, which represents the angle formed by the clockwise rotation of the
long axis of the ellipse from the due north direction. In addition, we will calculate COG
and SDE under ArcGIS platform.

3.1.4. Spatial Convergence

This paper studies the convergence of APE changes under the dual constraints mainly
by the β-convergence test. β-convergence of APE exists if the efficiency of the low APE
region improves faster than that of the high APE region [27]. β-convergence can be divided
into absolute β-convergence and conditional β-convergence. In the present study, absolute
β-convergence assumes that different regions have the same resource endowments, pro-
duction conditions, income levels, technological equipment, etc., and that APE in different
regions will converge to the same steady-state as time evolves. In contrast, conditional
β-convergence does not assume homogeneity and represents that APE in different regions
will converge to their respective steady-state over time [42]. The traditional β-convergence
only shows convergence characteristics of APE evolving over time, while in the convergence
process, agricultural production in a region may be influenced by neighboring regions,
thus potentially leading to biased convergence conclusions. Thus, this paper introduces
spatial econometrics into β-convergence analysis and establishes a spatial β-convergence
model to test the absolute and conditional β-convergence characteristics of APE in each
province. The basic models of spatial econometrics include the spatial lag model (SLM)
and the spatial error model (SEM). The optimal model needs to be selected by test. The
specific models combined with β-convergence are

SLM : ln(Yi,t+1/Yi,t) = α + ρW ln(Yi,t+1/Yi,t) + β ln Yi,t + θ ln Xi,t + εi,t (8)

SEM : ln(Yi,t+1/Yi,t) = α + β ln Yi,t + θ ln Xi,t + ϕi,t; ϕi,t = ρWϕi,t + εi,t (9)

where θ is the estimated coefficient of each control variable Xi,t. The model is β-absolutely
convergent when θk takes 0, and is β-conditionally convergent when θk does not take
0. ln(Yi,t+1/Yi,t) denotes the logarithmic increase in agricultural productivity of the i-th
region in year t. ρ is the spatial effect coefficient. W is the spatial weight matrix. Since
it is difficult to portray the situation that two non-adjacent regions are still related in
economic, social, and ecological fields with 0–1 adjacency weight, this paper adopts the
geographical distance weight matrix W [43] constructed based on the inverse of the latitude
and longitude distance of the geometric center of the region and normalizes it. β is the
judgment coefficient of convergence. When β < 0, APE tends to converge; otherwise, it
tends to diverge. β = e−ηT − 1 with η being the convergence rate, which has a positive
correlation with β and T being the time span [44]. εi,t is a random error term and satisfies
εi,t ∼ i.i.d(0, δ2). ϕi,t is a spatially autocorrelated error term.

In addition, the convergence of APE will be done in Stata.

3.2. Core Variables and Data Sources
3.2.1. Core Variables of APE under Dual Constraints

APE under dual constraints is to obtain the largest possible agricultural output with
the least possible agricultural factor input and the least environmental cost under climate
change. This paper focuses on agriculture in the narrowest sense, namely a plantation.
The plantation is primarily an agricultural production sector that cultivates plant crops
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such as food crops, cash crops, and fodder crops. According to the availability of data
and the consistency of statistical caliber, the input indicators of APE include traditional
agricultural elements such as land, labor, mechanical power, irrigation, fertilizers, and pes-
ticides [19,21,24], and climate indicators such as precipitation, temperature, sunshine hours
are incorporated into the input factors. The output indicators include total agricultural
output value and total grain production as desirable output, and agricultural non-point
source pollution emissions and agricultural carbon emissions as undesirable output.

For undesirable output, agricultural non-point source pollution is estimated by the
amount of fertilizer loss, pesticide residues, and agricultural film residues, where the pollu-
tant indicators for fertilizer loss accounting are total nitrogen (TN) and total phosphorus
(TP), the pollution units are three types of nitrogen fertilizer, phosphate fertilizer, and
compound fertilizer, and the pollution unit emission coefficient is equal to the pollution
production coefficient multiplied by the fertilizer loss rate, the TN pollution production co-
efficients of nitrogen fertilizer, phosphate fertilizer, and compound fertilizer (n-p-K nutrient
ratio of 1:1:1) are 1, 0, and 0.33, and TP pollution production coefficients are 0, 0.44, and
0.15, respectively [45]. The coefficients of TN pollution production for n, p, and compound
fertilizers (n-p-K nutrient ratio of 1:1:1) are 1, 0 and 0.33, respectively, and the loss rate of
fertilizer in each region is referred to the study of Lai [46], and the sum of TN and TP are
the amount of fertilizer use. The accounting formula for pesticide residues is pesticide
use amount × pesticide ineffective utilization coefficient, and the accounting formula
for agricultural film residues is agricultural film use amount × agricultural film residue
coefficient, these two coefficients of pollution emissions refer to the study of Wu [47] and
the “First National Pollution Census: Manual of Pesticide Loss Coefficient and Agricultural
Film Residue Coefficient”, and take into account the differences of regional cultivated land
topography. Agricultural carbon emissions include six types of direct or indirect carbon
emission sources, such as fertilizers, pesticides, agricultural films, agricultural diesel, irriga-
tion power and water consumption, and tillage loss, etc. Emission coefficients are estimated
with reference to relevant literature [16,48].

The constructed index system of APE under dual constraints is shown in Table 1.

Table 1. APE index system under dual constraints.

Indicators Variables Variable Description

Basic Input
Elements

Land Total crop sown area/khm2 It reflects the actual area cultivated in
agricultural production

Labor Agricultural practitioners/104 people

Primary industry employees × (total
agricultural output value/total agricultural,

forestry, animal husbandry and fishery output
value)

Mechanical power Total power of agricultural
machinery/104 kW

It is the sum of the power of various machines,
including tillage machinery, irrigation and

drainage machinery, harvesting machinery, etc.

