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Abstract: Productive tiller percentage (PTP) is the only available comprehensive indicator of rice
population quality. However, productive panicle number (PN) has a great effect on its characterization
accuracy. Panicle exsertion is an important but difficult to describe morphological index; therefore, it
cannot be easily determined. The aims of this study were to develop heading uniformity (HU), which
describes the difference in the degree of rice panicle exsertion, as a new comprehensive indicator by
designing a representative sampling and calculation method and exploring the relationship between
HU and yield components. HU first decreased then increased after initial heading, exhibiting a
single-valley curve. Adequate HU was obtained by panicle sampling on day two or three (panicle
N fertilizer proportion ≤40 or >40%) after initial heading. The explanatory power of PTP for grain
yield variance was markedly insufficient in low- and high-PN rice populations. Compared with
the percent contribution of PTP to grain yield variance (12.32–41.26%), that of HU (49.02–61.93%)
was greater and more stable across rice populations of different PNs. Moreover, HU showed fewer
interannual variations, despite large interannual differences in weather and soil conditions. Hence,
HU may have applications as a comprehensive indicator of rice population quality.

Keywords: rice population quality; heading uniformity; panicle number; productive tiller percentage;
grain yield

1. Introduction

Rice population quality is the basic theory that ensures high rice yields in China. In
this theory, the optimum panicle number (PN) and productive tiller percentages (PTPs) of
70–80% (Indica rice) and 80–90% (Japonica rice) are used as comprehensive indicators of
the quality of high-yield rice populations [1,2]. As it is not easy to determine the optimum
PN of rice populations in different environments, there is large uncertainty in selecting
a proper range of PTP to guide the cultivation of high-quality rice populations [3–5].
Therefore, deeper insights into the relationships between rice population characteristics
and grain yields, as well as a thorough analysis of comprehensive indicators that generate
high-yielding rice populations, would be of great value for developing an indicator system
of rice population quality and improving the current theory of cultivation.

The theory of rice population quality involves seven basic quality indicators, includ-
ing the total photosynthetic production of rice population during the productive phase,
optimum leaf area index (LAI), spikelet number per plant (SN), and grain–leaf ratio [1,6,7].
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Although these indicators can only be used to determine whether a rice population meets
the “high-yield” requirements and design specifications, they are all closely related to a
PTP-centered comprehensive quality indicator. Among the seven basic indicators, LAI,
SN, grain–leaf ratio, effective and high effective leaf area percentage, single stem-sheath
weight, and spikelet-root activity are the most reflective of the rice population quality at
the heading stage. Hence, morphological features of rice plants at the heading stage are
reliable indicators of population quality. Extensive studies have been conducted to explore
the relationship between heading and grain yield. Panicle exsertion and the uppermost
internode play critical roles in regulating the heading stage and controlling water and
nutrient transport efficiency from the leaves and stems to the grains. The drought-induced
inhibition of panicle exsertion has been attributed to a decrease in uppermost internode
elongation, which can usually account for 70–75% of spikelet sterility [8–12]. Previous
studies have reported that the elongation rate of the uppermost internode is the fastest
at four days before flowering and slows down after flowering under normal conditions.
However, the uppermost internode elongation is blocked by leaf water deficit, which has
a significant negative correlation with grain yield (−0.40**) [13]. Under severe environ-
mental conditions, panicle exsertion is responsible for enhanced spikelet sterility [14–16].
Kobayasi et al. reported that air temperature, solar radiation, and atmospheric vapor pres-
sure explain approximately 40% of the observed variation in panicle heading [17]. Panicle
exsertion and the uppermost internode are not only sensitive to adverse environments
but also vary among different tillers of the same rice plant, with the elongation rate of the
uppermost internodes being generally higher in early initiated tillers than in late-initiated
tillers [12]. Therefore, the uppermost internode elongation reflects the morphological and
physiological differences between different tillers, in addition to being sensitive to the
external environment.

Rice breeders refer to the uppermost internode elongation as the “fourth genetic
element” of hybrid rice [18], and based on this trait, they have been searching for and
using the elongated uppermost internode genes to improve yields of hybrid seeds [19,20].
Despite its close relationship with grain yield, the uppermost internode elongation requires
a complicated measurement process, which is difficult to implement in practice for the
cultivation of high-yield rice, thereby ruling out the uppermost internode elongation as a
practical comprehensive indicator of rice population quality.

