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Abstract: Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but
require accurate prediction of environmental factors to ensure ideal crop growth and management
efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and
dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder frame-
work (BEDA) to construct the long-time predictor for multiple environmental factors with high
nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet
threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is
selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention
mechanism is incorporated into the encoder–decoder framework to improve the prediction perfor-
mance. Experimental investigations are conducted in a practical greenhouse to accurately predict
indoor environmental factors (temperature, humidity, and CO2) from noisy IoT-based sensors. The
best model for all datasets was the proposed BEDA method, with the root mean square error of three
factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848
for humidity, and 0.8711 for CO2 concentration, respectively. The experimental results show that
the favorable prediction accuracy, robustness, and generalization of the proposed method make it
suitable to more precisely manage greenhouses.

Keywords: intelligent agricultural greenhouse; environmental factor prediction; deep-learning
encoder–decoder; self-attention mechanism; Internet of Things

1. Introduction

With the rapidly growing demand of global population, modern agriculture has be-
come an increasingly vital role in guaranteeing food production supply, ensuring social
stability and safeguarding ecological environment sustainability all over the world. It is the
important component of global trade economy which greatly contributes to job creation,
income source, and gross domestic product of most countries. To provide healthy food to
feed the population worldwide, smart agricultural greenhouses (SAG) utilize advanced
intelligent information technologies to break through the limits of natural conditions by
providing a stable and controllable environment for crop growing and planting manage-
ment, which has recently become the significant solution to produce more with minimal
socioeconomic and ecological loss from limited tillage and labor [1]. On basis of artificial
intelligence [2], Internet of Things (IoT) [3], big data computing [4], 5G communication [5],
blockchain [6], etc., the SAG systems record various environmental factors for real-time
monitoring of crop growth status and soil/climate changes, which aims to optimize the
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crop production process and manage sustainable supply chain practices as efficiently and
reasonably as possible. Based on many environmental data recorded intelligently in the
greenhouse, SAG systems also gradually show ability in reforming the agricultural appli-
cations by enhancing the growth rate and yield, improving quality and safety of various
crop production, and reducing human labor intensity.

Nevertheless, greenhouses are still susceptible to the atmospheric conditions, soil
state, and other environmental factors such as humidity, air temperature, light intensity,
carbon dioxide/Ozone concentrations, soil pH value, solar radiation, ultraviolet intensity,
and rainfall, which directly affect crop growth and yield. Therefore, accurately evaluating
infield environmental factors, and even further predicting future information, can generate
more benefits for smart agricultural applications in both controlled greenhouses and large-
scale farmlands [7]. Taking fruit planting in greenhouses as an example, efficient operation
for optimum productivity requires a careful and comprehensive understanding of plentiful
information about greenhouse indoor and outdoor environments, which are associated
with various plant growth processes including photosynthesis, respiration, transpiration,
phytohormone secretion, and so on. In addition, forecasting greenhouse environmen-
tal changes can provide intelligent field interventions to farmers with guidance about
soil nutrients regulation, crop maturity cycle, harvesting operations, and disease/pest
prevention.

Therefore, for enhancing resistance to potential risks and management efficiency in the
agricultural industry, the technology development of environmental factor forecasting is
indispensable in smart greenhouse systems. Particularly, it is extremely necessary to utilize
the state-of-the-art mathematical models to efficiently assist in uplifting the prediction
performance of intelligent systems in one way or another. Many studies have made many
great efforts to accomplish the dynamic environmental prediction of modern greenhouses.
Prediction algorithms are established through parameter estimation methods [8], statistic
representative methods [9], shallow neural networks [10], and deep-learning models [11],
to obtain professional future knowledge regarding the variation tendency of environmental
conditions in IoT-based precision agricultural applications. Those attempts usually train
predicting models using some current and historical data to extract representational fea-
tures for maximization of profit and minimization of losses. Afterwards, these disciplinary
models are applied to make informed decisions for various agronomic tasks in the desig-
nated agricultural scenes, which observably contributes to increasing crop production by
more than 10 times, compared with open-environment cultivation.

However, the accurate prediction of environmental factors is a very complex nonlinear
temporal issue affected by various internal and external variables, making it still challeng-
ing to forecast the future variation trends. Since the above algorithms are constructed for
a particular application, their performance becomes degraded when operational condi-
tions and datasets are changing over a long time. Additionally, thanks to high-frequency
and large-scale sensing data stored by IoT systems, it becomes possible to analyze sen-
sory data and discover new features for making accurate long-term predictions; however,
subsequently, different environmental factors have complex nonlinear relationships with
noisy interference, which makes it difficult for a single general model to predict different
variables at the same time. To obtain an accurate system model for filtering, prediction,
and control, some identification methods can used to achieve this objective [12–16] and to
establish the mathematical models of dynamic systems from observation data [17–23], and
other identification methods can be used to establish the prediction models and soft-sensor
models for various purposes [24–28].