Irrigation water Effective irrigated area/khm2 Water for agriculture is mainly used for
irrigation

Fertilizer Amount of fertilizer use/104 t (Purity) Fertilizer, pesticide, agricultural film, diesel
fuel, and other inputs are the main sources of

pollution in the agricultural production process

Pesticide Amount of pesticide use/104 t
Agricultural film Amount of agricultural film use/104 t

Energy Agricultural diesel use/104 t
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Table 1. Cont.

Indicators Variables Variable Description

Climate
Indicators

Precipitation Average annual precipitation extracted
based on GIS/mm

It is the depth of accumulation on the
horizontal plane without evaporation,

infiltration and loss

Temperature Average annual temperature extracted
based on GIS/◦C

It is the air temperature measured in the field
under air circulation and not under direct

sunlight

Sunshine hours Sunshine hours extracted based on
GIS/h

It is the time of the day when the direct rays of
the sun hit the ground

Desirable
Output

Economic output Total agricultural output value/billion
yuan

Converted to 1978 constant prices based on
CPI index to remove the effect of price changes

Physical output Grain yields/million tons Total regional year-end grain production

Undesirable
Output

Pollution emissions Agricultural non-point source pollution
emission/104 t

The total amount of fertilizer loss, pesticide
residues and agricultural film residues

Carbon emissions Agricultural carbon emissions/104 t Reference to related literature [16,48]

3.2.2. Data Sources

The research sample of this paper is 30 provinces (autonomous regions and mu-
nicipalities directly under the central government) in mainland China, Tibet, and Hong
Kong, Macao and Taiwan do not participate in the empirical study, and the time span is
1978–2018 since the reform and opening up. The data of variables involved in the paper
were obtained from China Rural Statistical Yearbook, China Agricultural Statistics, Agricultural
Statistics of New China in the Past Fifty Years, provincial and municipal statistical yearbooks
and 60-year statistics, the data website of National Bureau of Statistics (data.stats.gov.cn
accessed on 10 January 2022), and some missing data were made up by interpolation.
Among them, the data of Chongqing before 1997 and Hainan before 1988 were obtained
through Chongqing Statistical Yearbook and Hainan Statistical Yearbook, and adjusted the data
of Sichuan and Guangdong for the corresponding years.

The data of climate indicators are obtained from the “China Surface Climate Data
Annual Value Data Set” of the Meteorological Data Center of China Meteorological Admin-
istration (data.cma.cn accessed on 10 January 2022), which is a data set of annual values of
climate information since 1951 for 613 basic benchmark ground meteorological observation
stations and automatic stations in China, and statistics of the average value of each province
over the years.

According to the division of the National Bureau of Statistics, this paper divides the
country into four regions: eastern, central, western, and northeastern (eastern region in-
cludes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,
and Hainan; central region includes Shanxi, Anhui, Jiangxi, Henan, Hubei and Hunan;
western region includes Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yun-
nan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang; northeastern region includes
Liaoning, Jilin and Heilongjiang).

In addition, the spatial coordinate system in this paper is Krasovsky_1940_Albers.

4. Results
4.1. The Measurement and Distribution Dynamics of APE in China

After measuring and calculating the APE of 30 provinces in China from 1978 to
2018 under the dual constraints of climate change and resource environment (hereafter
referred to as under the dual constraints), the average values of each year were calculated
in order to compare and analyze different regions (Figure 1). It can be seen that during
1978–2018, the evolution of APE under the dual constraints has the following characteristics:
(1) The overall APE in China is at a low level, and there is still much room for efficiency
improvement in agricultural production, which requires more efficient use of production
factors such as mechanization and more adaptation of planting systems to climate change.

data.stats.gov.cn
data.cma.cn
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In terms of the change in different periods, due to the influence of early unsustainable
production inputs and vulnerability caused by climate fluctuations, although APE shows a
rising trend, the change process is in fluctuation, and the average APE is less than 0.8 in
most years. The overall APE shows a trend of first declining and then rising, with the
year 2000 as the dividing point; the fluctuation mainly occurs during 1978–2000. After
2000, APE shows a stable, rising trend and has exceeded 0.8 since 2012. (2) In terms of
changes in different regions, the northeastern region has the highest efficiency. With the
year 2000 as the dividing point, the ranking of APE during 1978–2000 is northeastern >
western > eastern > central; the difference between regions roughly shows a trend of first
narrowing, then widening, and then narrowing again. During 2000–2018, the APE ranking
is northeastern> eastern> western> central (in most years). The ranking of the eastern
region is rising, and the gap between the central and western regions and the eastern region
is gradually narrowing.

Figure 1. The trend of APE under dual constraints during 1978–2018.

To further explore the differences in APE clustering evolving over time among
provinces, a non-parametric Kernel density function of Gaussian distribution [49] was
used, and six years, 1978, 1986, 1994, 2002, 2010, and 2018, were selected as observation
time points for Kernel density estimation to obtain the distribution status at different time
points (Figure 2). The height and width of the peak reflect the degree of agglomeration
and the magnitude of differences in each province, respectively, and the number of peaks
reflects the degree of polarization [50]. APE under dual constraints shows an overall “bi-
modal” distribution from left to right and does not show polarization. It generally shows
an upward trend but also has fluctuations. With the year 2000 as the dividing point, during
1978–2000, the height of the right peak has experienced the process of “falling and rising,”
and the width first becomes large and then becomes small, indicating that APE showed a
trend of fluctuations and the reduction in regional differences, consistent with the results
of the aforementioned feature analysis. During 2000–2018, the height of the right peak
increases and the width decreases, implying that APE stably improves and inter-regional
difference gradually decreases. The overall APE under climate change shows a trend of
first fluctuating and then stably increasing over time. Most provinces gradually change
from “similar levels of high or low agglomeration” to high levels of agglomeration, and the
gap among provinces in APE tends to narrow.
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Figure 2. The KDE of APE under climate change during 1978–2018. (a) is the kernel density estimation
at the national level; (b) is the kernel density estimation of the eastern region; (c) is the kernel density
estimation of the central region; (d) is the kernel density estimation of the western region; (e) is the
kernel density estimation of the northeastern region.

