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Abstract: Tracking the behavior trajectories in pigs in group is becoming increasingly important
for welfare feeding. A novel method was proposed in this study to accurately track individual
trajectories of pigs in group and analyze their behavior characteristics. First, a multi-pig trajectory
tracking model was established based on DeepLabCut (DLC) to realize the daily trajectory tracking
of piglets. Second, a high-dimensional spatiotemporal feature model was established based on kernel
principal component analysis (KPCA) to achieve nonlinear trajectory optimal clustering. At the
same time, the abnormal trajectory correction model was established from five dimensions (semantic,
space, angle, time, and velocity) to avoid trajectory loss and drift. Finally, the thermal map of the
track distribution was established to analyze the four activity areas of the piggery (resting, drinking,
excretion, and feeding areas). Experimental results show that the trajectory tracking accuracy of our
method reaches 96.88%, the tracking speed is 350 fps, and the loss value is 0.002. Thus, the method
based on DLC–KPCA can meet the requirements of identification of piggery area and tracking of
piglets’ behavior. This study is helpful for automatic monitoring of animal behavior and provides
data support for breeding.

Keywords: piglets; behavior tracking; trajectory correction; DeepLabCut; KPCA

1. Introduction

Piglets raised in a group is the mainstream form of livestock feeding at present,
which can avoid chronic stress injury of confined pigs [1]. Piglets reared in a group have
distinct activity and excretion areas and form their behaviors in fixed areas, such as lying
down, excretion, and feeding [2–4]. Excessive activity density of piglets will affect the
functional zoning of their activity and excretion spaces, which leads to sanitary pollution of
piggery [5,6]. Therefore, optimizing the activity area of piglets is helpful in the optimization
of piggery and the welfare feeding of pigs [7,8]. The behavior trajectory tracking of piglets
is directly related to their activity range and behavior expression. The accuracy of tracking
multiple behavior trajectories must be high in a piggery with a relatively narrow space.
Accurately realizing multi-objective behavior tracking of piglets and solving the difficulties
of multi-objective track loss, drift, and redundancy are the focus of this study.

Behavior recognition mainly focuses on the identification of specific behaviors of indi-
vidual pigs, such as movement behavior [9], aggressive behavior [10], biting behavior [11],
lying behavior [12], and exploration behavior [13]. Research on pigs in a group mainly
focuses on the identification and positioning of pigs, such as target segmentation [14], indi-
vidual identification and counting [15], and aggressive behavior identification [16]. Studies
from the perspective of tracking different behaviors of pigs and analyzing their activity
areas are rare. In recent years, machine vision and deep learning technology have been
widely applied in the analysis of pigs’ activity [17,18]. Gao et al. [19] studied the movement
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trajectory tracking of pigs in a group based on head and tail positioning, corrected the
positioning accuracy of head and tail with the motion trend algorithm, and generated
the movement trajectory. It provided a new way to analyze the herd behavior, but the
recognition rate was only 79.67%. Kashiha et al. [20] analyzed movement trajectories of pigs
in a group by image histogram matching and elliptical approximation, but the recognition
accuracy was overly dependent on the results of image segmentation. Zheng et al. [21]
used depth image and Faster R-CNN to realize automatic recognition of sows’ posture
and position in the pen, and they obtained the position distribution of sows in 24 h. This
study laid a technical foundation for position recognition and distribution in the pen of
pigs, but the depth map was relatively high cost. DeepLabCut (DLC) [22] has been used
for the pose estimation of experimental animals (mice, fruit flies) under high-definition
video because of its advantages of robust model and small sample labeling [23,24]. The
multi-target tracking accuracy of this algorithm could reach more than 95% [25], and the
operating efficiency was also improved, which provided a feasible scheme for behavior
trajectory tracking of piglets.