Internet of Things (IoT) technology combines interconnected devices and programs
into a complete system that transfers data over the network without the need for human in-
teraction. Through IoT technology, researchers can collect, store, and analyze huge amounts
of data. These massive amounts of data are nonlinear, random, volatile, multidimensional,
and contain noise. Existing microclimate and data-driven models have low prediction accu-
racy and make it difficult to achieve accurate medium- to long-term forecasts. Noise in the
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data is strongly random and the model is not learnable. This has resulted in poor prediction
accuracy. Although deep-learning models have a strong learning capability, the presence of
noise can lead to overfitting of the model to the noise in the training set. This overlearning
affects the robustness of the model. The greenhouse environmental control process is one
of high inertia and lag. Accurate and stable prediction of changes and advance control
of the greenhouse environment can create a better growing environment for crops and
improve crop yield and quality. Therefore, modeling the greenhouse environment is of
practical importance.

To solve existing problems in environmental factor prediction, a bidirectional self-
attentive encoder–decoder framework (BEDA) is proposed to construct the long-time
predictor for multiple environmental factors with strong nonlinearity and noise. Firstly, to
avoid the problem of overfitting the model caused by noise in the data and to improve the
stability of the model, this paper uses wavelet threshold denoising to filter the greenhouse
data obtained from the sensor side. Then, the bidirectional long short-term-memory (LSTM)
are selected as the fundamental units to build the encoder–decoder framework due to their
ability in automatic feature extraction. Finally, the multi-head self-attention is incorporated
into the proposed framework to improve the predicting performance and model robustness,
which also presents good generalization effect for different input time series data.

The rest of this article is organized as follows. In Section 2, related work is introduced.
In Section 3, the diagram and detailed structure of the proposed model are presented.
Section 4 presents the experimental details and analysis results. Finally, conclusions are
drawn in Section 5.

2. Related Works

Modern greenhouse environments are complex, nonlinear, time series, strongly cou-
pled, etc. To design a reasonable greenhouse environmental regulation scheme, an accurate
predictive model of the environmental factors within the greenhouse is required. Many
studies have integrated some advanced technologies and methods to accomplish the
dynamic prediction for environmental factors. Currently, there are two main types of
greenhouse environmental models: one is the mechanistic modeling method on basis
of energy conservation equations and mass conservation equations, and the other is the
data-driven analytic modeling method based on extracting significant features and mining
trend rules from an amount of input data.

2.1. Microclimate Mechanistic Modeling

A mechanistic model is one in which there are physical relationships that can be ex-
pressed probabilistically by physical or mathematical equations. Microclimate mechanistic
modeling is the process of modeling a system based on the mechanics of a greenhouse
system, such as the physical or chemical patterns of change.

Bontsema [29] studied the rate of air exchange in greenhouses using physics by
examining the outdoor temperature, wind speed, the difference between indoor and
outdoor temperatures, and the opening condition of the actuators. Berrow [30] gives
calculations for transpiration, photosynthesis net radiation, and water vapor exchange
given by analyzing the changes in heat and water vapor produced by plants in transpiration
and photosynthesis. Rasheed [31] built a simulation model of a multi-span greenhouse and
used a transient system simulation program to simulate the greenhouse microenvironment.

There are numerous studies on mechanistic modeling of greenhouses, but mechanistic
model parameters are difficult to assess. Many variables are affecting physical experiments
in greenhouses, many mechanisms are not yet clear, and as the environment continues to
change, the conservation of energy equation needs to change accordingly. The degree of
difficulty in accurately characterizing the physical environment of greenhouse microcli-
mates using mathematical expressions is high. Thus, there are limitations to the application
of mechanistic modeling in greenhouse environmental prediction.
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2.2. Data-Driven Analytic Modeling

In recent years, greenhouse environmental prediction methods based on data-driven
analytic modeling theory have become popular among researchers. The data-driven
analytic approach treats the greenhouse system as a black box and relies only on real
data collected in the greenhouse to match the greenhouse system. Among them, machine-
learning and deep-learning technologies are important methods to address the prediction of
greenhouse environments. Yu [32] used the particle swarm optimization (PSO) algorithm
to optimize the least squares support vector machine (LSSVM) under the condition of
principal component analysis (PCA) to improve the precision and efficiency of temperature
prediction. Machine-learning methods have a complete theoretical derivation process and
procedural modeling steps. For smooth data, a more accurate model can be given for
prediction; however, machine-learning methods require more human intervention and
have low modeling accuracy. When the data contains noise, it can affect the convergence of
the model training.

Similarly, artificial neural networks are widely used in greenhouse environmental
prediction problems. For example, Linker [33] trained a neural network greenhouse model
using data collected over two summer months in a small greenhouse, and achieved optimal
CO2 control in the greenhouse using neural network modeling by predicting temperature
and CO2 separately. Ferreira [34] proposes the use of radial basis function neural networks
to model the internal air temperature of hydroponic greenhouses as a function of the
external air temperature and solar radiation, as well as the internal relative humidity.
Four [35] modeled the greenhouse dynamic process using an Elman recurrent neural
network and closed-loop control using a multilayer feedforward neural network, using
this cascade model of inverse neural networks and feedforward networks to model the
dynamics of the temperature and humidity data. These shallow networks have nonlinear
fitting capabilities, but their learning capacity is limited. It is difficult for them to cope with
large amounts of temporal data, and this makes the accuracy and general predicting results
in the long term difficult, and can be easily overfitted.