Uniformity is an important trait in crop populations. To date, most studies have shown
that population uniformity (including plant height, tiller number per plant (TN), and
panicle length) of low-TN crops, such as corn, is closely related to grain yield, whereas that
of high-TN crops, such as rice and wheat, has a weak relationship with grain yield [21–23].
Lei et al. [24] used the reciprocal of coefficient of variation as a uniformity indicator
to investigate the uniformity of tiller dry weight per plant in rice and found that the
uniformity indicator shows an increasing trend as the growth period progresses, reaching
a maximum value after full heading and then remains stable. Under extremely sparse
planting conditions, the rice TN is relatively large and the panicle weight of early initiated
tillers is prone to reach the upper limit of the rice cultivar. Tiller dry weight per plant and
panicle weight per plant do not have a simple linear relationship. The uniformity of tiller
dry weight per plant significantly affects grain yield. Zhang et al. [25] proposed that the
practices of promoting the tillering capacity per plant, increasing the PTP, and reducing
the occurrence of nonproductive tillers and small tillers are all beneficial for improving
the heading uniformity (HU) and increasing the grain yield of the population. This study,
however, used the heading duration to represent HU without considering differences in
the heading moments of different panicles. Therefore, an in-depth quantification of the
relationships between HU and grain yields is beyond the capability of HU represented by
heading duration. To overcome these limitations, a method to describe the differences in
rice heading processes in detail is required to quantify the relationships between the PN,
single panicle weight (SPW), and HU and elucidate the underlying mechanisms through
which HU characterizes the quality of rice populations.
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The difference in the uppermost internode elongation of single hull rice during the
heading stage leads to discrepancies in the state of panicles exserting from the flag leaf
sheath at the same time. From a purely mathematical point of view, this discrepancy
can be expressed as a value with a reasonable calculation method. Because heading is a
continuous, dynamic process, representative maximum and minimum values of HU can
be determined. Although it is difficult to accurately obtain the maximum and minimum
HU, it is possible to approximate them by shortening the sampling intervals. In summary,
the HU obtained through mathematical calculations can be applied to rice production.

Although rice population quality has been determined previously using various meth-
ods, the role of HU in rice population quality has not been elucidated. Therefore, we aimed
to verify whether HU was a suitable comprehensible indicator of rice population quality.
To achieve this goal, we mainly focused on the following three aspects: (1) determination
of the representative HU sampling time using a newly proposed HU calculation method;
(2) exploration of the internal relationship between HU and grain yield formulation by
studying the relationships between HU and PN (SPW); and (3) comparison of HU and PTP
(a widely used comprehensive rice population quality indicator) to verify the ability of HU
to characterize rice population quality.

2. Materials and Methods
2.1. Location of the Study

The current study included three field experiments, all conducted at the experimental
farm of the Rice Research Institute of Sichuan Agricultural University, Wenjiang District,
Chengdu, Sichuan Province, which is the only major grain-producing area in Southwest
China (30◦43′ N, 103◦47′ E). Experiments 1–3 were conducted in 2013, 2017, and 2018,
respectively. Meteorological data of rice seasons were obtained from the Sichuan Meteo-
rological Bureau (Table 1). Likely due to the intensification of climate change, the climate
conditions of the three test years were not stable, and there was a certain difference from the
average values for 2000–2020. Both of the fields where experiments 1 and 2 were conducted
comprised sandy loam and had been previously used for the cultivation of rapeseed. For
experiment 1, rice seeds were sown on April 9, followed by seedling transplantation on
May 12 and crop harvest on September 6. For experiment 2, rice seeds were sown on
April 7, followed by seedling transplantation on May 8 and crop harvest on September 10.
Experiment 3 field comprised sandy soil and had been previously used for the cultivation
of wheat; rice seeds were sown on April 13, followed by seedling transplantation on May
20 and crop harvest on September 16. No fertilizer was applied during the cultivation of
rapeseed in field 2, thereby leading to low soil fertility during the rice season. The nutrient
content of the surface soil of the experimental fields is shown in Table 2.

Table 1. Meteorological conditions during the rice season in 2013, 2017, 2019, 2020, and 2000–2020 at
the Rice Research Institute of Sichuan Agricultural University in Sichuan Province, China.