Trajectory tracking mainly utilizes Wi-Fi and GPS devices to capture human behav-
ior, unmanned aerial vehicle (UAV) path, and navigation trajectories [26]. Problems of
trajectory redundancy and drift always exist. Commonly used technologies in dynamic
trajectory correction include Kalman and particle filters [27], which produces problems
of low precision and filter divergence. Li et al. [28] used a multiple regression model to
fit position information and completed detection of aircraft abnormal trajectory based on
the statistical method. Yin et al. [29] used a convolutional neural network for anomaly
detection and extracted low-level time features through a two-level sliding window to
improve the classification performance of time series and the effect of anomaly detection.
Zheng et al. [30] proposed the gathering mode and used the linear interpolation method to
improve the problem of missing data. He et al. [31] proposed a mining algorithm based
on elastic distributed data set RDD-gathering and R-tree index to realize the trajectory
aggregation mode and solve the problem of large-scale trajectory data analysis. However,
the feature description ability of the abovementioned algorithm was weakened when
processing the behavior trajectory with nonlinear characteristics. Based on kernel principal
component analysis (KPCA) [32], this study introduced a high-dimensional spatiotemporal
feature model to solve the nonlinear feature description problem of piglets. This algorithm
could realize the dimension reduction of the features and provide a feasible solution for
the correction of the abnormal trajectory of piglets. In summary, the main problems solved
in this study are as follows:

(1) Sparse representation of individual behavior trajectories of piglets could reduce
the amount of data calculation and improve the calculation efficiency;

(2) Behavior trajectory tracking accuracy and abnormal trajectory correction of piglets;
(3) The individual trajectories of piglets were analyzed, and the thermal map of

trajectory distribution was established to obtain the four major activity areas of the piggery
(resting, drinking, excretion, and feeding areas). It provided support for the optimal
planning of piggery spatial distribution and welfare feeding.

In this study, we introduce a novel method for target tracking and trajectory correcting
based on DLC-KPCA to overcome the abovementioned issues. The rest of the paper is
organized as follows. The architecture of our method is described in Section 2. The results
and discussion are demonstrated in Sections 3 and 4. The conclusion and future perspective
are presented in Section 5.

2. Materials and Methods

A multi-objective individual trajectory tracking model based on DLC was established
to solve the problem of piglets’ behavior trajectory tracking. The robustness and generaliza-
tion ability of the algorithm were improved to achieve multi-objective all-weather behavior
trajectory tracking of piglets. Then, a high-dimensional spatiotemporal feature model was
established based on KPCA to achieve the optimal clustering of nonlinear multi-target
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behavior trajectory. In addition, a trajectory correction model was established from five
dimensions (semantic, space, angle, time, and velocity) for trajectory loss and drift. Finally,
individual trajectories of piglets were analyzed, and thermal maps of trajectories were
established to obtain four major activity areas of the piggery: resting, drinking, excretion,
and feeding areas. The technical route is shown in Figure 1.
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Figure 1. Method steps in this study.

2.1. Subject and Environment

The video collection date was from May 2019 to November 2019. The collection
location included large-scale farms in Qingdao, Shandong Province, China. In this study,
200 sets of videos (10 min for each episode) were selected from all-weather scenes for data
research. The piglets could eat and defecate at will, which ensured the adaptability of the
algorithm to the real environment. In this work, OpenCV3.4.9 (Platform for Visual Studio
2015) and PyCharm were selected as programming tools to realize the video tracking
experiment of behavior. The desktop computer was configured as Intel(R) Core (TM)
i7-7700 CPU @3.60 GHz *8, 16 GiB DDR, Ubuntu18.04.2 (64 bit). The pigs were 80-day
weaned Yorkshire piglets. The video scene is shown in Figure 2. Figure 2a is that for piglets
in group (80-day weaned) in the pen (4 m × 4 m) during the day, which was divided into
drinking area, eating area, excretion area and other areas. Figure 2b is that for piglets in
group (80-day weaned) in the pen (4 m × 4 m) at night, which were laid out differently. As
we see, (1) is the drinker, (2) is the feeder, and (3) is the excretion area. We selected lateral
shoot in Figure 2c to collect data on the pigpen environment and all the features of piglets
clearly. In Figure 2d, a Hikvision smart ball camera (DS-2DE4320IW-DEDS-2DE4320IW-D)
was made in Hangzhou, China, which had 3 million pixels and 20 × optical zoom. Its
infrared radiation at night could reach 100 m.
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Figure 2. Video capture scene. (a) Piggery during the day; (b) another piggery at night; (c) camera position; (d) camera pa-
rameters.

In this paper, SIFT (Scale Invariant Feature Transform) feature descriptors were used
to analyze the features of video images, and the results are shown in Figure 3. The
environment of the piggery is a complex background with light-dark effects and dry-wet
ground, which led to obvious noise and redundancy information in the video data, as
shown in Figure 3a. In addition, the behavior trajectories of piglets in the day are complex
and varied, with serious interaction scenes such as occlusion and ghosting, as shown in
Figure 3b.