In the aspect of the evolutionary trends in the four regions, the distribution of APE in
the eastern, central, western, and northeastern regions all show a rightward shift of the peak
that first declines and then rises. The width of the peak first increases and then decreases.
Since the reform and opening up, the APE of each region has shown an upward trend in
fluctuation, and the differences within regions have first increased and then decreased. In
addition to these changes, there are different evolutionary characteristics of APE among
regions. The eastern region shows a significant trend from “bimodal to skew unimodal
distribution,” with the width of the peak continuously narrowing. In 2018, the right-skewed
peak tends to occur and the left peak further narrows, indicating that while the APE in
the eastern region is improving, the gap within regions is narrowing. APE in the central
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region shows the trend of “bimodal, unimodal, and bimodal distribution” with the peak
width continuously narrowing. In the current bimodal distribution, the height and width
of the peaks are equal, which means that APE in the central region does not show obvious
polarization and the gap within the region is narrowing. APE in the western region shows
the trend of “multimodal, bimodal, single, and bimodal distribution,” with the peak height
showing the trend of “high, low, and high,” and the width gradually narrowing. The
provinces in the western regions are mainly concentrated in the right peak, with less
intra-regional differences. APE in the northeastern region shows the trend of “unimodal
and bimodal distribution” with the height of the peak gradually increasing and the width
gradually narrowing. Currently, the APE of all provinces in the northeastern region is
above 1, and the differences within this region are small in spite of the bimodal distribution.

4.2. Characteristics of the Changes in the Spatiotemporal Patterns of APE Evolution

Based on the SDE-COG transfer model, the COG of APE was located, and the distance,
direction, and SDE range of COG transfer between 1978 and 2018 under the dual con-
straints of climate change and resource environment were plotted to analyze the imbalance
characteristics of COG spatial transfer (Figure 3). A total of nine time points was selected,
i.e., 1978, 1983, 1988, 1993, 1998, 2003, 2008, 2013, and 2018, to specifically report the spatial
distribution of the COG and SDE parameters of APE (Table 2).

The geographic coordinates of the COG of APE in China ranged from 111.459◦ E to
112.641◦ E and 33.478◦ N to 34.842◦ N, which was within Henan Province in all years, trans-
ferring approximately northeastwards from Nanyang City in 1978 to Pingdingshan City in
2018. Therefore, the APE in northern China increased significantly compared to southern
China, though the path of COG transfer fluctuated. During the study period, the COG was
within the city of Luoyang for most of the years before transferring to Pingdingshan City
in 2018. The COG transferring path varied from northeastward (1978 to 1993) to south-
westward (1993 to 2003), and then to southeastward (2003 to 2018)”, showing an overall
northeastward trend, i.e., shifting eastward in the east-west direction and northward in the
north-south direction. In terms of the distance and speed, the northeastward COG transfer
distance was 110.828 km, reaching an average annual speed of 22.166 km/a. The distance
and speed of COG transfer between 1978 and 1993 were most significant at 142.156 km
and 9.477 km/a, respectively. The distance and speed of COG transfer decreased between
1993 and 2003, with an overall southward transfer distance of 59.155 km and an average
transfer speed of 5.916 km/a. Although the distance and speed of COG transfer increased
between 2003 and 2018, the increases were relatively small, showing an eastward transfer
distance of 91.609 km and an average speed of 6.544 km/a, respectively.

In terms of the changes in the elliptical shape, the major axis was extended from
1189.957 km in 1978 to 1202.703 km in 2018, while the minor axis was shortened from
1119.570 km in 1978 to 1016.121 km in 2018, and the mean shape index (minor axis/major
axis) in 1978, 1993, 2003, and 2018 was 0.941, 0.805, 0.912, and 0.845, respectively. Assessing
by periods, the mean shape index decreased from 0.941 to 0.805 between 1978 and 1993,
increased from 0.805 to 0.912 between 1993 and 2003, and decreased again from 0.912 to
0.845 between 2003 and 2018. Thus, the mean shape index of the ellipse went through
a series of downward, upward, and downward trends resembling an inverted n shape.
However, the mean shape index was decreasing overall, and the ellipse resembled less
and less of a circle. The north-south direction became the major axis and expanded, while
the east-west direction contracted, indicating that APE tended to be imbalanced in the
north-south and east-west directions, and the COG mainly transferred northward in the
north-south direction. The azimuth angle of the ellipse varied slightly from 29.592◦ to
39.032◦ and showed a series of decreasing, increasing, and decreasing trends. The azimuth
angle shifted 6.714◦ to the east between 1978 and 1993, 8.514◦ to the north between 1993 and
2003, and 6.596◦ to the north by east between 2003 and 2018. Overall, the spatial distribution
of APE showed a northeast-southwest pattern, and the contraction of the minor axis in the
east-west direction reflected the east by north trend in the north-south direction.
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Table 2. Parameter changes of the COG and SDE of APE in China since 1978.