In recent years, deep-learning technology has made significant breakthroughs in
areas such as speech recognition, computer vision [36,37], and sequence classification [38],
and can also be seen as an effective tool for achieving time series prediction [39,40]. The
aim is to simulate the human brain for automatic data analysis and data representation.
Perez [41] proposed recurrent neural networks (RNN) to predict inside air temperature and
relative humidity in the greenhouse. The inputs of the network are various environmental
factors including temperature, relative humidity, solar radiation, and so on. The actuators
state signals such as window opening are selected as the outputs to training the model.
Song [42] predicts short-, medium-, and long-term changes in indoor humidity using a
multidimensional LSTM neural network for multiple environmental variables inside and
outside the greenhouse, with better results than RNN neural models. These models can
automatically learn hidden feature information from the data and capture nonlinearities
well. Compared to machine-learning methods and shallow neural networks, deep-learning
networks perform better and are more widely used. However, these models remain a
stacked network structure with a single model structure, little variation in model structure
for different problems, variable performance in prediction accuracy, and poor model
robustness.

In addition, other deep-learning frameworks, such as encoder–decoder and attention
networks, have a wide range of applications in areas such as power and energy fore-
casting [43] and air quality forecasting [44]. The encoder–decoder approach has become
a popular sequence-to-sequence (seq2seq) architecture due to its success in the field of
machine translation. The encoder–decoder encodes the source data as a fixed-length vector.
The decoder is then used to produce an output that effectively extracts time series features
and transform features from the input data. It simulates the learning process of a person
acquiring information, comprehending it to form a memory, and then retelling it through a
session. Its encoder and decoder structure can be CNN, RNN, LSTM, and other networks,
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with flexible model structure and strong information extraction capability. However, as the
encoder input lengthens, the previous information is overwritten by the later information,
resulting in a loss of information. A fixed-length encoding vector between the encoder
and decoder will not contain all the input sequence information. Attentional mechanisms
become an integral part of neural networks [45]. It overcomes the problem of information
loss due to fixed-length coding of encoder–decoders and mines features with attention
to detail. These novel network models are not widely used in greenhouse environmental
prediction.

Thereby, the greenhouse is a continuously operating system that is nonlinear, time
series, strongly coupled, and has sensors that inevitably introduce noise when monitoring
the greenhouse environment. This poses a major challenge in making accurate predictions
about the greenhouse environment. Existing greenhouse environmental prediction models
have a single structure, low prediction accuracy, and poor generalization capability. The
performance of the prediction models varies widely for different greenhouse environmental
factors and the models cannot be widely used in applications. To address these issues, this
paper proposes a bidirectional self-attentive coding and decoding model.

3. Materials and Methods
3.1. Wavelet Threshold Denoising

The data is affected by uncertainties in the acquisition process, such as the environment
and sensors, resulting in a large amount of noise in the collected data while containing
complex regular information, and the data usually shows strong randomness and strong
nonlinearity [46,47]. If noisy data is analyzed directly, the results can be extremely distorted,
so it is necessary to preprocess the data and analyze it to obtain an approximation of the
true value of the data.

The discrete wavelet transform is a decomposition process. Assume that the number
of decomposition layers is N, the mother wavelet function is η(t), and the parent wavelet
function is ψ(t). The mother wavelet function and the parent wavelet function are orthogo-
nal to each other, and the set obtained by applying the scale and translation transformations
to them is the wavelet basis:

ηk,h(t) = 2
k
2 η(2kt− h) (1)

ψk,h(t) = 2
k
2 ψ(2kt− h) (2)

where k ∈ R; k 6= 0 is the scaling factor; h ∈ R is the translation factor. The number of scale
and translation transforms is determined by the length of the sequence and the number of
decomposition layers. The original sequence S(t) can be expressed as

S(t) =
T

∑
h=1

ak,hψk,h(t) +
N

∑
k=1

T

∑
h=1

dk,hηk,h(t) = AN + D1 + D2 + · · ·+ Di, i = 1, 2, · · · , N (3)

where T is the length of the original sequence; ak,h is the low-frequency component with a
scale factor of k and a translation factor of h; dk,h is the high-frequency component. The
set of all low-frequency components in each layer decomposition is Ai, and the set of all
high-frequency components is Di. Decomposition of the low-frequency component of
the previous layer occurs to obtain the high-frequency component of the next layer, i.e.,
Ai = Ai+1 + Di+1.

Once the components corresponding to the wavelet decomposition have been ob-
tained, the noise is smoothed by selecting a suitable threshold υ.

σ =
median(Di)

0.6745
(4)

γ = σ
√

2 ln T (5)

υ = λiγ (6)
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Di
′ =

{
[sign(Di,t)](|Di,t|−υ) |Di,t|≥ υ

0 |Di,t|< υ
(7)

where λi is a scaling factor, and λi ∈ (0, 1) i = 1, · · · , N; σ is the variance of the noise
estimate; median() is the median of the smoothed series; 0.6745 is the standard variance
adjustment factor for Gaussian noise; γ is the estimated threshold. After data reconstruction
the filtered sequence is obtained as follows:

M(t) = AN + D1
′ + D2

′ + · · ·+ Di
′, i = 1, 2, · · · , N (8)

where Di
′ indicates the high-frequency component after noise removal. The estimated

true value M(t) obtained retains the useful information in the original data S(t), and the
proportion of noise M(t) is substantially reduced.

