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Abstract: To overcome the challenges related to food security, digital farming has been proposed,
wherein the status of a plant using various sensors could be determined in real time. The high-
throughput phenotyping platform (HTPP) and analysis with deep learning (DL) are increasingly
being used but require a lot of resources. For botanists who have no prior knowledge of DL, the
image analysis method is relatively easy to use. Hence, we aimed to explore a pre-trained Arabidopsis
DL model to extract the projected area (PA) for lettuce growth pattern analysis. The accuracies of
the extract PA of the lettuce cultivar “Nul-chung” with a pre-trained model was measured using
the Jaccard Index, and the median value was 0.88 and 0.87 in two environments. Moreover, the
growth pattern of green lettuce showed reproducible results in the same environment (p < 0.05). The
pre-trained model successfully extracted the time-series PA of lettuce under two lighting conditions
(p < 0.05), showing the potential application of a pre-trained DL model of target species in the study
of traits in non-target species under various environmental conditions. Botanists and farmers would
benefit from fewer challenges when applying up-to-date DL in crop analysis when few resources are
available for image analysis of a target crop.
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1. Introduction

Food security is a big challenge for many geographic areas, and present agricultural
production practices could not support the present food demand worldwide [1]. To
overcome this problem, agricultural data are utilized, which is called digital agriculture,
to more effectively cultivate plants in real time [2]. Phenotyping data is a key process in
digital agriculture as it can reveal the status of plant extracts from image-based data [3].

The amount of phenomics data extracted from a high-throughput phenotyping plat-
form (HTPP) has been increasing, and more diverse image-based sensor data are expected
from the platform [4]. However, extracting features of interesting traits from an image is
challenging because there are currently no general analysis tools available. Projected area
(PA), defined as the measured whole plant area based on images, is considered as the most
utilized feature in plants. The semantic segmentation of plants based on legacy methods
such as adjusting the contrast with the region of interest (ROI) was applied, but the result
was not successful because the legacy method is very sensitive to lighting conditions. Ma-
chine learning (ML)-based image analysis has shown superior performance over the legacy
method [5,6]. Deep learning (DL)-based image analysis methods even further reduced the
error rates [7-9]. A previous study indicated that U-Net showed superior performance in
the semantic segmentation of Arabidopsis [8]. In this study, U-Net successfully distinguished
the subtle differences among plants exposed to various types of gamma radiation [8].

The extraction of target phenotypes in target plant species using image analysis
showed a very effective process with DL [10,11]. However, DL training for crop segmen-
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tation requires a large amount of resources and time, as shown in lettuce [12]. The main
reason was due to labeling images that include plant and background information usually
generated by manual laborers [13]. In addition, trained label images for the DL model need
to be embedded in various steps for the pre-and post-processing of the original images.
As a result, the built image analysis pipeline for a crop requires time and collaboration
with other scientists such as an image scientist [14]. The Arabidopsis pre-trained model
already has the necessary information for separate plant areas over the background area
that was defined as PA, but this has not been explored in other plant species. Investigating
the possibility of utilizing a pre-trained model has a notable advantage over building a
new model for a target plant. In addition to the minimal effort needed for building a new
model, the manually intense annotation of a large number of plant images and training
DL is not necessary. Moreover, botanists could utilize the pre-trained model with little
knowledge of DL models for a target plant. A previous study on plant disease detection
suggested that the pre-training of VGG-16 that was used for various general tasks could be
applied in plant disease detection [15]. However, there has been no report that utilizes a
model pre-trained in a model plant for different species in a growth pattern analysis.

In this study, we aimed to explore the application of a pre-trained Arabidopsis DL
model called U-Net for the segmentation of green lettuce cultivars under the same and
different environmental conditions.