Agriculture 2021, 11, x FOR PEER REVIEW 4 of 22 
 

 

  
(a)  (b) 

   
(c) (d) 

Figure 2. Video capture scene. (a) Piggery during the day; (b) another piggery at night; (c) camera position; (d) camera 
parameters. 

In this paper, SIFT (Scale Invariant Feature Transform) feature descriptors were used 
to analyze the features of video images, and the results are shown in Figure 3. The envi-
ronment of the piggery is a complex background with light-dark effects and dry-wet 
ground, which led to obvious noise and redundancy information in the video data, as 
shown in Figure 3a. In addition, the behavior trajectories of piglets in the day are complex 
and varied, with serious interaction scenes such as occlusion and ghosting, as shown in 
Figure 3b. 

  
(a) (b) 

Figure 3. Video feature analysis based on Scale Invariant Feature Transform. (a) Feature extraction; (b) image analysis. 

In the current study, 5000 videos of pigs were collected. We intercepted the key vid-
eos to reduce the amount of data training, and 800 sets (1000–5000 frames per set) were 
selected as the training set. A total of 200 sets were selected as the verification set, which 
had different interference factors, such as occlusion, darkness, and blur, for analyzing the 
robustness of a model. The data sets presented in this paper were representative, which 
covered multi-target piglets during the day and at night. 

  

 

Figure 3. Video feature analysis based on Scale Invariant Feature Transform. (a) Feature extraction; (b) image analysis.

In the current study, 5000 videos of pigs were collected. We intercepted the key videos
to reduce the amount of data training, and 800 sets (1000–5000 frames per set) were selected
as the training set. A total of 200 sets were selected as the verification set, which had
different interference factors, such as occlusion, darkness, and blur, for analyzing the
robustness of a model. The data sets presented in this paper were representative, which
covered multi-target piglets during the day and at night.
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2.2. Behavior Trajectory Tracking Model Based on DLC

The neural network used in DLC is very good at multi-target tracking, but the appli-
cation scenarios are still relatively simple. At present, the movement of high-definition
animals in the laboratory environment is mostly captured, which has a poor effect on
complex scenes such as occlusion and blur. It also still requires the manual marking of
hundreds or dozens of frames and takes a long time to train the model. Thus, it still needs
to be optimized to solve the problem in this study. In the tracking of pig’s body, this
algorithm still has problems such as tracking drift and loss, especially in the cognition
of different parts of the same pig. Although the training and learning effect has been
optimized, the key points such as ears, feet, and mouth are often confused, as shown in
Figure 4a. Problems such as breakpoint, loss, and drift also occur in the trajectory route,
and the similarity correlation is low, as shown in Figure 4b. Therefore, the algorithm was
improved in this study to improve the robustness in piglets’ behavior trajectory tracking
for achieving minimum frame marking and maximum tracking efficiency.
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”; (b) represents the video trajectory tracking results.

First, the labeling information should be enriched to improve the accuracy of the
training model for reducing the number of manually labeled samples. In this study,
only 5 frames of 5000 frames of video were manually marked as training samples. The
labeled samples were preprocessed by matrix transformation including image flip, image
rotation, and brightness enhancement. The number of tags was enlarged to the same as the
traditional algorithm, which avoided the problem of poor representation of a small number
of frames and reduced the dependency of manual tags. Accordingly, the accuracy of the
model was improved, and the over-fitting was decreased. Sample pretreatment results are
shown in Figure 5.

Second, this study conducted compression processing on labeled samples 1–2 times
given the redundancy of high-definition video image information, and the labeled area
was expanded, as shown in Figure 6. This way not only ensured the invariance of scene
semantics but also enriched the positive correlation information of training samples. The ex-
pansion of sampling points was helpful in reducing the drift displacement of the trajectory
and assimilating abnormal trajectories.
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Finally, the model generalization training was conducted, and different parameters,
such as batch size, shuffle, training rate, and stride, were set to optimize the convolution



Agriculture 2021, 11, 843 7 of 22

layer. The stochastic gradient descent method was used as the model optimization strategy.
In addition, the entire network used ReLU as the default activation function. The processing
results of video generalization training in different scenes include standing, drinking,
eating, lying down, and defecating, as shown in Figure 8. The model training results
realized the accurate positioning of up to 35 targets, which made the traditional target
tracking mode of piglets expand from the whole to specific parts, which was conducive to
the study of specific details of pig behavior.