Year Total Rainfall (mm) Total Sunshine
Hours (h)

Mean Diurnal
Temperature (◦C)

2013 602.20 598.80 22.87
2017 576.78 622.73 23.01
2019 520.03 642.00 23.19
2020 564.82 581.40 22.67

2000–2020 550.30 610.70 22.87

2.2. Rice Varieties

In experiment 1, hybrid rice varieties ‘Chuan Nong You 498’ (C498) and ‘Chuan You
6203’ (C6203) were used as the experimental cultivars, with C498 producing low PNs but
large panicle and C6203 producing high PNs but small panicle. In experiments 2, 3, and
4, the hybrid rice varieties ‘Long Liang You 1206’ (L1206), ‘Y Liang You 1’ (Y1), ‘Yi Xiang
You 2115’ (Y2115), and ‘F You 498’ (F498) were used as the experimental cultivars, with
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Y2115 and L1206 producing high PNs but small panicles and Y1 and F498 producing low
PNs but large panicles [26]. The above six varieties are all national registered hybrid rice
cultivars with synchronized jointing and heading stages, and they can be grown in all rice
production areas in China.

Table 2. Average values for selected soil characteristics of composite topsoil samples (0–20 cm) from the experimental fields
in 2013, 2017, 2019, and 2020.

Experiment Organic Matter Total Nitrogen Available Nitrogen Available Phosphorus Available Potassium
(g kg−1) (g kg−1) (mg kg−1) (mg kg−1) (mg kg−1)

Experiment 1 (2013) 24.41 2.12 104.33 31.75 121.50
Experiment 2 (2017) 22.34 1.69 99.60 25.48 110.45
Experiment 3 (2019) 18.66 1.79 90.66 20.38 90.24
Experiment 4 (2020) 21.12 1.83 93.74 21.53 102.34

2.3. Experimental Design

Experiment 1, conducted in 2013, was a two-factor split-plot design of rice variety
× nitrogen management. The field was divided into two main plots, one for C498 and
the other for C6203. Each main plot was further divided into a number of subplots for
four different ratios of basal-tillering fertilizer to panicle fertilizer, namely 75:25, 60:40,
45:55, and 30:70, thereby totaling eight treatments. Each treatment was implemented
in triplicate, and each subplot had dimensions of 3.5 m × 4 m (14.0 m2 in area). The
implementation of experiment 2, which used four hybrid rice varieties, was to verify the
results of experiment 1; the treatments were the same as those in experiment 1.

Experiment 3 was a repetition of experiment 4. Both experiments were conducted with
a two-factor split-plot design of rice variety × nitrogen management. L1206, Y1, Y2115,
and F498 were subjected to three nitrogen managements; i.e., farmers’ usual management,
leaf age fertilization management, and uniform fertilization management (Table 3), thereby
totaling 12 treatments. Each treatment was implemented in triplicate, and each subplot
had dimensions of 4.5 m × 5 m (=22.5 m2 in area).

Table 3. Nitrogen management during the rice season in 2019 and 2020.

Nitrogen Management Nitrogen Application Method

Farmers’ usual management 150 kg ha−1 of N fertilizer was applied according to the ratio m (basal fertilizer):
m (tillering fertilizer) = 7:3, one day before and seven days after transplanting.

Leaf age fertilization management

150 kg ha−1 of N fertilizer was applied according to the ratio m (base fertilizer):
m (tillering fertilizer): m (panicle fertilizer) = 3:3:4, one day before and seven days
after transplanting, and as the fourth and second leaves emerged from the top
(panicle fertilizer was divided into two portions).

Uniform fertilization management 15, 15, 30, 15, 15, 15, and 15 kg ha−1 (total 120 kg ha−1) of N fertilizer was applied
7, 14, 35, 49, 56, 70, and 77 days after transplanting.

The transplanting density of rice seedlings in all three experiments was
33.3 cm × 16.7 cm. Along with nitrogen fertilizer, P2O5 and K2O were used as basal
fertilizers at application rates of 75 and 150 kg hm−2, respectively. The nitrogen, phos-
phorus, and potassium fertilizers used in the experiments were urea (containing 46% N),
superphosphate (containing 12% P2O5), and potassium chloride (containing 60% K2O),
respectively. Controlled irrigation was applied to ensure proper water management [27].
Reasonable field management was conducted during the experiments, and there was no
obvious flooding, drought, pests, or parasitic weeds throughout the growth period.

2.4. Experimental Items and Methods
2.4.1. PTP

In experiments 3 and 4, seven days after the seedlings had been transplanted, 20 uni-
formly grown rice plants were selected in each subplot and labeled. For each labeled
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seedling, the number of tillers was recorded every seven days until the number increased
to the maximum and did not change further; this seedling was referred to as the maximum-
tiller seedling. PTP was calculated as the ratio of the number of productive tillers, which
was defined as the tillers with productive panicles to the maximum number of tillers.