2. Materials and Methods
2.1. Plant Growth Condition, Image Acquisition, and Analysis

Green lettuce cultivars (Danong seeds, Andong, Kangwon, Korea) were placed in
a soil mixture (Hueng-nong Bio, Pyeontaek-5Si, Republic of Korea) and covered with a
translucent plastic dome in an environmentally controlled room. Two plant-to-sensor type
HTPPs were utilized, and each HTPP had different lighting conditions. In HTPP one, the
environmental conditions were identical to those of the pre-trained DL model in Arabidopsis.
In HTPP two, all environmental conditions were identical to those of the platform, except
that the lighting intensity was 400 pmol ms~! s~!, which was two-fold higher than that of
platform one (200 umol ms~! s~1). In each platform, two trays were randomly placed for
technical replication. After 3 days of planting, the plastic dome was removed, and images
were obtained with HTTP [8] every hour from 7:00 to 20:00 for 23 days. In HTPP two, a
black plastic dome was placed around the camera to remove excessive lighting.

A schematic of the image analysis pipeline was available [8] and the image process
was executed with a 4 x 2 image cropping Python line option within the pipeline.

2.2. Evalution of Image Analysis Result

Thirty-five images of lettuce were randomly selected in HTPP one in various plants
and growth stages. In addition, the same number of images were selected at HTPP
two. Seventy images that were selected from the HTTP one and two were manually
annotated (Figure 1A) with an annotation tool [8]. Binary transformation was applied on
the annotated images using a polygon drawing function in the Python image library (PIL),
and this binary image was defined as ground truth (GT) data for further analysis. Errors at
the edge of the binary images from the pre-trained DL model were removed (Figure 1C,D)
with post-processing. Figure 1B shows the comparison of the GT image and post-processed
pre-trained image (Figure 1D) with intersection over union evaluation (IoU) in lettuce [16].
The IoU is known as the Jaccard index and is utilized for segmentation of images [17] and
plant images [18]. The IoU scores for HTPPs one and two were calculated.
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Figure 1. Summary of extract projected area (PA) between ground truth (GT) and U-Net model
at two lighting intensities. Thirty-five images were selected at various plant and growth stages
in a random manner. (A) Manual labeling of the leaf area of a selected lettuce image. (B) Binary
transformation (PA) of GT for the lettuce image. (C) Binary transformation (PA) of the selected
image with U-Net. (D) Binary transformation (PA) with U-Net using the error correction method.
(E) Comparing accuracies of extract PA between the GT and U-Net models using the Jaccard index.

2.3. Growth Analysis and Statistical Analysis

The average PA with standard deviation was calculated using the native function
in R (R Foundation for statically computing, Vienna, Austria) [19] and eight samples per
14 time-steps per day were visualized with Plotly [20]. For technical replication in the
same environment, two randomly placed trays were compared. We then compared lettuce
growth under different lighting conditions using the daily changes graph in Plotly (Plotly
Technologies Inc., Montréal, QC, Canada) [20].

Statistical analyses were performed using R [19] for the selected time, 13:00, on 9, 12,
and 18 days after sowing (DAS) to determine whether there were differences between
the technical replications using t-test. The entire process was repeated for the effect of
environmental variation for different lighting intensities at the same time on 14, 18, and 21
DAS using Duncan’s multiple range test, based on a significance level of p < 0.05.
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3. Results
3.1. Evaluation of PA Extraction in Green Lettuce

In a previous study, the U-Net DL model accurately extracted the PA for Arabidopsis
growth patterns [8]. This DL model was built for Arabidopsis, and in this model, the
accuracies in the lettuce PA were needed to be checked before further analysis. The
evaluation matrix had an IoU score that ranged from 0.8 to 0.97, with a median value of
0.88 in the HTPP one (Figure 1E). In a previous study, a crop segmentation study using
an ML model obtained a yield of approximately 0.85 [21]. Therefore, although no lettuce
image was used for the DL model, we obtained results that were comparable to those of
the previous crop segmentation study. This showed the possibility of detecting seedling
and mature lettuce even when pre-trained in different plant species. Furthermore, these
results indicate that the extraction of the growth pattern of green lettuce in the time-series
data was possible.