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 22 
 

 

  
(a) (b) 

Figure 8. Results of generalization training. “+++++” is a manual marker, and “ ” represents the tracking results after 
training. (a) Tracking results of 7 targets; (b) tracking results of 28 targets. 

2.3. Behavior Trajectory Correcting Model based on KPCA 
2.3.1. Linear Trajectory Correction Strategy 

The highly purposeful walking behaviors of piglets, such as drinking water, feeding, 
and excretion, all contained linear trajectory clustering, which was characterized by strong 
linear correlation of trajectories in direction. Unlike the linear characteristics of UAV 
equipment and ship trajectory, the autonomous behavior of pigs increased the uncertainty 
and repeatability of the trajectory route. Typical linear behavior trajectory clustering of 
piglets is shown in Figure 9. The trajectory of piglets ranged from X0 to Xi, mainly includ-
ing circuits S1, S2, S3, S4, S5, S6, S7, and S8. 

 
Figure 9. Linear trajectory correction strategy. 

First, the angle θ1 between two points of the pig’s behavior trajectory would not be 
greater than 90° under normal circumstances, unless the stagnation and repetition of the 
current trajectory were shown in the orange part. According to the trajectory angle strat-
egy, X5, X6, and X7 could be removed as redundant trajectories, and the corresponding 
routes S5, S6, and S7 could be optimized and eliminated. 

Second, a turning point appeared in the route of X2-X3-X4 in the blue region. X3 
could be removed according to the path optimization strategy to ensure the maximum 
linear description. As a result, S3 and S4 were replaced by New S3. The path optimization 
strategy is shown in Figure 10a. 

Figure 8. Results of generalization training. “

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 22 
 

 

  
(a) (b) 

Figure 8. Results of generalization training. “+++++” is a manual marker, and “ ” represents the tracking results after 
training. (a) Tracking results of 7 targets; (b) tracking results of 28 targets. 

2.3. Behavior Trajectory Correcting Model based on KPCA 
2.3.1. Linear Trajectory Correction Strategy 

The highly purposeful walking behaviors of piglets, such as drinking water, feeding, 
and excretion, all contained linear trajectory clustering, which was characterized by strong 
linear correlation of trajectories in direction. Unlike the linear characteristics of UAV 
equipment and ship trajectory, the autonomous behavior of pigs increased the uncertainty 
and repeatability of the trajectory route. Typical linear behavior trajectory clustering of 
piglets is shown in Figure 9. The trajectory of piglets ranged from X0 to Xi, mainly includ-
ing circuits S1, S2, S3, S4, S5, S6, S7, and S8. 

 
Figure 9. Linear trajectory correction strategy. 

First, the angle θ1 between two points of the pig’s behavior trajectory would not be 
greater than 90° under normal circumstances, unless the stagnation and repetition of the 
current trajectory were shown in the orange part. According to the trajectory angle strat-
egy, X5, X6, and X7 could be removed as redundant trajectories, and the corresponding 
routes S5, S6, and S7 could be optimized and eliminated. 

Second, a turning point appeared in the route of X2-X3-X4 in the blue region. X3 
could be removed according to the path optimization strategy to ensure the maximum 
linear description. As a result, S3 and S4 were replaced by New S3. The path optimization 
strategy is shown in Figure 10a. 

” is a manual marker, and “

Agriculture 2021, 11, x FOR PEER REVIEW 7 of 21 
 

 

target tracking mode of piglets expand from the whole to specific parts, which was con-
ducive to the study of specific details of pig behavior. 

  
(a) (b) 

Figure 8. Results of generalization training.    +++++    is a manual marker, and        represents the tracking 
results after training. (a) Tracking results of 7 targets; (b) tracking results of 28 targets. 

2.3. Behavior Trajectory Correcting Model based on KPCA 
2.3.1. Linear Trajectory Correction Strategy 

The highly purposeful walking behaviors of piglets, such as drinking water, feeding, 
and excretion, all contained linear trajectory clustering, which was characterized by strong 
linear correlation of trajectories in direction. Unlike the linear characteristics of UAV 
equipment and ship trajectory, the autonomous behavior of pigs increased the uncertainty 
and repeatability of the trajectory route. Typical linear behavior trajectory clustering of 
piglets is shown in Figure 9. The trajectory of piglets ranged from X0 to Xi, mainly includ-
ing circuits S1, S2, S3, S4, S5, S6, S7, and S8. 