Year COG Coordinates Direction Distance/km Speed/
(km/a) Long Axis/km Short Axis/

km Azimuth/◦

1978 111.535◦ E, 33.585◦ N - - - 1189.957 1119.570 37.332
1983 111.459◦ E, 33.478◦ N Southwest 21.911 4.382 1268.881 1043.088 29.592
1988 111.856◦ E, 34.198◦ N Northeast 88.485 17.697 1281.599 1066.620 32.887
1993 112.123◦ E, 34.842◦ N Northeast 73.706 14.741 1294.073 1041.915 30.518
1998 111.591◦ E, 34.491◦ N Southwest 55.443 11.089 1260.227 1122.895 35.804
2003 111.640◦ E, 34.372◦ N Southeast 12.981 2.596 1196.798 1091.650 39.032
2008 112.135◦ E, 34.313◦ N Southeast 43.612 8.722 1190.063 1052.301 35.479
2013 112.578◦ E, 34.679◦ N Northeast 56.745 11.349 1201.527 1054.815 37.019
2018 112.641◦ E, 34.114◦ N Southeast 64.091 12.818 1202.703 1016.121 32.436

1978–2018 Northeast 110.828 22.166 - - -

Note: The parameters of COG and SDE over the years are shown in Appendix A.

Figure 3. Changes of the COG and SDE of APE in China since 1978.

4.3. Spatial Convergence Test of APE

The β-convergence test with the spatial effect introduced into it is required to test the
spatial correlation of APE, usually with Moran’s I. Each Moran’s I for APE from 1978 to 2018
was significantly positive (0.135 to 0.215), but mostly at the 5% or 10% level (Table 3). Thus,
APE had a strong spatial correlation, i.e., there were mutual influences and correlations
between agricultural production in neighboring regions.
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Table 3. The Moran’s I for APE since 1978.

Year Moran’s I z-Value p-Value Year Moran’s I z-Value p-Value Year Moran’s I z-Value p-Value

1978 0.190 1.646 0.100 1992 0.146 1.202 0.023 2006 0.137 1.528 0.063
1979 0.178 1.637 0.102 1993 0.141 1.214 0.055 2007 0.157 1.422 0.080
1980 0.187 1.881 0.060 1994 0.168 1.527 0.013 2008 0.158 1.413 0.082
1981 0.208 1.922 0.055 1995 0.136 1.054 0.029 2009 0.189 1.079 0.028
1982 0.205 1.880 0.060 1996 0.135 1.567 0.058 2010 0.205 1.225 0.022
1983 0.205 1.863 0.062 1997 0.135 1.012 0.031 2011 0.206 1.233 0.022
1984 0.197 1.900 0.057 1998 0.199 1.927 0.054 2012 0.210 1.253 0.021
1985 0.190 1.801 0.072 1999 0.168 1.506 0.013 2013 0.215 1.359 0.017
1986 0.181 1.667 0.095 2000 0.184 1.085 0.028 2014 0.194 1.100 0.027
1987 0.168 1.351 0.117 2001 0.169 1.344 0.095 2015 0.187 1.283 0.033
1988 0.214 1.656 0.051 2002 0.154 1.783 0.043 2016 0.185 1.281 0.041
1989 0.173 1.461 0.065 2003 0.139 1.519 0.064 2017 0.197 1.125 0.026
1990 0.178 1.481 0.063 2004 0.138 1.556 0.059 2018 0.186 1.279 0.035
1991 0.140 1.305 0.076 2005 0.136 1.574 0.057

The convergence test requires the optimal spatial econometric model, which can
be selected using the goodness-of-fit R2, the Log-Likelihood (LogL), Sigma2, the Akaike
Information Criterion (AIC), and the Schwartz Criterion (SC) [51]. (1) The model with
higher explanatory power was selected using AIC and SC, and lower AIC and SC values
mean a higher explanatory power. (2) The goodness-of-fit of the model was determined
based on LogL, R2, and Sigma2 statistics: higher values of LogL and R2 and lower values
of Sigma2 mean better model fitness [52]. The study period was 1978 to 2018, which makes
the research data long panel data. Elhorst pointed out that spatial panel models would be
relatively more effective with fixed effects when the time was long enough [53]. With the
Hausman test, SLM with fixed effects was finally selected as the main analytical model
for the spatial convergence test. The test results showed that the spatial effect coefficient
ρ was significantly greater than 0, indicating a significant spatial spillover effect of APE
convergence under the dual constraints. Further discussions were conducted by reference
to regions and time periods. The study area was divided into four major regions, eastern,
central, western, and northeastern. The study period was divided into three parts based
on the characteristics of APE GOC transfer mentioned above: the initial period from 1978
to 1993, the middle period from 1994 to 2003, and the late period from 2004 to 2018, with
different timespans.

The absolute convergence coefficients at the national level and at regional and period
levels were significantly smaller than 0 (Table 4), indicating significant spatial absolute
β-convergence characteristics of APE under the dual constraints, i.e., a tendency for APE in
different regions to converge to the same steady-state over time. Table 3 also presents the
results of traditional absolute convergence at the national level without considering spatial
effects. By comparison, the convergence rate of spatial absolute β-convergence (0.87%) is
greater than that of traditional absolute β-convergence (0.76%), indicating that the spatial
correlation between regions accelerates the convergence rate of APE. By region, the western
region has the fastest convergence rate (1.31%), the central region has the second-fastest
rate (1.00%), and the central and western regions have significantly faster rates than the
eastern and northeastern regions, showing a significant latecomer catching-up effect. By
time period, the convergence rate is fastest (7.86%) in the middle period (1994 to 2003)
and slowest (2.14%) in the late period (2004 to 2018), indicating a stabilizing trend in APE
convergence rate during the study period.
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Table 4. Spatial β absolute convergence test of APE under the dual constraints of climate change and
resource environment.