3.2. Lettuce Growth Analysis

The growth pattern analyzed with PA showed different growth rates on different
dates in green lettuce (Figure 2). Previous lettuce studies suggested that initial growth
was relatively slow, followed by a very rapid growth phase in various studies, including
exposure to different lighting sources [22] and carbon dioxide levels [23]. In these studies,
the PA or biomass of lettuce was measured days apart and showed very similar growth
patterns. In this study, the growth patterns in hourly intervals and a previous study were
compared [24]. In a previous study, a rapid growth phase 12 days after emergence (DAE)
was found as well as a rapid growth phase 16 DAS or 13 DAE (Figure 2). The slight
differences might be due to the different cultivars used in each study. Overall, our results
indicate that image analysis using a pre-trained DL model is suitable for analyzing the
growth pattern of lettuce in an environmentally controlled setting. This information is
helpful for investigating interesting traits in lettuce given that it could detect drastic growth
phases and changes in hours rather than days. The technical replication study showed
reproducible results (p < 0.05) in lettuce placed in a slightly different location in HTPP one
(Table 1).
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Figure 2. Comparing the growth pattern of the green lettuce cultivar between technical replications.
Images were acquired between 07:00 to 20:00 in a 1-h interval. The results are presented as the mean
of each time point from replication one (1 = 8) and replication two (1 = 8).
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Table 1. Comparing projected area (PA) of green lettuce at fixed lighting condition (200 pmol ms~!s1)
on multiple days after sowing (DAS) and time. Values in the same column followed by an asterix are
significantly different (p < 0.05).

DAS Time (24 h) Replication PA (cm?)
9 13:00 One 1.8394
13:00 Two 2.2356
12 13:00 One 3.9754
13:00 Two 4.6765
18 13:00 One 32.3245
13:00 Two 30.7201

3.3. Lettuce Growth at Differernt Lighting Intensities

The HTPP one, which had the same lighting conditions as the pre-trained model,
produced very uniform images of lettuce (Figure 3A) and accurate image analysis results
(Figure 3C). At HTPP two, a black plastic dome was placed over the camera to remove ex-
cess light, and it showed lettuce images with various backgrounds (Figure 3B). Surprisingly,
the pre-trained model accurately extracted the PA, even in various background images
(Figure 3D).

Figure 3. Visualized of cropped and processed images of green lettuce at 19 days after sowing (DAS). (A) Cropped individual
lettuce images at 200 umol ms~ s~ (B) Cropped individual lettuce images at 400 pmol ms~ ! s~1. (C) Visualized i image
analysis result of lettuce at 200 umol ms 1 s71. (D) Visualized image analysis result of lettuce at 200 umol ms~1sL,

In summary, the technical replication study showed that green cultivars grown in
different trays did not differ from each other (Table 2) at 14, 18, and 21 DAS (p < 0.05). In
addition, drastic changes were observed under different lighting conditions with technical
replication in each environment (Supplementary Figure S1 and Table S2). The results
indicate that the pre-trained DL model could be applied for the comparison of a large
number of samples from different environments.
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Table 2. Comparing projected area (PA) of green lettuce at two lighting conditions on multiple days
after sowing (DAS). Values in the same column followed by a different letter are significantly different
(p <0.05).

DAS Light Condition Replication PA (cm?)
14 200 pmol ms~ ! s~1 One 7.8281a
200 pmol ms 1 571 Two 8.6423a

400 pmol ms~1 s~1 One 6.3605b

400 pmol ms~ ! s~1 Two 5.5361b

18 200 umol ms~! s~1 One 33.1341a
200 pmol ms~ ! s~1 Two 31.8327a

400 pmol ms~ 1571 One 21.4811b

400 pmol ms~1! s~1 Two 19.9635b

21 200 pmol ms~ ! s~1 One 74.2587a
200 umol ms~! 51 Two 69.8884a

400 pmol ms~ 1 s~1 One 45.7692b

400 pmol ms~ 1571 Two 46.1067b

4. Discussion

Digital agriculture requires a lot of data for cultivation to maximize yield and select
the optimal harvest time [2]. Even though the conventional practice utilized a large amount
of data, only a small fraction of the data was quantified. The main reason for this is that a
farmer accesses the current status of a plant with experience and intuition, but little plant
data are recorded. The emerging inexpensive image sensors [4] lead to the acquisition of
more quantitative data for each crop in different environments. In addition, more uniform
data acquired from the HTPP is expected [25]. This would enable the accumulation of
image data to study agronomical traits in the future [26].