2.4.2. HU

In experiments 1 and 2, when the tips of the flag leaves on the main stem were at the
same level as the tips of the top second leaves (about seven days before panicles emerged),
20 rice plants in the same growth state were selected in each subplot according to the mean
number of tillers and then labeled. Starting from the initial heading day (when 10% rice
panicles exserted to 2 cm from the flag leaf pulvinus; set as the first day [D1]), three rice
plants were selected on each day for measurement, and this procedure continued for six
consecutive days for determining HU. Specifically, each rice plant was measured for the
panicle length L (from the panicle tip to the panicle neck node excluding the awn length)
and distance D between the panicle top to the flag leaf pulvinus. When the panicle tip
emerged, D was a positive value; otherwise, it was a negative value. For a single rice
plant, its HU could be calculated by substituting the measured values of L and D into
Formulas (1)–(4). The mean HU of representative rice plants is defined as the HU of the
rice population.

X =
D− Dmin

L
(1)

X =
1
N

N

∑
i=1

Xi (2)

S =

√√√√∑ X2 − (∑ X)
N

2

N − 1
(3)

HU = (1− S
X
)× 100 (4)

where Dmin represents the D of the tiller with the shortest uppermost internode length in
a hill, X represents the degree of panicle exsertion relative to the slowest-growing tiller,
X represents the mean of the set of values of X, N represents the number of productive
panicles in a hill, and S represents the standard deviation of the set of values of X. The
optimal sampling time for experiments 3 and 4 refers to the results of experiments 1 and 2.

2.4.3. Yield and Yield Components Measurement

At the maturity stage of experiments 3 and 4, five plants were selected in each subplot
according to the average PN to measure yield components. Grain yield was determined
from all remaining plants for each plot and adjusted to the standard moisture content of
0.135 g H2O g−1.

2.5. Data Processing

Statistical analysis was performed using Microsoft Excel 2010 (Microsoft Corp., Red-
mond, WA, USA) and IBM SPSS Statistics V27.0 (IBM Corp., Armonk, NY, USA), and
relative weight analysis was performed following the method of Johnson et al. [28]. Specifi-
cally, a set of independent variables (Xj) was transformed into a set of orthogonal variables
(Zk) on which the dependent variable Y was regressed to obtain a set of coefficients (βk),
while each independent variable (Xj) was regressed on Zk to obtain a set of regression
coefficients (λjk). The relative weight of each independent variable Xj on Y is described by
the following equation:

εj = λj1
2β1

2 + λj2
2β2

2 + . . . + λjk
2βk

2 (5)
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Data plotting was performed using Origin Pro 9.0.0 SR2 (OriginLab Corp., Northamp-
ton, MA, USA).

3. Results
3.1. Dynamic Changes in Rice HU at the Heading Stage

Figures 1 and 2 show single-valley curves in rice HU on each day after the initial
heading. The HU of low-PN varieties (C498, F498, and Y1) was higher than that of high-PN
varieties (C6203, Y2115, and L1206). As heading advanced, HU initially decreased and
then increased, reaching a maximum value (approximately maximum; the same below)
at the end of heading and then remained stable. The minimum HUs of C498, F498, and
Y1 (approximately minimum; the same below) appeared on D2 in the treatments with
25% panicle fertilizer and 40% panicle fertilizer and D3 in the treatment with 55% panicle
fertilizer and 70% panicle fertilizer after the initial heading. Moreover, the HU increased
with the increasing proportion of panicle fertilizer to total fertilizer. The trends for the HU
of C6203, Y2115, and L1206 after the initial heading and their relationships with nitrogen
management were similar to those of the low-PN varieties. In contrast, the effects of
nitrogen management on maximum HU varied dramatically between the two types of
varieties. Maximum HU varied dramatically among nitrogen managements in C6203,
Y2115, and L1206, gradually increasing with the increase in panicle fertilizer proportion.
In contrast, maximum HU among nitrogen managements in C498, F498, and Y1 showed
little variation, demonstrating the weak effects of nitrogen management in this variety.
The appearance of maximum HU of a rice plant coincided with the completion of panicle
exsertion of the plant, and the value of D-Dmin tended to be the same among tillers at this
time point, making the HU only reflective of the panicle length difference among tillers
and independent of the elongation rate and degree of the uppermost internode.
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respectively; vertical bars represent means ± SEs. Four groups of letters from top to bottom in the same column indicate
statistical significance at p = 0.05 among different nitrogen management regimens from large to small within the same
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3.2. Varied PTPs and HUs of Different Rice Populations