 
Figure 9. Linear trajectory correction strategy. 

First, the angle θ1 between two points of the pig’s behavior trajectory would not be 
greater than 90° under normal circumstances, unless the stagnation and repetition of the 
current trajectory were shown in the orange part. According to the trajectory angle strat-
egy, X5, X6, and X7 could be removed as redundant trajectories, and the corresponding 
routes S5, S6, and S7 could be optimized and eliminated. 

Second, a turning point appeared in the route of X2-X3-X4 in the blue region. X3 
could be removed according to the path optimization strategy to ensure the maximum 
linear description. As a result, S3 and S4 were replaced by New S3. The path optimization 
strategy is shown in Figure 10a. 

” represents the tracking results after
training. (a) Tracking results of 7 targets; (b) tracking results of 28 targets.

2.3. Behavior Trajectory Correcting Model Based on KPCA
2.3.1. Linear Trajectory Correction Strategy

The highly purposeful walking behaviors of piglets, such as drinking water, feeding,
and excretion, all contained linear trajectory clustering, which was characterized by strong
linear correlation of trajectories in direction. Unlike the linear characteristics of UAV
equipment and ship trajectory, the autonomous behavior of pigs increased the uncertainty
and repeatability of the trajectory route. Typical linear behavior trajectory clustering of
piglets is shown in Figure 9. The trajectory of piglets ranged from X0 to Xi, mainly including
circuits S1, S2, S3, S4, S5, S6, S7, and S8.
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First, the angle θ1 between two points of the pig’s behavior trajectory would not be
greater than 90◦ under normal circumstances, unless the stagnation and repetition of the
current trajectory were shown in the orange part. According to the trajectory angle strategy,
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X5, X6, and X7 could be removed as redundant trajectories, and the corresponding routes
S5, S6, and S7 could be optimized and eliminated.

Second, a turning point appeared in the route of X2-X3-X4 in the blue region. X3
could be removed according to the path optimization strategy to ensure the maximum
linear description. As a result, S3 and S4 were replaced by New S3. The path optimization
strategy is shown in Figure 10a.
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Third, when the initial trajectory displacement of X4-X9 in the orange region was too
large, new trajectory points X8 could be added according to the linear interpolation strategy.
Accordingly, route S8 became New S4 and New S5. The linear interpolation strategy is
shown in Figure 10b.

The final modified linear trajectory clustering was X0-X1-X2-X4-X8-X9, and the main
routes were S1, S2, New S3, New S4, and New S5. The redundant and nonlinear trajectories
were removed, and interpolation trajectory was supplemented to optimize the linear
trajectory clustering.

2.3.2. Nonlinear Trajectory Correction Strategy

In addition to the trajectories with obvious linear behaviors, many nonlinear trajec-
tories would be generated in the rest, feeding, drinking, and excretion areas due to the
immobility of pigs, and the trajectories were intricate. According to the spatiotemporal
characteristics of the trajectory (displacement, velocity, time series, and semantics), different
trajectory clusters were modified in this study. The typical nonlinear trajectories of piglets’
behavior are shown in Figure 11, among which X0–X3, X4–X8, X9–X16, and X17–X21 were
classified according to cluster strategy, time correlation, displacement correlation, and
speed correlation, respectively. Scattered internal and external trajectories such as X22–X25
were also observed, and they needed to be distinguished by semantic strategies. However,
some trajectories might be at critical values, such as X9, X17, and X21, which needed to be
distinguished according to the clustering optimization strategy.
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2.3.3. Trajectory Correction Model

The model modification steps were as follows:
(1) Trajectory segmentation: According to the behavior trajectory of piglets, the tra-

jectory could be preliminarily divided into linear and nonlinear trajectories. The data
between each two inflection points after processing were taken as a trajectory processing
unit, and the local autocorrelation coefficient was detected for each data unit to determine
the existence of redundant and drift trajectories.

(2) Trajectory determination: The feature matrix was constructed according to the
spatial and temporal characteristics. The velocity, displacement, and angle of each position
were calculated.