After wavelet threshold denoising, the filtered data is normalized and sliding win-
dowed. The denoised data is normalized to improve the convergence speed and accuracy
of the model.

Xs =
X−min(X)

max(X)−min(X)
(9)

The data is then processed by sliding window segmentation to divide the data into
dimensions suitable for model input. The data window slides as shown in Figure 1.
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Figure 1. Window sliding to generate model training data.

The model input length is n and the prediction length is τ. The window length is
n + τ and the sliding step is 1. In the experiments, n = 24 and τ = 24 are set.

3.2. Bidirectional LSTM Unit

Bidirectional long short-term memory (BiLSTM) is a bidirectional version of LSTM,
which is a combination of forwarding LSTM and backward LSTM. BiLSTM is capable of
mining the laws that are difficult to resolve by LSTM, showing very good performance for
complex classification and regression problems, and can make up for the shortcomings
of one-way LSTM. The unidirectional LSTM network is to input the time series vectors
in sequential order to obtain the prediction results. In real life, the information at the
current moment is not only related to the previous information but may also have some
relationship with the future information. The network structure of BiLSTM is shown in
Figure 2.
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The BiLSTM consists of two independent LSTM layers: the forward LSTM and the
backward LSTM. The forward LSTM is computed in chronological order, while the reverse
LSTM reverses the input sequence and computes it in reverse order. During training, the
forward LSTM and reverse LSTM networks are independent of each other and have no
interactions. Therefore, BiLSTM can better establish the correlation between time series
internally. Among them, the forward propagation process of the LSTM cell is as follows:

ft = σ
(

w f [xt; ht−1] + b f

)
(10)

it = σ(wi[xt; ht−1] + bi) (11)

c̃t = σ(wc[xt; ht−1] + bc) (12)

ct = ft × ct−1 + it × c̃t (13)

ot = σ(wo[xt; ht−1] + bo) (14)

ht = ot × tanh(ct) (15)

where ft is the forget gate, it is the input gate, ot is the output gated, ht−1 is the hidden
state of the previous cell, ct−1 is the previous cell state, c̃t is a candidate for cell state,
ct is the new cell content, xt is the input value at the current moment, σ is the sigmoid
activation function, tanh is the hyperbolic tangent activation function, [; ] is the collocation
of elements, × is the multiplication between elements, w f ,wi,wc,wo,b f ,bi,bc, and bo is the
parameter to be learned.

The input of the forward LSTM is input in sequence order, and the final result is

[
→
h 1,
→
h 2, · · · ,

→
h t]. The backward LSTM is the same process as the forward LSTM, except

that the order of the input sequences is different. Eventually, the output of the reverse

LSTM is [
←
h 1,
←
h 2, · · · ,

←
h t]. The final output of the BiLSTM network is as follows:

[h1, h2, · · · , ht] =

[
[
→
h 1;
←
h 1], [

→
h 2;
←
h 2], · · · , [

→
h t;
←
h t]

]
(16)

where [; ] can be concatenation, summation, and multiplication of corresponding elements.
BiLSTM enhances the interaction of sequence datasets by capturing past and future infor-
mation in two independent LSTMs, forward and backward, to mine sequence information
features more accurately.

3.3. Multi-Head Self-Attention Mechanism

In deep learning, self-attention is an attentional mechanism for sequences that helps to
learn task-specific relationships between different elements in a given sequence, resulting
in a better representation of the sequence. An attention function can be described as
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mapping a query and a set of key-value pairs to an output, where the query, key, value,
and output are all vectors. The output is computed as a weighted sum of the values, where
the weight assigned to each value is computed by a compatibility function of the query
with the corresponding key.

Q = wqq (17)

K = wkk (18)

V = wvv (19)

Then, the dot products of the query are computed with all keys. After scaling each
point, the softmax function is used to obtain the attention weight. Finally, the values are
weighted to obtain the output vector.

AttentionWight = so f tmax
(

QKT
√

d

)
(20)

head = so f tmax
(

QKT
√

d

)
V (21)

where head is the output sequence after weighting, and the attention weights are calculated
based on the similarity between Q and K; d is the dimension of K.

In multi-headed attention, multiple copies of the attention module are used in parallel.
The multi-headed attention mechanism enables the model to be modeled from different
subspaces using different sets of weight matrices, where h is the number of different linear
projections:

o = woconcat(head0, . . . , headh) (22)

The values of all the headers are concatenated and fed into the linear layer to obtain
the final output. Multi-head attention allows the model to jointly attend to information
from different representation subspaces at different positions. Different scaled dot product
attention is similar to different convolution kernels in convolution, extracting different
attention features.

3.4. Bidirectional Self-Attentive Encoding-Decoding Framework

In this paper, we construct a self-attention prediction model based on the encoder–
decoder framework. Although the encoder–decoder framework is classical, the limitations
of fixed-length coding and information loss degrade the network performance as the input
sequence increases. The attention mechanism overcomes the limitations of the encoder–
decoder by performing attended feature selection on the encoder output. Multiheaded
attention constructed by using a highly optimized matrix multiplication encoder is faster
and more spatially efficient than additive attention and multiplicative attention. We use
BiLSTM to build the encoder–decoder and fuse the self-attentive mechanism in the encoder–
decoder. The model structure is shown in Figure 3.