Unlike PTP, minimum HU, which was obtained on D2 after the initial heading (and
hereafter referred to as HU for simplicity, unless otherwise specified), showed no significant
difference over the years; thus, HU is more stable than PTP. The 2020 rice season had more
rainfall and higher basal soil fertility than the 2019 rice season (Tables 1 and 2), which
were beneficial to tillering. As sunshine hours and diurnal temperature in 2020 were lower
than those in 2019, the PN in 2020 was significantly lower to that in 2019; this, coupled
with varied tillers, resulted in a significantly different PTP between 2019 and 2020. The
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interaction effects between year and variety (nitrogen management) and those among
year, variety, and nitrogen management had no significant effect on grain yield, PN, SPW,
PTP, and HU (Table 4); therefore, this study averaged the test data in 2019 and 2020 for
statistical analysis.
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Figure 2. Dynamic changes in the rice heading uniformity over six days after the initial heading in the year 2017. N1,
N2, N3, and N4 represent the ratios m (base and tillering fertilizer): m (panicle fertilizer) = 75:25, 60:40, 45:55, and 30:70,
respectively; vertical bars represent means ± SEs. Four groups of letters from top to bottom in the same column indicate
statistical significance at P = 0.05 among different nitrogen management regimens from large to small within the same
time period.

Table 4. Analysis of variance (ANOVA) of the effect of nitrogen management on grain yield components and heading traits
at the heading stage in 2019 and 2020.

Variance Grain Yield PN SPW PTP HU

Variety (V) 28.8 ** 81.98 ** 75.79 ** 18.75 ** 88.1 **
Nitrogen management

mode (N) 61.98 ** 54.56 ** 289.09 ** 16.32 * 72.51 **

Year (Y) 0.23 ns 14.69 * 0.08 ns 13.37 * 0.16 ns
V * N 0.81 ns 0.83 ns 0.47 ns 1.93 ns 1.1 ns
Y * V 2.07 ns 1.44 ns 1.43 ns 0.15 ns 2.32 ns
Y * N 0.05 ns 1.14 ns 2.12 ns 0.49 ns 0.11 ns

Y * V * N 1.32 ns 1.00 ns 1.65 ns 1.00 ns 1.22 ns

PN: productive panicle number; SPW: single panicle weight; PTP: productive tiller percentage; HU: heading uniformity. ns: not significant;
*: significant at the p = 0.05 level; **: significant at the P = 0.01 level.

Multiple comparisons of PN, SPW, and grain yield showed that F498 and Y1 produced
higher yield (12.79% average), larger SPW (22.04% average), and lower PN (7.58% average)
than L1206 and Y2115 (Table 5). Among PN, SPW, and grain yield, only PN varied
significantly between 2019 and 2020 (Table 4), which was consistent with the performance
of PTP. Thus, PN was used in the current study to classify rice populations as follows: (1)
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the F498 population had the lowest PN and was, thus, referred to as the low-PN population;
(2) the Y2115 population had the highest PN and was, thus, referred to as the high-PN
population; and (3) the L1206 and Y1 populations had moderate PNs and were, thus,
referred to as the moderate-PN population.

Table 5. Effects of nitrogen management on grain yield components and heading traits in 2019 and 2020 (two-year average).

Variety Nitrogen Management PN (×104 ha−1) SPW (g) Grain Yield (kg ha−1) PTP (%) HU

L1206
FU 185.4 4.37 b 8077 b 66.74 b 28.48 b

LAF 191.31 a 4.61 b 8803 a 68.02 ab 37.04 a
UF 173.29 b 5.14 a 8931 a 69.25 a 37.61 a

Average 183.36 b 4.70 c 8604 b 68.00 c 34.38 b

Y2115
FU 197.51 a 3.93 c 7753 b 66.31 c 26.94 b

LAF 198.71 a 4.42 b 8775 a 71.27 a 36.92 a
UF 183.32 b 4.93 a 9015 a 69.50 b 38.05 a

Average 193.18 a 4.42 d 8514 b 69.03 b 33.97 b

F498
FU 170.59 a 5.14 c 8752 b 68.90 a 35.92 b

LAF 177.59 a 5.73 b 10,171 a 69.20 a 45.49 a
UF 156.38 b 6.36 a 9945 a 70.84 a 45.45 a

Average 168.18 c 5.74 a 9623 a 69.64 b 42.29 a

Y1
FU 179.57 ab 4.92 b 8843 b 70.29 b 39.66 b

LAF 185.32 a 5.49 a 10,144 a 70.56 ab 46.36 a
UF 174.61 b 5.77 a 10,069 a 71.94 a 46.07 a