Variables
National Level Regional Level Period Level

Traditional Spatial Eastern Central Western Northeastern Initial Middle Late

lnape −0.256 *** −0.289 *** −0.179 *** −0.322 *** −0.401 *** −0.238 *** −0.416 *** −0.507 *** −0.259 ***
(−14.01) (−14.40) (−6.73) (−6.91) (−10.63) (−4.36) (−12.05) (−13.11) (−5.70)

C
−0.148 ***
(−11.04)

ρ 0.477 *** 0.532 *** 0.769 *** 0.310 ** 0.633 *** 0.452 *** 0.301 *** 0.291 ***
(13.86) (8.32) (5.17) (3.40) (7.21) (8.73) (4.08) (3.94)

R2 0.540 0.583 0.690 0.563 0.788 0.618 0.465 0.478 0.455
LogL −69.432 −21.637 −32.054 27.765 9.229 −125.294 112.220 230.825

Convergence
rate 0.76% 0.87% 0.51% 1.00% 1.31% 0.70% 3.59% 7.86% 2.14%

Note: those in parentheses are z-Values; *** and ** denote significance at the 1% and 5% levels, respectively.

The conditional convergence liberalizes the assumption condition of homogeneity, i.e.,
differences in economic growth, resource endowment, technological progress, and financial
support across regions. In this paper, a total of five indicators, namely, regional economic
development level, arable land endowment, multiple crop index, technological progress,
and financial support to agriculture, are selected from macro and micro perspectives and
added to the conditional convergence test model of APE to examine whether the differences
among regions converge to their respective steady states over time. Of the five indicators,
the economic development level was characterized by GDP per capita (pgdp); arable land
endowment was characterized by the area of arable land owned per capita (area); the
multiple crop index was calculated as the ratio of total sown area to the area of arable land
(mci); the technological progress was characterized by total mechanical power per unit of
labor (tech) [54]. The financial support to agriculture was characterized by the expenditure
on agricultural, forestry, and water affairs as a share of GDP (fiscal). (The financial support
expenditure for agriculture includes agricultural expenditure, forestry expenditure, water
conservancy expenditure, poverty alleviation expenditure, and comprehensive agricultural
development expenditure. In 2003, there was a change in the statistical subjects of financial
revenue and expenditure, and in 2007, the new indicator of expenditure on agriculture,
forestry, and water affairs was adopted uniformly. Although the statistical subject structure
of this indicator has changed several times, the flow of funds to support agriculture has
not. In order to maintain the statistical consistency, data were converted to the expenditure
of agriculture, forestry, and water affairs.)

The conditional convergence coefficients at the national level and at regional and
period levels were also significantly smaller than 0 (Table 5), indicating significant spatial
conditional β-convergence characteristics of APE changes under the dual constraints,
i.e., APE in different regions evolved over time and the gap between regions, although
narrowing, would converge to their respective steady states, but not to the same steady
state. Compared to the spatial absolute β-convergence, the R2 and LogL for the spatial
conditional β-convergence have a certain degree of improvement. Thus, spatial conditional
β-convergence has a higher explanatory power compared to spatial absolute β-convergence
in addition to characteristics similar to spatial absolute convergence.

(1) The introduction of spatial correlation accelerates the convergence rate of APE
(1.12% > 0.82%) and shortens the convergence period to its own steady state.

(2) Among the different regions, the middle and western regions have the highest con-
vergence rate (1.47% and 1.48%), which are relatively similar and greater than those
in the eastern and northeastern regions.

(3) The APE convergence rates in different time periods have a phase change, showing a
rise and then a decline overall with the highest convergence rate in the middle period
(9.15%) and the lowest convergence rate in the late period, indicating that the APE
convergence rate tends to stabilize.
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Table 5. Spatial β conditional convergence test of APE under the dual constraints of climate change
and resource environment.

Variables
National Level Regional Level Period Level

Traditional Spatial Eastern Central Western Northeastern Initial Middle Late

lnape −0.275 *** −0.354 *** −0.282 *** −0.436 *** −0.438 *** −0.400 *** −0.452 *** −0.561 *** −0.416 ***
(−7.49) (−9.24) (−6.20) (−3.87) (−6.90) (−4.54) (−8.82) (−5.12) (−6.46)

lnpgdp 0.033 *** 0.032 ** 0.019 * 0.148 ** 0.0167 0.078 −0.048 −0.161 *** 0.049
(2.81) (2.52) (1.65) (2.19) (0.54) (1.35) (−0.89) (−5.35) (1.09)

lnarea
0.078 * 0.080 * 0.047 0.301 0.148 ** −0.480 *** 0.117 0.011 0.132 **
(1.86) (1.82) (0.74) (1.04) (2.39) (−3.26) (0.84) (0.21) (2.24)

lnmci
−0.175 ** −0.173 *** −0.013 0.152 −0.094 −0.355 *** −0.014 −0.147 0.012
(−2.55) (−2.58) (−0.17) (0.40) (−1.26) (−4.08) (−0.06) (−1.03) (0.14)

lntech
0.021 0.023 0.109 ** −0.289 ** −0.013 0.037 0.201 −0.069 0.003
(0.96) (0.49) (2.32) (−2.28) (−0.18) (0.23) (1.51) (−1.13) (0.06)

lnfiscal
0.020 0.021 0.048 0.074 0.007 0.121 ** 0.063 0.063 0.098 **
(1.40) (1.06) (1.55) (1.07) (0.38) (2.24) (0.94) (1.40) (2.35)

C
0.364
(0.99)

ρ 0.357 *** 0.501 *** 0.678 *** 0.281 ** 0.590 *** 0.373 *** 0.106 *** 0.139 ***
(6.34) (4.77) (3.86) (2.13) (10.00) (6.46) (2.82) (2.92)

R2 0.462 0.695 0.497 0.513 0.714 0.675 0.488 0.466 0.565
LogL −30.215 −10.112 −19.518 25.033 9.229 −124.674 126.699 210.524

Convergence
rate 0.82% 1.12% 0.85% 1.47% 1.48% 1.31% 4.01% 9.15% 3.84%

Note: those in parentheses are z-Values; ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.