As shown in Figure 3, the data is first subjected to sliding window and wavelet
threshold denoising to obtain the filtered data X = [x1, x2, · · · , xt]

T ∈ Rt and the true value
Y = [yt+1, yt+2, · · · , yt+τ ]

T ∈ Rτ . The encoder network consists of a multilayer BiLSTM
network. After forward propagation of the input data X through the encoder, the encoder
output H = [h1, h2, · · · , hi, · · · , ht]

T ∈ Rt×u is obtained, where u is the number of cells

output by BiLSTM, hi = [
→
h i;
←
h i], and [; ] denotes the sum of two vectors.
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In the multi-head attention layer, all of the queries, keys, and values come from the
encoder output H. After encoder output H has been nonlinearly mapped k times, we
obtain k groups queries, keys, and values.

Qi = σ
(
wq,i H + bq,i

)
, i = 1, 2, · · · , k (23)

Ki = σ(wk,i H + bk,i), i = 1, 2, · · · , k (24)

Vi = σ(wv,i H + bv,i), i = 1, 2, · · · , k (25)

where wq,i ∈ Ru×d, wk,i ∈ Ru×d, wv,i ∈ Ru×d, bq,i ∈ Rt×d, bk,i ∈ Rt×d, bv,i ∈ Rt×d are the
parameters to be learned, d = u

k , Qj ∈ Rt×d, Kj ∈ Rt×d, and Vj ∈ Rt×d. The scaled dot
product attention is computed for each of the k groups Q, K, and V. The attention weight is
a temporal attention weight, which is a vector of t rows and t columns.

headi = so f tmax

(
QiKT

i√
d

)
Vi (26)

All the results are concatenated and linearly transformed to obtain the output.

o = woconcat(head0, . . . , headh) + bo (27)
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where wo ∈ Ru×u, bo ∈ Rt×u are the parameters to be learned. Finally, we add the weighted
encoder output to the original encoder output to obtain the encoding vector C ∈ Rt×u.

Similar to the encoder, the decoder is also composed of multiple layers of the BiLSTM
network. In the decoder, the encoder vector C is forward propagated and the decoder
output s is nonlinearly transformed to obtain the predicted value. The output layer
transforms the output vector of the decoder linearly to a vector of variable dimension τ,
and then nonlinearly using the relu activation function to obtain the final predicted value.

ŷ = relu
(
wys + by

)
(28)

The training proceeds on the training set; after that, the evaluation is performed on
the validation set for minimizing overfitting. When the training process and parameter
selection are achieved, the final evaluation is performed on the unknown testing set for
evaluating the performance. All models use the Adaptive Moment Estimation (Adam)
optimization algorithm, which uses momentum and adaptive learning rates to speed up
convergence, and it is computationally efficient and has a low memory footprint. The loss
function for model training is the mean absolute error (MSE).

MSE =
∑n

i=1 (ŷi − yi)
2

n
(29)

where n is the number of samples, ŷ is the predicted value, y is the ground truth value.
The MSE is derivable everywhere; the gradient values are dynamically changing and can
converge quickly.

4. Results and Discussion
4.1. Experimental Datasets

All constructed datasets used in this experiment are real data derived from green-
houses in Weifang, Shandong, China, and collected by various environmental monitoring
stations and IoT-based sensors, which are developed in-house by the Beijing Agricultural
Intelligent Equipment Technology Research Centre. Each greenhouse is equipped with
an intelligence management system to collect, analyze and process massive environmen-
tal information, including temperature, humidity, CO2, light intensity and quanta, total
radiation, net radiation, barometric pressure, wind direction, wind speed, and rainfall
in the inside and outdoors of the whole greenhouse. The various parameters measuring
the greenhouse are recorded by different devices at all times. Then, those data can be
transferred to the cloud platform and stored in the management system’s database via the
serial port at any time, as long as the computer is connected to the collector. Then, these
data are automatically transmitted to the background cloud server through communication
forms such as CAN/4G/WIFI at regular intervals, and are stored in the management
system’s database via the serial port at any time, as long as the computer is connected to the
collector. After data processing and intelligent model learning, the prediction results and
determined recommendations are returned in a timely manner, which can more accurately
reflect the dynamic situation of greenhouse management. The experimental greenhouse
and inside scenes equipped with various IoT-based environmental monitoring sensors and
stations are shown in Figure 4.
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Figure 4. Intelligent greenhouse systems.

The dataset includes greenhouse air temperature, humidity, and CO2 concentrations
for a total of 172 days from 1 August 2020 to 19 January 2021, with a data sampling
frequency of 30 min. The sensor acquisition data is relatively complete, with only a few
missing values. For the missing parts of the data, mean interpolation is used. A total of
8256 sets of data were finally obtained. The waveforms of temperature, humidity, and CO2
concentration are shown in Figures 5–7.
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The graphs show that the temperature, humidity, and CO2 concentration data in
the greenhouse are cyclical and fluctuating. The CO2 concentration data are significantly
higher after December than before December.