Average 179.83 b 5.39 b 9685 a 70.93 a 44.03 a

F-value
Variety (V) 81.98 ** 75.79 ** 28.80 ** 18.74 ** 88.10 **

Nitrogen management (N) 33.09 ** 39.30 ** 49.84** 13.44 ** 95.17**
V×N 0.94 ns 0.61 ns 0.86 ns 2.04 ns 0.99 ns

PN: productive panicle number; SPW: single panicle weight; PTP: productive tiller percentage; HU: heading uniformity; FU: farmers’
usual management; LAF: leaf age fertilization management; UF: uniform fertilization management; ns: not significant; **: significant at the
p = 0.01 level. The lowercase letters after different nitrogen managements within the same variety represent significant differences at the
p = 0.05 level; the lowercase letters after the average values represent significant differences at the p = 0.05 level among different varieties.

Among different varieties or nitrogen fertilizer managements, the trends of grain
yields were consistent with HUs but varied greatly with PTPs. In the current study, HU
was 45.45–46.36 in high-yielding treatments (with a yield ≥9750 kg ha−1, which was 20%
higher than the local average yield), but was only 26.29–28.48 in the low-yield treatment
(with a yield ≤8250 kg ha−1, which was similar to the local average yield), confirming that
rice populations with higher yields had higher HUs.

3.3. Comparison of the Percent Contribution of PTP and HU to Grain Yield Variance

Relative weight analysis overcomes the problem of collinearity among independent
variables, and the sum of the percent contributions of each independent variable to the
dependent variable is equal to the coefficient of determination (R2). With PN and SPW
(PTP and HU) as the independent variables and grain yield as the dependent variable, a
relative weight analysis was performed (Table 6). The results showed that both PN and
SPW determined grain yield, but the former had a far lower percent contribution than
the latter to grain yield variance; the PN to SPW percent contribution ratio was 8.87 to
37.55%. Although a high number of productive panicles was noted (Y3724 in 2018), the
PN contributed least to grain yield variance. In contrast, PTP and HU jointly contributed
to 74.25 to 96.19% of grain yield variance, with PTP having a lower percent contribution
than HU. In the moderate-PN populations, the percent contributions of PTP to grain
yield variance were 80.58 and 75.08% by HU for Y1 and L1206, respectively; however,
these values decreased to only 19.89 and 45.72% in the high- and low-PN populations,
respectively, indicating that the explanatory power of PTP for grain yield variance was
quite limited in the high- and low-PN populations. In contrast, the percent contribution
of HU to grain yield variance was relatively stable across populations with different PNs,
indicating that HU is more accurate and stable than PTP in predicting grain yield variance.
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Table 6. Relative weight analysis of productive panicle number versus single panicle weight, and
productive tiller percentage versus heading uniformity on grain yield in 2019 and 2020 (two-year
average).

Variety
Percent Contribution (%)

R2 (%)
Percent Contribution (%)

R2 (%)
PN SPW PTP HU

L1206 17.93 81.82 99.75 41.25 54.94 96.19
Y2115 8.15 91.85 100.00 12.32 61.93 74.25
F498 22.75 76.81 99.56 24.54 53.67 78.21
Y1 27.24 72.55 99.79 39.50 49.02 88.52

PN: productive panicle number; SPW: single panicle weight; PTP: productive tiller percentage; HU: heading uniformity.

Relative weight analysis was further performed using PN and SPW as the independent
variables and PTP and HU as the dependent variables (Table 7). PN and SPW contributed
to a higher percentage of HU variance than PTP variance, indicating that HU is a better
indicator of grain yield components than PTP. The R2 of PTP by PN and SPW differed
dramatically from that of HU by PN and SPW in the low- and high- PN populations,
which were 26.40 and 17.59%, respectively. In contrast, this difference was not more
than 5% in the moderate-PN populations. This discrepancy suggested that the HU of
low- and high-PN populations is more reflective of grain yield components than that of
moderate-PN populations. In the low-PN population, SPW had a much higher percent
contribution to PTP and HU than PN. In the high-PN population, SPW still had a much
higher percent contribution to HU than PN, but the percent contribution to PTP decreased
to only 33.86% of the percent contribution of PN. In various rice populations, HU comprised
more information on grain yield components than PTP.

Table 7. Relative weight analysis of productive panicle number and single panicle weight on
productive tiller percentage and heading uniformity in 2019 and 2020 (two-year average).