5. Discussion and Policy Implications

At the early stage of reform and opening up, the APE of most provinces was clustered
at a low level on the bimodal distribution due to the backward agricultural technology
level. With the progress of reform and opening up and the continuous development of the
agricultural economy, the APE in various provinces shows different degrees of improve-
ment [16]. However, due to differences between provinces in terms of resource endowment
and economic strength, the APE gap among provinces has begun to widen. Over time, the
left peak of the low APE cluster gradually declines, while most provinces are within the
right peak of the high APE cluster. Therefore, the APE gap is narrowing and gradually
forming a near “peak-skewing” distribution spatiotemporal evolution pattern with “high-
high and low-low APE clusters gradually disappearing.” There are spatial imbalances
in the improvement of APE [55]. Specifically, APE in the northeast was maintained at
a high level, relying on the rich resource endowment, the climatic conditions, and the
spread of agricultural mechanization services. APE improvement in the eastern region
was steady thanks to the significant technological progress in the agricultural industry, the
modernization of agriculture, the coordination of agricultural production with resources
and the environment, and the adaptation to climate changes. The effects of topography and
extreme climatic conditions were more profound in the central and western regions, leading
to slow development of agricultural technology, low degree of agricultural mechanization,
and a relatively cruder development of the agricultural economy [22]. Thus, their APE was
relatively lagging behind that of the northeastern and eastern regions in the early stages.
With the accelerated spatial flow of production factors, the inter-regional gap in agricultural
technology has gradually narrowed, and the latecomer catching-up effect has led to a rapid
APE increase in the central and western regions [56], gradually narrowing the gap with the
eastern region.

Agricultural production is closely related to climate change, and resources such as
water, soil, light, and heat are the necessary material and energy sources for crop growth.
The uniqueness of natural endowments such as geographical environment and climatic
characteristics of different regions makes the spatial distribution of resources such as water,
soil, light, and heat to sustain agricultural production differ, and also determines the hetero-
geneous distribution of crop varieties, production methods, and cropping systems among
regions, which leads to regional heterogeneity in APE, and different forms of combinations
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of the various production factor inputs will also yield different APE [57]. In addition, the
volatility of climate change and extreme weather put agricultural production in an unsta-
ble natural environment, placing higher demands on agricultural production to actively
respond and be green and sustainable [58]. At the micro level, agricultural production
is an adaptive behavior formed by farmers in different regions based on local climatic
characteristics over a long period of time. Based on the trade-off between their own cost in-
puts and expected benefits, farmers spontaneously choose adaptive strategies to cope with
climate fluctuations in order to avoid the adverse effects brought by climate fluctuations,
considering environmental constraints. Fluctuating changes in APE also imply an intensive
use of production factors and more attention to whether the environmental resources of
farmland are overexploited; climate change also affects the farmland environment, and
rainfall runoff has an accelerating effect on the migration of agricultural pollution [59],
thus, maintaining a balanced state of agricultural production, resource use, and climate
change is beneficial. In addition, the irreversible nature of environmental damage caused
by the use of certain inputs would cause continuous harm to soil fertility and the farmland
environment, such as the unreasonable use of agricultural films, and the accumulation of
agricultural film residues in the soil, which would destroy the soil structure. Therefore, we
also need to pay attention to the recycling of waste resources and improve the recovery
rate of residues in the agricultural production process.

The distance and speed of APE COG transfer showed the trend of increase, decrease,
and slightly increase, with the overall transfer toward the northeast and a spatially unbal-
anced pattern from northeast to southwest. The SDE of APE covers most of the eastern,
central, and western regions of China and gradually transfers northeastward while contract-
ing, indicating that the spatial distribution pattern of APE gradually tends to cluster and
contract. The provinces distributed inside the SDE are basically the main food-producing
provinces. The northeastward COG transfer of APE indicated that the predominant and
high APE region in China gradually shifted to the northeast. As a strategic base for national
food security, the northeastern regions have higher APE than other regions due to their
excellent natural base endowment and modern agricultural production conditions. With
faster industrial structure upgrading, higher per capita income, and higher labor cost, the
southern region has seen a decline in the comparative returns of agricultural production
and has gradually ceased to undertake the main task of agricultural production.

Regions with higher APE in the current period tend to have a lower rate of improve-
ment in the next period, while regions with lower APE in the current period tend to have
a higher rate of improvement in the next period, which means that the provinces share
a common long-run equilibrium convergence path [60]. The latecomer catching-up ef-
fect in low APE regions has led to a narrowing APE gap among regions, resulting in the
convergence rate showing a decreasing distribution pattern from the central and western
region to the northeastern and eastern regions. The progress of reform and opening up has
brought about accelerated spatial flow of factors such as talent, technology, and capital,
improved agricultural infrastructure, improved agricultural production conditions, and
financial and policy support for the central and western region from the central and local
governments. As a result, the APE gap between the provinces of the central and western
region and those of the eastern and northeastern region have begun to narrow gradually.
Faced with the limitation of resource utilization and the increase in food demand [61], the
northeastern region has a fine resource endowment and agricultural production conditions
so agricultural modernization is developing fast; it is an important crop production base in
China, and the level of the farmland ecosystem is also high [62]. The fact that provinces in
the eastern region are mostly grain consumption provinces, except Hebei and Shandong,
means that the marginal effect of agricultural output through factor inputs and infrastruc-
ture improvement is decreasing, and the spatial convergence rate is slightly lower. The
unbalanced distribution and spatial spillover effect of APE [63] has led to extensive spatial
flows and interactions of agricultural factor inputs, agricultural technology applications,
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and information diffusion between geographically neighboring regions. As a result, the
spatial effect has accelerated the convergence of APE.