In the experimental section, we used the first 24 temperature data to predict the last
24 temperature data, i.e., the first 12 h to predict the last 12 h. Similarly, humidity and CO2
concentration were also predicted by the first 24 data to the last 24 data. We used the first
158 days of data as training, and the last 28 days were divided equally into the validation
and test sets. Due to the performance of the sensor and the measurement environment,
the greenhouse data obtained from the sensor will inevitably be mixed with noise. The
presence of noise can lead to overfitting of the model to the noise in the training set,
resulting in a reduction in the prediction accuracy and robustness of the model. Therefore,
the original dataset was denoised by wavelet threshold filtering. The local filter waveforms
for temperature, humidity, and CO2 concentration are shown in Figures 8–10.
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Here, the red waveform is the original data, and the green waveform is the wavelet
threshold filtered data. As can be seen from the graphs, the curve is smoother after wavelet
threshold filtering. The parameters for suitable wavelet threshold denoising were derived
from several comparisons. In the temperature dataset, the parameters for using wavelet
threshold denoising are wavelet basis: sym3, N = 3, and scaling factor: 0.9, 0.5, and 0.4,
respectively. In the humidity dataset, the parameters for using wavelet threshold denoising
are wavelet basis: sym3, N = 3, and scaling factor: 0.9, 0.6, and 0.6, respectively. In the
CO2 dataset, the parameters for using wavelet threshold denoising are wavelet basis: db3,
N = 1, and scaling factor: 0.3.

4.2. Evaluation Metrics

We evaluated the performance of the model using five evaluation metrics, including
root mean square error (RMSE), mean absolute error (MAE), Pearson correlation coeffi-
cient (R), symmetric mean absolute percentage error (SMAPE), and complexity-invariant
distance (CID). The formulae for calculating the first four indicators are shown below:

RMSE =

√
∑n

i=1 (ŷi − yi)
2

n
(30)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (31)

SMAPE =
1
n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(32)

R =
∑n

i=1 (ŷi − ŷi)(yi − yi)√
∑n

i=1 (ŷi − ŷi)
2
∑n

i=1 (yi − yi)
2

(33)

where n is the number of samples, ŷ is the predicted value, ŷ is the average of the prediction,
y is the ground truth value of the power load, and y is the average of the ground truth
value.

In addition, we also used the complexity-invariant distance [48] metric to assess
the information difference in complexity between the predicted and actual values. The
complexity-invariant distance was proposed by Batista and originally used to measure the
complexity difference between two time series by using information theory. For two time
series, Ŷ = (ŷ1, ŷ2, · · · , ŷτ) and y = (y1, y2, · · · , yτ) of length, the statistic CID(Ŷ, Y) can
be calculated as follows:

CE(Y) =

√√√√ τ

∑
t=1

(yt+1 − yt)
2

(34)

CF(Ŷ, Y) =
max

{
CE(Ŷ), CE(Y)

}
min

{
CE(Ŷ), CE(Y)

} (35)

ED(Ŷ, Y) =

√√√√ τ

∑
t=1

(ŷt − yt)
2

(36)

CID(Ŷ, Y) = ED(Ŷ, Y)CF(Ŷ, Y) (37)

Similar to the common evaluation metrics, a smaller CID means less difference be-
tween the two time series. It can effectively overcome the subjective similarities directly
observed by the human eye.
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4.3. Comparative Experiments

To validate the performance of our approach, we conducted some experiments to
compare our proposed model with other advanced deep-learning models. In this paper,
BP [29], LSTM [30], GRU, BiLSTM [49], encoder–decoder, and attention methods are used
as comparison methods, where both encoder–decoder and attention were constructed using
LSTM networks. All experimental models were written using the Torch deep-learning
framework. Among them, the number of network layers of BP, LSTM, GRU, and BiLSTM is
all four layers, and the number of network cells in each layer is 24. The encoder and decoder
of encoder–decoder and attention are composed of two layers of the LSTM network. The
encoder and decoder of the method in this paper are composed of two layers of the BiLSTM
network. The number of attention heads in the attention model and the paper method is
four. The batch size of all models is 16, the number of training iterations epoch is 100, the
optimizer is Adam, and the learning rate is 0.001. All models were trained and tested on a
cloud server platform with Windows 10 system, and codes are based on the open-source
framework, Pytorch with Python API, and were run on a dual-core Intel Core i7-9750H@2.6
GHz processor with two NVIDIA RTX 2060 GPUs, which have 16 G memory.

To verify the stability of the models, each model was repeated 10 times independently
in this paper, and the result indicators of each test set were statistically analyzed, and
box-and-whisker plots were drawn. In the box-and-whisker plot, a line in the middle of
the box, which is the median of the data, represents the average of the sample data. The
upper and lower limits of the box, which are the upper and lower quartiles of the data,
respectively, mean that the box contains 50% of the data, and the width of the box reflects,
to some extent, the degree of fluctuation of the data. There is a line above and below the
box, representing the maximum and minimum values. By relying on the box-and-whisker
plot, we can roughly determine the dispersion of the data distribution. The average of the
results of 10 model tests was used as the final evaluation of each model.