If the velocity variance (б) of this point was more than 3бand the velocity (V) was
greater than expected value of 20 px/frame, then the point was judged as a drift point. If
the displacement (D) between two points was greater than the threshold value of 50 px,
then the point was judged as a missing point. If the angle (θ1) between two points was
greater than the threshold value of 90◦, then the point was judged as a redundant point.
With the assumption of the original trajectories T = (P1, P2, . . . , Pn) and according to the
attribute of coordinate points (latitude, longitude), the angle between two edges formed by
three points was calculated by the law of cosines:

θ2 = arcos
Pi−1Pi·PiPi +1∣∣Pi−1Pi

∣∣·∣∣PiPi +1
∣∣ (1)

The angle between each of the three points was calculated by performing the angle
calculation in point order. The linear behavior trajectory was mainly straight line. Thus, if
the sum of the angles of continuous change exceeded a certain value, then the point could
be judged as an outlier. The threshold value was set as 160◦.

(3) Trajectory correction: The first three points of drift points were selected as reference
points for linear interpolation calculation, and the modified results were used to replace the
original drift points. The maximum correlation point of the redundant points was selected
as the key point. According to the angle judgment and path optimization of the key points,
the redundant points were removed and the key trajectory was retained. As a result, a new
trajectory cluster T1 = (K1, K2, . . . , Kn) was obtained.
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(4) Construction of high-dimensional space–time matrix: Based on the nonlinear
mapping function Φ in KPCA, the trajectory cluster T1 = (K1, K2, . . . , Kn) was mapped to
a high-dimensional space–time eigenmatrix D.

D(X, Y, V, D, θ) =

 T1
. . .
Tm

 (2)

where X and Y are coordinate point properties (latitude, longitude), V is the instanta-
neous velocity of the trajectory, D is two-point displacement, and θ is the angle of the
trajectory point.

(5) Trajectory sparsity: The covariance matrix of D was calculated, and the eigenvalue
and eigenvector of the covariance matrix were obtained. The obtained eigenvalues were
sorted from the largest to the smallest, and the eigenvectors corresponding to the largest k
eigenvalues were selected. The original data were projected into the low-dimensional space
composed of the selected feature vectors and transformed into new trajectory samples to
complete trajectory dimensionality reduction.

3. Results
3.1. Behavior Trajectory Tracking Results

The improved DLC algorithm was used to obtain the behavior trajectory of piglets
in this study. Obtaining effective behavior trajectory from the incorrect information was
difficult due to the serious drift, loss, and overlap of trajectories in the traditional algorithm.
The algorithm comparison results are shown in Figure 12, and Figure 12a is the manually
labeled sample. Figure 12b is the behavior trajectory obtained by the Kalman filter, in
which the trajectory points between frames drifted and were discontinuous. The sampling
particle filter had a good effect on the trajectory of individual piglets, but typical trajectory
loss problems were observed, as shown in Figure 12c. Figure 12d is motion-based multi-
target tracking, which aimed to achieve multi-target tracking, but the target detection was
inaccurate. Figure 12e is the traditional DLC algorithm, which required a large number
of manual labeling of training samples and realized the whole-process tracking of piglets,
but the problems of trajectory loss and drift still existed. Figure 12f is the training result of
the improved model in this study, which optimized the problems of trajectory redundancy,
trajectory loss, and trajectory drift. It also realized the trajectory clustering analysis of
multi-target behavior.

3.2. Behavior Trajectory Classification Results

The obtained high-dimensional space–time eigenvector was used to correct the abnor-
mal trajectory. The weight value in KPCA was adjusted to analyze its principal component
characteristic information, and the drift, redundant, and edge trajectories were eliminated.
The remaining scattered trajectories were classified by clustering, and the position of the
offset center point was corrected. The most important thing was to fit the nonlinear spatial
trajectories and form a linear trajectory class with obvious velocity, direction, and time
series. The modified nonlinear behavior trajectory classes, linear behavior trajectory class,
and other edge reserved trajectory classes in each region are shown in Figure 13. Among
them (a), the characteristics of the drinking water trajectory class were that the drink-
ing water trajectory of piglets contained the linear regular trajectory and the nonlinear
clustering trajectory with the drinking water area as the center point, and the individual
piglet had a distinct mapping relationship with the target of the water fountain. (b) The
excretion trajectory class was characterized by a small number of regular linear trajectories,
a large number of nonlinear trajectories, and other edge trajectories. (c) The characteristics
of feeding trajectories were mainly clustering of linear moving and feeding trajectories.
(d) The remaining trajectory class was characterized by nonlinear trajectory clustering,
and the target trajectory should ideally be a dense point with minimal displacement drift.
(e) Active trajectories were mainly divided into stationary region clustering and linear
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regular moving trajectories. Notably, the trajectory classification effect was significantly
improved after the correction.
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3.3. Activity Area Analysis