In addition, the changes in the convergence rate of APE corresponded to the dis-
tance and speed of APE COG transfer. The COG transfer distance and speed were at
their minimum in the middle period with the maximum convergence rate. In that time
period, APE convergence accelerated to a certain steady-state, and the differences between
regions tended to decrease, leading to no major APE COG transfer. In the initial and late
periods, the convergence rates were relatively low, but the distance and speed of COG
transfer were large, whereas the initial period showed the lowest convergence rate and the
highest COG transfer speed. Since the reform and opening up, the market mechanism has
undergone a gradual transformation from initial implementation to full implementation,
and the production factors have also undergone the transformation to full flow. Regions
with advantages in initial resource endowments and production conditions were able to
release larger agricultural productivity and widen the gap with other regions, leading
to the imbalanced development of agricultural production between regions and lower
convergence rates. With the gradual narrowing of comparative advantage gaps between
regions and the improvement of agricultural infrastructure, the APE gap between regions
has been narrowing, and the convergence rate has been increasing. As more emphasis
has been placed on quality, efficiency, and sustainability in agricultural production [64],
the supply-side structural adjustment has slowed the convergence rate of APE, and its
convergence trend may stabilize.

It should be noted that the establishment of spatial relationships in the test of spatial
convergence in this paper relies on the geographic distance weight matrix, which has been
able to better portray the spatial correlation of agricultural production between regions.
However, the proximity of geographic distance does not mean the same spatial correlation,
which also has a certain relationship with the economic scale of each region, this is the
distance of the cooperative relationship in the economic sense. Therefore, in future research,
the spatial relationship between regions will be further constructed by using the economic
distance weight matrix.

Introducing climate change and environmental pollution into the APE measurement
system and assessing them more objectively will help to understand the sustainability
laws of agricultural production under the dual constraints, so as to respond to climate
change more resiliently and with fewer negative externalities on resource utilization, and
to explore more practices of agricultural sustainability and adaptation to climate change.
The policy implications from this study are as follows:

Firstly, China’s APE has a relatively large room for improvement, and the dual con-
straints of climate change and resource environment must be considered to promote
agricultural production quality and efficiency. Investment in infrastructures such as agri-
cultural meteorological monitoring services and agricultural environmental pollution
prevention and management can be increased continuously to promote the structural
reform of agriculture at the supply side. The technological progress in soil testing and
fertilization technology, pesticide reduction, and resource utilization and conservation
can be employed to further transform the agricultural development mode [65]. Emission
reduction and control of agricultural non-point source pollution should be strengthened
to continuously promote green production methods, eco-agriculture construction, clean
agricultural production, and sustainable agricultural development.

Secondly, the northeastward COG transfer trend implied the continuous strengthening
of agricultural production in the northeastern region, a strategic base for national food
security. The main connotation of food security is to ensure the production of sufficient
quantities of food and to maximize the stability of food supply capacity [66], which re-
quires more efficient use of production resources, efforts to improve APE, and an active
response to climate change. In addition to ensuring food security and food supply, the
northeastern region should plan ahead by strengthening the monitoring of agricultural
meteorological disasters and timely releasing of meteorological information to minimize the
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agricultural production losses caused by extreme meteorological disasters. In the meantime,
the monitoring of resource waste and environmental pollution in the process of agricultural
production should be strengthened, and the efforts of agricultural environmental regulation
should be increased to achieve harmony between agricultural production and the ecological
environment. These initiatives are equally applicable to other areas with low APE.

Thirdly, due to the inter-regional differences, spatial correlation, and convergence,
governments in the regions should consider the dependence and differences with the
agricultural production of neighboring regions while focusing on their own agricultural
quality and efficiency improvements. The similarity between neighboring regions in terms
of location conditions, resource endowment, and agricultural infrastructure, and the free
flow of factors such as labor, capital, technology, and information require that neighboring
regions should strengthen cooperation and exchange in agricultural production and estab-
lish cross-regional mechanisms for cooperation in agricultural production and ecological
policies, and to do so in accordance with local conditions. Inter-regional agricultural pro-
duction is hardly unique, and considering the inter-regional differences in APE, regions
with higher APE should play the leading role and improve their exchanges with other
regions in terms of management experience and technological progress. Regions with
lower APE need to actively learn the agricultural development methods of neighboring
regions with higher APE according to their own endowment conditions and upgrading
strength, and the introduction of technology, talents, and capital should be strengthened
to narrow the APE gap between regions. In view of the similar climatic characteristics
and endowment conditions between neighboring regions, local governments should not
only focus on improving their own quality and efficiency, but also seek a balanced point
between agricultural production, climate change, and the resource environment through
joint prevention and control, to achieve the win-win goal of improving APE and protecting
the farmland ecological environment, and, ultimately, realize clean and efficient modern
agricultural production. In addition, the patterns of APE changes in China could also shed
light on agricultural production in other parts of the world.

6. Conclusions

Based on the long-period panel data for 30 provinces in mainland China from 1978
to 2018, this study re-estimated APE considering the dual constraints of climate change
and resource environment. The spatiotemporal evolution and imbalanced spatial pattern
of APE were analyzed using KDE, SDE, and COG transfer models. Then, the spatial
convergence and divergence properties of APE were tested using spatial β-convergence. The
main conclusions are as follows.

(1) Under the dual constraints, APE showed a stable upward trend with fluctuation
(mainly between 1978 and 2000), but still at a low level overall with much room
for improvement. Region-wise, the northeastern region had the highest APE and
higher growth than the central and western regions. However, the gap was narrowing
between the central and western regions and other regions. The APE evolution in
China showed a bimodal distribution with a narrowing gap between the heights of
the two peaks, i.e., no manifestation of polarization. The intra-regional differences
widened and then narrowed, while the spatiotemporal evolution characteristics were
different among different regions.