4.3.1. Temperature-Predicting Results

The RMSE box-and-whisker diagram and MAE box-and-whisker diagram for each
model of the temperature dataset are shown in Figure 11. We can see, from Figure 11, that
the LSTM, GRU, RNN, BP, and BiLSTM models have wider boxes and unstable models,
and the attention model has the narrowest box and the most stable model. There is
more stability and more accuracy with the encoder–decoder structure than without the
encoder–decoder structure. The model is more stable and has higher prediction accuracy
after incorporating the attention mechanism. Although the box of the paper’s method is
wider than the attention model, its RMSE metric is smaller than that of attention model,
highlighting the accuracy of the model and indicating that the use of bidirectional recurrent
neural networks is effective for model performance improvement.

The temperature data in the greenhouse for each model index is shown in Table 1.
Figure 12 visualizes the evaluation indicators in Table 1. As can be seen from Table 1,
the proposed method has the smallest RMSE, MAE, and SMAPE, the largest R, and the
best curve fit. As can be seen from the table, using the encoder–decoder structure reduces
RMSE, MAE, SMAPE, and CID by 43%, 49%, 47%, and 51%, respectively, compared to not
using the encoder–decoder structure. Using BiLSTM reduces each model metric by 37%,
41%, 42%, and 43%, respectively, compared to LSTM. With the addition of the attention
mechanism, the metrics of the encoder–decoder structure are reduced by 8%, 7%, 4%,
and 9%, respectively. The metrics of encoder–decoder attention networks using BiLSTM
decreased by 15%, 15%, 13%, and 13%, respectively, compared to those using LSTM.
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Table 1. Model indicators for temperature in greenhouses.

Model RMSE MAE SMAPE R CID

LSTM 6.179 5.451 0.333 0.377 254.5
GRU 6.054 5.31 0.326 0.399 249
RNN 5.888 5.186 0.322 0.481 228.2

BP 4.125 3.487 0.227 0.51 147.6
BiLSTM 3.887 3.169 0.193 0.517 145.2

Encoder–decoder 3.498 2.773 0.174 0.646 124.1
Attention 3.202 2.567 0.166 0.706 112.5

Proposed BEDA 2.726 2.183 0.144 0.749 97.38
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Figure 13 shows the prediction waveforms of each model for the temperature data,
which shows the temperature prediction curves from 6 January 2021 to 19 January 2021. In
different parts of the prediction, the model in this paper does not perform the best, but in
most of them, the prediction curve of the proposed method is the closest to the true curve.
The local plot shows the prediction curve from January 10 to 12, in which the predicted
values of the proposed method are closest to the true values.
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4.3.2. Humidity-Predicting Results

The RMSE box-and-whisker diagram and MAE box-and-whisker diagram for each
model of the humidity dataset are shown in Figure 14. As can be seen from Figure 14,
the RNN, LSTM, and BP models have wider boxes, unstable models, and low prediction
accuracy. Although the GRU model has a narrower box, its RMSE and MAE are larger,
and its prediction accuracy is low. The use of the encoder–decoder structure is more
stable and accurate than the structure without the encoder–decoder. The inclusion of the
attention mechanism resulted in a more stable model with higher prediction accuracy.
BiLSTM showed good performance in the humidity dataset, while the encoder–decoder
attention model was constructed with a smaller box using BiLSTM and the model had
higher prediction accuracy.

The humidity data in the greenhouse for each model index is shown in Table 2.
Figure 15 visualizes the evaluation indicators in the Table 2. As can be seen from Table 2,
the proposed method has the smallest RMSE, MAE, and SMAPE, the largest R, and the best
curve fit. As can be seen from the table, using the encoder–decoder structure reduces RMSE,
MAE, SMAPE, and CID by 52%, 58%, 58%, and 45%, respectively, compared to not using
the encoder–decoder structure. Using BiLSTM reduces each model metric by 54%, 58%,
58%, and 43%, respectively, compared to LSTM. The metrics of encoder–decoder attention
networks using BiLSTM decreased by 13%, 12%, 12%, and 9%, respectively, compared to
those using LSTM.
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Table 2. Model indicators for humidity in greenhouses.

Model RMSE MAE SMAPE R CID

RNN 9.680 8.683 0.0954 0.412 283.7
GRU 9.092 8.106 0.0888 0.403 257.7
LSTM 8.912 7.963 0.0872 0.406 259.5

BP 8.702 7.606 0.0834 0.557 355.1
Attention 4.851 3.90 0.0425 0.767 171.4

Encoder–decoder 4.201 3.335 0.0363 0.782 141.7
BiLSTM 4.093 3.325 0.0363 0.804 147.1

Proposed BEDA 3.621 2.934 0.0319 0.848 127.8
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Figure 16 shows the prediction waveforms of each model for the humidity data, which
shows the humidity prediction curves from 6 January 2021 to 19 January 2021. In different
parts of the prediction, the model in this paper does not perform the best, but in most of
them, the prediction curve of the proposed method is the closest to the true curve. The
local plot shows the prediction curve from January 10 to 12, in which the predicted values
of the proposed method are closest to the true values.
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4.3.3. CO2 Concentration-Predicting Results

The RMSE box-and-whisker diagram and MAE box-and-whisker diagram for each
model of the CO2 dataset are shown in Figure 17. As can be seen from Figure 17, the GRU,
RNN, LSTM, and BiLSTM models have wider boxes, unstable models, and low prediction
accuracy. Although the BP model has a narrower box, its RMSE and MAE are larger, and
its prediction accuracy is low. The use of encoder–decoder structures is more stable and
accurate than structures without encoder–decoders. The introduction of the attention
mechanism means the model is more stable and has higher prediction accuracy. The
encoder–decoder attention model constructed using BiLSTM has high prediction accuracy
and stability.