A significance analysis of the active areas was conducted. As shown in Figure 14,
the visualization results showed that the four active areas of piglets (drinking, feeding,
excretion, and active areas) could be clearly identified according to the significance gradient.
After significance processing, the active areas identified by track clustering features were
more refined. The results showed that the loss and drift of piglets’ behavior trajectory
often occurred in the coexisting regions of nonlinear and linear trajectories with multiple
interactions, such as the active, drinking, and excretion areas. The main characteristics
of trajectories could be divided into scattered and overlapping internal trajectories and
sporadic abnormal trajectories near the surrounding area. In this scenario, the activities of
piglets in the activity, feeding, drinking, and excretion areas could be tracked, which was
helpful for the scientific management and welfare feeding of the pig farm.
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4. Discussion
4.1. Abnormal Trajectory Detection Based on Spatiotemporal Characteristics

The drift trajectories were replaced by linear interpolation based on five spatiotempo-
ral feature vectors: velocity, displacement, angle, time series, and semantics. The key point
angle judgment and path optimization planning were conducted to remove the redundant
points. The threshold value (3б) of velocity variance, displacement threshold (d > 50 px),
two-point angle threshold (θ1 > 90◦), and the sum (θ2 > 160◦) of continuous rotation angle
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were judged for removing abnormal trajectories. Thus, the linear and nonlinear trajectories
could be effectively modified.

The abnormal trajectory analysis based on spatiotemporal characteristics is presented
in Figure 15. Figure 15a is the overall anomaly trajectory diagram analysis, in which the
red, purple, black, green, and blue frames are drift, redundant, lost, normal standard, and
complex overlapping trajectories, respectively. Figure 15b is the further analysis of complex
overlapping trajectories of blue frames, which are mainly drift and redundant trajectories.
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The displacement statistics of trajectories in each frame are shown in Figure 16. The
overall trajectory displacement could be maintained at 20 px per frame, with few drifting.
There is an exception, as shown in Figure 16c. It showed that the average detection times
of normal trajectories with displacements within 20 px were up to 200, and a small number
of drift trajectories with displacement distances higher than 50 px threshold or even up
to 1000 px were observed. The results showed that the outliers were not only limited to
the edge of the data set but also located in the interior of the data set. The method in this
study was good at correcting the trajectory with abnormal performance in speed, space,
and direction.

4.2. Sparse Representation and Correction of Trajectory Based on KPCA

The trajectory data were analyzed by KPCA to optimize the trajectory clustering
model. The model mainly had three parameters that needed to be set and adjusted: p,ω,
and v. p represents the extraction rate set in the feature space mapping,ω represents the
width of the Gaussian kernel function adopted, and v represents the asymptotic upper
limit of the proportion of abnormal trajectories in the trajectory set.

As shown in Table 1, a positive correlation existed between the extraction rate p and
the number of the extracted principal components. The extraction rate increased from 0.7
to 0.95 with an increase of 0.05, and the number of the extracted principal components also
increased slowly.
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Table 1. Experimental result of extraction rate p (ω = 8, v = 0.06).

p 0.7 0.75 0.8 0.85 0.9 0.95

Original trajectory data dimensions 1000 1000 1000 1000 1000 1000
Number of principal components 30 30 50 60 80 140
Number of abnormal trajectories 290 300 310 270 240 250
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As shown in Table 2, the parameter ω greatly influenced the number of extracted
principal components. When the parameter ω slowly increased at a small range, the
number of principal components decreased sharply, which indicated that the parameterω
had a direct control effect on the dimension reduction of trajectory features.

Table 2. Experimental result of parameterω (p = 0.9, v = 0.06).

ω 2 4 6 8 10 12

Original trajectory data dimensions 1000 1000 1000 1000 1000 1000
Number of principal components 289 106 97 63 40 28
Number of abnormal trajectories 84 83 86 88 93 92

As shown in Table 3, the value of the parameter v was constantly increasing, and
the number of detected abnormal trajectories was also increasing correspondingly. The
proportion of abnormal trajectories was very close to parameter v, which indicated that
parameter v had a good control effect on the proportion of abnormal trajectories.