Variety Dependent Variable
Percent Contribution (%)

R2 (%)
PN SPW

L1206
PTP 57.77 32.86 90.64
HU 11.95 83.09 95.03

Y2115
PTP 45.25 15.32 60.56
HU 3.62 74.52 78.15

F498
PTP 13.22 48.96 62.18
HU 24.15 64.43 88.58

Y1
PTP 17.90 63.11 81.01
HU 22.83 63.96 86.79

PN: productive panicle number; SPW: single panicle weight; PTP: productive tiller percentage; HU: heading uniformity.

4. Discussion
4.1. HU Change Pattern and Optimal Sampling Time at the Heading Stage

Panicle elongation stops before heading, and the heading process of rice plants is
controlled by uppermost internode elongation, with differences in the elongation rate
determining the differences in heading traits among different environmental conditions or
genotypes [29,30]. Previous studies have shown that the elongation rate of the uppermost
internode exhibits a single-peak curve pattern. Ji et al. [29] pointed out that the acceleration
of the uppermost internode elongation starts when panicles begin to exsert from the flag
leaf sheath and reaches a maximum value 1–3 days after the initial heading. He et al. [30]
reported that under normal water conditions, the elongation of the uppermost internode
accelerates one day before panicle emergence, and the elongation rate is maximum within
a time window of one day before the initial heading to four days after the initial heading.
Drought stress inhibits the uppermost internode elongation, delaying this time window
to 1–4 days after the initial heading. As shown by equations A–D (Section 2.4.2), the
magnitude of rice HU is determined by the difference in the degree of panicle exsertion,
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with a smaller difference leading to a larger HU value. Under normal growth conditions,
accelerated elongation of the uppermost internode generally occurs when the uppermost
internode length is approximately 5 cm [23]. At this time point, the uppermost internode
length is generally short, and the difference in the degree of panicle exsertion is relatively
small among different productive panicles, thereby leading to a large HU. As the panicle
exsertion process accelerates, the elongation rate of the uppermost internode may reach
5–6 cm day−1. During this period, a higher difference in the degree of panicle exsertion
would lead to a smaller HU value, and the minimum HU in the process is reflective of the
largest difference in the degree of panicle exsertion. As more panicles exsert, the degree
of exsertion of one panicle gradually approaches that of another one, and this decrease
in the difference of exsertion leads to an increase in HU. When the panicle exsertion
process is completed, the difference in the degree of panicle exsertion is minimal and
remains stable. At this time point (Equations A–D), the maximum HU is almost only
reflective of the difference in panicle length. In experiments 1 and 2, HU first decreased
and then increased as the heading proceeded, which was consistent with the formula-
based prediction. Moreover, the minimum HU was on D2 and D3 after the initial heading,
which was consistent with the reported time window of the fastest uppermost internode
elongation in studies by Ji et al. [29] and He et al. [30]. Therefore, to compare rice HU
among different environmental conditions or varieties, it is recommended to conduct
sampling and measurement 2 (the proportion of panicle fertilizer is not higher than 40%)
or 3 (the proportion of panicle fertilizer is higher than 40%) days after the initial heading.

4.2. Comparison of HU Among Different Rice Populations

The elongation rate of the uppermost internode is generally lower in late-initiated
tillers than in early initiated tillers, and the uniformity of rice panicle size decreases with
the increase in late-initiated, high-order tillers [12,31]. The rice varieties C6203, Y2115,
and L1206 with high PN also exhibited large differences among panicles, and their HUs
were significantly lower than those of C498, F498, and Y1 during the whole heading
stage. The difference in minimum HU between the two types of rice varieties was far
greater than the difference in maximum HU, further confirming the rationality of using
the minimum HU as the representative HU to reflect the difference in heading among rice
populations. As the maximum HU is almost only reflective of the difference in panicle
length, the greater the difference in panicle length, the smaller the maximum HU. Prior
studies have shown that the effect of nitrogen application on yield components is greater
in multipanicle type rice varieties than in large-panicle type varieties [32,33]. An increase
in panicle fertilizer proportion promoted the growth of panicle size more greatly on the
late-initiated tillers of the small-panicle varieties C6203, Y2115, and L1206 than on those of
the large-panicle varieties C498, F498, and Y1, which decreased the difference in panicle
length, thereby making the maximum HU even greater in treatments with a higher panicle
fertilizer proportion. However, the regulatory effects of panicle fertilizer on panicle length
were weak in the C498, F498, and Y1 populations because of their large panicle size,
and there was almost no difference in maximum HU among treatments. Although the
effects of panicle fertilizer on maximum HU were different between the two types of
rice varieties, high proportions of panicle fertilizer enhanced nitrogen metabolism at the
booting stage and weakened the demand for carbon metabolism at the heading stage,
resulting in heading delay in both rice varieties. Specifically, panicle fertilizer proportions
of 55 and 70% delayed the acceleration of the uppermost internode elongation and, thus,
the arrival of minimum HU.