(2) Under the dual constraints, the COG of APE transferred to the northeast, and the
transfer path was with fluctuations. In the east-west direction, the transfer was
eastward, and in the north-south direction, the transfer was northward, showing
a northeast to southwest spatial pattern overall. The distance and speed of COG
transfer showed the trend of increase, decrease, and slight increase. The changes in
the SDE of APE were similar to those of COG transfer. The ellipse gradually shifted
to the northeast and resembled less and less of a circle. The major axis was in the
north-south direction and expanded, the minor axis was in the east-west direction
and contracted, and the ellipse covered a gradually decreasing area. The spatial
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distribution of APE tended to be unbalanced in the east-west direction and tended to
cluster in the north-south direction towards the east by north.

(3) Under the dual constraints, APE showed significant spatial convergence characteris-
tics. The gap between regions was narrowing, and the trend of latecomer catching-up
was significant in the low APE regions. The spatial effect accelerated the convergence
rate of APE and shortened the convergence period of APE to its own steady-state.
The convergence rates of different regions showed a decreasing distribution pattern
from the central and western regions, the northeastern region, and the eastern region.
The latecomer advantage of the central and western regions was significant, and the
marginal decreasing effect reduced the convergence rate of the eastern and northeast-
ern regions. The APE convergence rates in different time periods had a phase change,
which corresponded to the distance and speed of COG transfer.

Author Contributions: Conceptualization, B.M. and X.H.; methodology, B.M.; software, M.H.; vali-
dation, X.H.; formal analysis, M.H.; investigation, B.M.; resources, X.H.; data curation, B.M.; writing—
original draft preparation, B.M.; writing—review and editing, M.H. and X.H.; visualization, B.M.;
supervision, X.H.; project administration, X.H.; funding acquisition, X.H. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by The Earmarked Fund for China Agriculture Research System
(No. CARS-28); the National Natural Science Foundation of China (No. 71573211); and the “APC”
was funded by the National Modern Apple industry Technology System of the China Agriculture
Research System, Center of Western.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to data management.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The parameters of COG and SDE of APE over the years.

Year Longitude Latitude
Long
Axis
/km

Short
Axis
/km

Azimuth
/◦ Year Longitude Latitude

Long
Axis
/km

Short
Axis
/km

Azimuth
/◦

1978 111.535◦ E 33.585◦ N 1189.957 1119.570 37.332 1999 112.391◦ E 34.509◦ N 1288.511 1049.231 30.325
1979 111.685◦ E 34.000◦ N 1277.166 1106.806 29.136 2000 111.213◦ E 33.852◦ N 1201.468 1103.839 19.163
1980 110.440◦ E 33.486◦ N 1269.357 1039.668 20.306 2001 111.925◦ E 34.325◦ N 1263.521 1072.065 29.244
1981 109.877◦ E 32.995◦ N 1143.208 1107.513 162.067 2002 111.737◦ E 34.371◦ N 1201.798 1105.617 35.226
1982 110.409◦ E 32.784◦ N 1052.511 1189.965 127.606 2003 111.640◦ E 34.372◦ N 1196.798 1091.650 39.032
1983 111.459◦ E 33.478◦ N 1268.881 1043.088 29.592 2004 111.637◦ E 34.309◦ N 1230.335 1104.477 33.034
1984 111.980◦ E 33.256◦ N 1119.422 1205.095 45.822 2005 111.879◦ E 34.309◦ N 1243.058 1042.393 29.978
1985 110.986◦ E 33.867◦ N 1137.822 1168.365 70.922 2006 112.410◦ E 34.444◦ N 1211.414 1049.260 29.597
1986 110.994◦ E 34.360◦ N 1158.674 1258.521 65.915 2007 112.274◦ E 34.163◦ N 1212.941 1031.826 28.170
1987 111.350◦ E 34.545◦ N 1351.720 1186.664 42.190 2008 112.135◦ E 34.313◦ N 1190.063 1052.301 35.479
1988 111.856◦ E 34.198◦ N 1281.600 1066.620 32.887 2009 111.731◦ E 34.522◦ N 1093.920 1158.506 50.044
1989 110.192◦ E 33.874◦ N 1109.052 1143.374 110.831 2010 112.278◦ E 34.982◦ N 1098.534 1215.464 48.381
1990 112.448◦ E 34.584◦ N 1330.760 1047.468 33.788 2011 112.269◦ E 34.480◦ N 1225.036 1070.668 29.626
1991 111.419◦ E 34.027◦ N 1266.883 1080.622 35.929 2012 112.247◦ E 34.212◦ N 1194.298 1064.534 35.238
1992 111.652◦ E 34.909◦ N 1337.862 1163.769 35.952 2013 112.578◦ E 34.679◦ N 1201.527 1054.815 37.020
1993 112.123◦ E 34.842◦ N 1294.073 1041.915 30.518 2014 112.500◦ E 34.454◦ N 1167.115 1048.558 36.218
1994 111.343◦ E 34.715◦ N 1286.685 1181.106 44.819 2015 112.466◦ E 34.140◦ N 1151.643 1034.807 31.474
1995 111.839◦ E 34.190◦ N 1285.051 1103.894 33.101 2016 112.547◦ E 34.133◦ N 1161.895 1025.265 29.622
1996 111.977◦ E 34.390◦ N 1291.400 1058.160 28.940 2017 112.594◦ E 34.124◦ N 1182.481 1020.793 31.263
1997 111.461◦ E 33.896◦ N 1217.814 1111.495 30.206 2018 112.641◦ E 34.114◦ N 1202.703 1016.121 32.436
1998 111.591◦ E 34.491◦ N 1260.227 1122.895 35.804
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