Table 3. Experimental result of parameter v (p = 0.9,ω = 8).

v 0.02 0.04 0.06 0.08 0.10

Original trajectory data dimensions 1000 1000 1000 1000 1000
Number of principal components 50 50 50 50 50
Number of abnormal trajectories 63 99 106 270 323

By comparing and analyzing the experimental results based on the original trajectory
data and the high-dimensional characteristic data, the optimal experimental parameter
settings (ω = 8, p = 0.9, v = 0.06) were obtained. The trajectory dimension reduction was
also realized effectively.

The feature model based on KPCA algorithm was established, and the dimensionality
reduction of features based on nonlinear trajectory was realized. The optimal model pa-
rameter setting (ω = 8, p = 0.9, v = 0.06) was obtained through the analysis of experimental
results in this study. p andω greatly influenced the number of principal components. ω
had a direct control effect on the dimension reduction of trajectory characteristics, while v
had a good control effect on the proportion of the number of abnormal trajectories.

4.3. Performance Analysis of Improved DLC

This study abandoned the high-definition scene in the laboratory based on the tra-
ditional DLC. Aiming at the problems of trajectory tracking accuracy and efficiency of
piglets’ behavior, it preprocessed the original video to expand the number of tags, reduced
the number of manual tags for model training to less than 10, and realized the training
of small samples to solve the problems of trajectory tracking accuracy and efficiency of
piglets’ behavior. The tracking accuracy and similarity analysis of the algorithm are shown
in Figure 17, where Figure 17a is the comparison between the training marking results and
the test results; Figure 17b is the coordinate position of the trajectories in each frame, and
the track was continuous without major drift loss; and Figure 17c is the likelihood result
with an average value of 97%, which was better for scenarios with less activity at night.
As shown in Figure 17d, the training accuracy reached 99.8%, and the test accuracy was
96.88%. As shown in Figure 17e, the loss value was 0.002. As shown in Figure 17f, the
learning rate was 0.002.
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The algorithm in this study was suitable for lighting, ghosting, and fast moving of
piggery scenes. It also had good robustness for multi-piglet behavior trajectory tracking.
Compared with other video tracking algorithms, it realized not only the effective tracking
of 5–6 pigs but also the synchronous tracking of 35 key parts of 5 pigs at the maximum
in the stress test, as shown in Figure 18. This set of test videos was a separate set of
videos different from the model training and verification data, which were characterized
by including the typical behaviors of different piglets such as excreting, sleeping, drinking
and walking.

According to the above results, this paper compared the number and amplitude of
abnormal trajectory drift between the improved DLC-KPCA algorithm and the traditional
DLC algorithm.

As shown in Table 4, the optimal experimental parameter settings (ω = 8, p = 0.9,
v = 0.06) were selected to obtain the statistical data of the frequency and amplitude of the
abnormal trajectory drift. Among them, in the case of the same number of tracks, the
number of trajectory drift of the improved algorithm was reduced to an average of 78, and
the frequency of trajectory drift was reduced to 0.78%, while the traditional DLC algorithm
was 2.2 times that of the algorithm in this paper. In addition, the average amplitude of the
drift trajectory of the improved algorithm was 15 px, while the traditional DLC algorithm
was 3.3 times that of this paper.
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Table 4. Comparative statistics of the frequency and amplitude of abnormal trajectory drift.

Methods The Total Number The Normal
Number

The Drifting
Number The Frequency The Average

Amplitude

DLC 1000 826 174 17.4% 50 (px)
DLC-KPCA 1000 922 78 7.8% 15 (px)

For both quantitative statistical results and qualitative analysis results, the algorithm
in this paper is superior to other comparison algorithms, and the trajectory correction
efficiency is very good.

5. Conclusions

In this study, we proposed a novel method for tracking behavior trajectory and
correcting outliers of piglets. First, the improved DLC method based on small samples
ensured that the scene parsing remained unchanged. Thus, it achieved tag dependency
minimization and tracking efficiency maximization. The synchronization and correlation
of tracking improved with the effective behavior trajectory data. Second, the KPCA-
based sparse expression method of trajectory features, which was combined with the
space–time dimension anomaly correction method, mapped the nonlinear trajectory to
the high-dimensional feature. This way could effectively solve the problem of internal
feature mapping and realize trajectory correction. Finally, the significance identification
and analysis of the four active areas of the piggery were realized.

The method could adapt to the day and night, individual piglet and piglets in group,
and smudgy complex scenarios through the model generalization training. It could also
achieve the effective correction of the unpredictable trajectory and had a strong nonlinear
characteristic description ability. The proposed method can be used for further research in
animal abnormal behavior recognition and disease warning.
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