The quality of image processed output for agriculture data has improved significantly
since the process is utilized using ML and DL [9]. Machine learning- and DL-based
methods have been applied in various crops and model plants, and they demonstrated
the effectiveness of the process [9]. However, DL models constructed for crops require
significant amounts of time and resources [12], given that each model requires training data,
and the data is generated by manual labeling of individual images for specific traits [27].
In addition, the pre-and post-processing steps to acquire quality data require effort. Thus,
the construction of an entire image analysis pipeline might not be achievable for a small
research group to analyze images [14]. Therefore, it is necessary for small researchers to
utilize pre-trained DL models in non-target species for interesting traits in their target
species.

A pre-trained general DL model called the VGG-16 model was applied for plant
disease detection studies [28] but the VGG-16 model was not built for a plant. A previous
study utilized generally built pre-trained DL for disease detection, and there have been no
known studies for the agronomical traits in crops. To the best of our knowledge, this is the
first study to utilize pre-trained DL for target plants in non-target plants. Arabidopsis and
lettuce are completely different species but share a similar genetic leaf shape controlling
mechanism; thus, the leaf shape characteristics are similar. The lettuce seedlings and
mature plants were accurately detected with the Arabidopsis pre-trained model (Figure 1E).
In addition, this study showed that a very fine-scale growth pattern analysis was possible
with reproducible results. The U-Net could have analyzed the leaf shape information in
order to separate it from the soil or background information, even though it is almost
impossible to understand learned information (features) from a pre-trained DL model.
Future research on whether learned information from a pre-trained DL model transfer
information into a new DL model [27], also known as “transfer learning”, for interesting
traits in different plant species could be performed. The method significantly reduced the
efforts needed to train and utilize the DL model for agronomical traits because relatively
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little information is needed to construct new DL models [27]. The phenotypic effect of
lighting in lettuce has been well documented in multiple studies [22,29]. However, time-
series responses in different lighting conditions are difficult to find, given that the image
analysis pipeline utilized limited images in a few environment settings. As a result, the
image analysis pipeline performed very well in a specific dataset. Even in DL-based models,
limited annotated images perform very well in a specific environment [15]. Recently, fully
documented time-series data have been available [12] but they were tested in two growing
seasons in a greenhouse for various environmental factors, including lighting. At this point,
fully documented time-series data on the effects of lighting are not available.

The increased volume of images that require up-to-date image analysis tools [9]
and DL models [12] could provide solutions future applications. This study showed the
possibility of applying pre-trained DL to study interesting traits in different species with
less effort. This could be a very cost-effective process when groups of botanists and image
scientists develop generalized tools for botanists who have little or no prior knowledge of
ML or DL models.

5. Conclusions

The pre-trained model showed accurate results, expressed as an IoU score as high as
0.97, in extracting lettuce growth patterns under the same environmental conditions as
Arabidopsis. The reproducible result confirmed by statistical test (¢-test) between replication
measurement on 9, 12, and 18 DAS. Moreover, lettuce grown under the two lighting condi-
tions showed significant separation on 14, 18 and 21 DAS between the two environments
(p < 0.05). This study clearly indicates the feasibility of applying a pre-trained DL model to
analyze the growth patterns of another crop under various environmental conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agriculture11090890/s1, Figure S1: Comparing the growth pattern of a green lettuce
between the two lighting conditions. The results are presented as the mean of eight samples for
each tray at different conditions. Each tray had a lighting condition of 200 umol ms~1s71 (A1)
with replication (A2) and a lighting condition at 400 pmol L ms~ ! s~1 (B1) with replication (B2).
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