4.3. Comparison Between HU and PTP with Respect to Grain Yield

Extensive studies have shown that PN is positively correlated with grain yield and
that the effects of SPW on grain yield increase as temperature and light conditions im-
prove [34,35]. The current results showed that the effects of PN and SPW on grain yield
varied among rice varieties and nitrogen managements and that the effect of PN was less
than that of SPW, which was closely related to the ecological environment and production
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characteristics of the rice area in the Sichuan Basin. The rice area in the Sichuan Basin is
subject to low sunshine hours and high humidity [36], which leads to limited PN in the
paddy fields. Therefore, high-yield rice breeding in this area is centered on increasing
SPW, whereas high-yielding cultivation prefers sparse planting, the maintenance of a
certain number of productive panicles, and an increase in the number of spikelets per
panicle [37,38]. Under the dual constraints of environmental conditions and technical
capacities, the possibility for PN to affect yield is diminished whereas the role of SPW
is prominent. The results of the current study showed that the largest differences in PN
among different nitrogen managements were 8.40, 10.40, and 13.56% for high-, moderate-,
and low-PN populations, respectively. In contrast, the largest differences in SPW among
the different nitrogen managements were 25.45, 17.62, and 23.74% for these rice popu-
lations, respectively. This observation suggested that SPW was regulated to a greater
extent than PN, which established a foundation for further improvement in rice grain yield.
Indicators more closely related to SPW will provide a more accurate characterization of
rice grain yield.

High PTP with suitable PN is a key requirement for regulating high-yield rice popula-
tions [7]. Without suitable PN, high PTP may not represent excellent population quality [39],
as substantiated by the observation in the current study that there was a dramatic decline
in the explanatory power of PTP for grain yield in the low and high-PN rice populations.
Within the low-PN population, PTPs under various nitrogen managements showed no
significant difference. Accordingly, the relative weight analysis showed that the percent
contribution of PN to PTP was less than that of SPW. In contrast, when PN was high (Y2115
population), nitrogen management had a significant effect on PTP, with PN having a greater
percent contribution to PTP than SPW. This discrepancy implied that PTP would be greatly
affected by the size of the rice population and that the PTP of a large rice population would
likely be reflective of a high number of productive panicles. Accordingly, owing to the
decrease in the effects of PN on grain yield, the relationship of PTP with grain yield would
also decrease. For example, in the Y2115 population, the percent contribution of PN to PTP
was nearly three times that of SPW, and both PN and PTP explained a lower percentage of
grain yield variance, with the former explaining 8.15% and the latter explaining 12.32%,
whereas HU explained 61.93%, indicating that HU was more closely related to grain yield.

In summary, as a comprehensive rice population quality indicator, HU had the follow-
ing three advantages. First, the interannual differences in light and temperature resources
and basal soil fertility did not lead to significant changes in HU, thereby establishing a
stable foundation for the use of HU as a universal indicator to compare rice populations
over time and space. Second, HU contained a wealth of information on PN and SPW, both
of which are biological traits closely related to grain yield. Third, as the PN of a population
increased, PTP and HU decreased. As the percent contribution of PN to grain yield variance
dramatically decreased, the percent contribution of HU to grain yield variance increased to
nearly six times that of PTP. This indicated that HU was closely related to grain yield when
the PN of a population changed, reflecting the potential of HU as a highly accurate and
highly stable indicator of rice population quality.

5. Conclusions

HU measured two or three days after the initial heading represented the greatest
difference in the heading process of rice populations. The relationship between HU and
grain yield was more stable than that between PTP and grain yield, thereby making HU a
suitable comprehensive indicator of rice population quality. In the current study, HU was
45.45–46.36 in high-yielding treatments (with a yield≥9750 kg ha−1, which was 20% higher
than the local average yield). Extreme drought or heat stress may cause the calculation
method to not be applicable; that is, after the heading process of the early initiated tiller
ends, the tip of the late-initiated tiller may not be exposed. Although this situation occurs
rarely in actual production, it is still necessary to strengthen research in this area to verify
the reliability of HU. In addition, for rice production in China, the ecological environments



Agriculture 2021, 11, 770 12 of 13

are diverse, and varieties are numerous. Therefore, before HU really guides rice production,
more varieties need to be further verified in more diversified ecological areas.
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