The CO2 data in the greenhouse for each model index is shown in Table 3. Figure 18
visualizes the evaluation indicators in Table 3. As can be seen from Table 3, the proposed
method has the smallest RMSE, MAE, and SMAPE, the largest R, and the best curve fit.
As can be seen from the table, using the encoder–decoder structure reduces RMSE, MAE,
SMAPE, and CID by 49%, 51%, 51%, and 48%, respectively, compared to not using the
encoder–decoder structure. Using BiLSTM reduces each model metric by 49%, 51%, 51%,
and 49%, respectively, compared to LSTM. With the addition of the attention mechanism,
the metrics of the encoder–decoder structure are reduced by 3%, 4%, 2%, and 4%, respec-
tively. The metrics of encoder–decoder attention networks using BiLSTM decreased by 8%,
9%, 11%, and 12%, respectively, compared to those using LSTM.
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Table 3. Model indicators for CO2 in greenhouses.

Model RMSE MAE SMAPE R CID

GRU 118.610 102.699 0.1526 0.1723 4046.4
RNN 111.068 96.196 0.1420 0.1601 4773.2
LSTM 109.683 95.131 0.1403 0.1369 5135.1

BP 95.083 81.975 0.1201 0.1626 5432.7
BiLSTM 55.821 45.712 0.0683 0.8087 2576.6

Encoder–decoder 55.782 45.796 0.0683 0.8125 2652.1
Attention 54.110 43.883 0.0664 0.8405 2541.8

Proposed BEDA 49.817 39.640 0.0590 0.8711 2221.4
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Figure 19 shows the prediction waveforms of each model for the CO2 data, which
shows the CO2 prediction curves from 6 January 2021 to 19 January 2021. In different parts
of the prediction, the model in this paper does not perform the best, but in most of them,
the prediction curve of the proposed method is the closest to the true curve. The local plot
shows the prediction curve from January 10 to 12, in which the predicted values of the
proposed method are closest to the true values.
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Figure 19. Waveforms of test results for each model of indoor CO2 data.

Figure 20 shows a scatter plot of the test results for the three dataset test sets of
temperature humidity and CO2, with the horizontal axis representing the true values and
the vertical axis representing the predicted values. The blue dots are the distribution of all
predicted values, the black dots are the distribution of the true values, the red line is the
regression fit line for the predicted values, and the black line represents the true values.
The slope of the black line is 1. The slopes of the regression lines for the predicted results
of the test sets for temperature, humidity, and CO2 were calculated to be 0.678, 0.754, and
1.039, respectively.
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It was shown, with the greenhouse temperature, humidity, and CO2 datasets, that the
encoder–decoder model performs better than other commonly used models for time series
data with high randomness and volatility. The encoder–decoder model can better extract
data features and dig deeper into the feature patterns within the data. The incorporation of
attention can even effectively improve the stability and prediction accuracy of the model.
BiLSTM has better performance than LSTM by extracting learned column data features in
both forward and backward directions. The bidirectional self-attentive encoder–decoder
model showed good stability and prediction accuracy on all three datasets.

5. Conclusions

Within the trend of a progressive adoption of IoT and artificial intelligence technolo-
gies in agriculture, we considered the specific problem of developing temporal predictors
for environmental factors in smart greenhouses embedding IoT sensors. The model is
based on a bidirectional self-attentive encoder–decoder framework (BEDA) for forecast-
ing multiple environmental factors with strong nonlinearity and noise. In the proposed
method, the integrity and accuracy of data are effectively improved after wavelet thresh-
old denoising and data pretreatment operation in the first stage. Then, the bidirectional
long short-term memory (LSTM) is selected as the fundamental unit to extract time-serial
features. Ultimately, the multi-head self-attention mechanism is incorporated into the
encoder–decoder framework to construct the prediction model. The prediction results
of temperature, humidity, and CO2 using the constructed BEDA method show that the
proposed predictor can achieve better accuracy, robustness, and generalization perfor-
mance than the comparative prediction models. Specifically, for the root mean square
error, the prediction results of the proposed method can fall to 2.726 for temperature, 3.621
for humidity, and 49.817 for CO2 concentration, respectively, with an R of 0.749, 0.848,
and 0.8711 for three parameters. Experimental results show that the proposed method is
much more suitable for smart greenhouse management and application. In further work,
the model structure will be optimized to improve the prediction performance, and the
coupling of greenhouse data will be investigated to expand the application scope of the
proposed model in smart agriculture. The proposed methods in this paper can combine
other identification schemes [50–55] for studying new modeling and prediction of dynamic
time series and dynamical systems with colored noises [56–60], and can be applied to other
fields [61–66] such as signal modeling, tracking, and control systems.
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