
agriculture

Review

A Review of Precision Technologies for Optimising Pasture
Measurement on Irish Grassland

Darren J. Murphy 1,2, Michael D. Murphy 2 , Bernadette O’Brien 1 and Michael O’Donovan 1,*

����������
�������

Citation: Murphy, D.J.; Murphy,

M.D.; O’Brien, B.; O’Donovan, M. A

Review of Precision Technologies for

Optimising Pasture Measurement on

Irish Grassland. Agriculture 2021, 11,

600. https://doi.org/10.3390/

agriculture11070600

Academic Editor: Dionissios Kalivas

Received: 7 June 2021

Accepted: 18 June 2021

Published: 28 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Ireland;
darren.murphy@teagasc.ie (D.J.M.); bernadette.obrien@teagasc.ie (B.O.)

2 Department of Process, Energy and Transport Engineering, Munster Technological University, Cork, Ireland;
michaeld.murphy@cit.ie

* Correspondence: michael.odonovan@teagasc.ie

Abstract: The development of precision grass measurement technologies is of vital importance to
securing the future sustainability of pasture-based livestock production systems. There is potential to
increase grassland production in a sustainable manner by achieving a more precise measurement
of pasture quantity and quality. This review presents an overview of the most recent seminal
research pertaining to the development of precision grass measurement technologies. One of the
main obstacles to precision grass measurement, sward heterogeneity, is discussed along with optimal
sampling techniques to address this issue. The limitations of conventional grass measurement
techniques are outlined and alternative new terrestrial, proximal, and remote sensing technologies
are presented. The possibilities of automating grass measurement and reducing labour costs are
hypothesised and the development of holistic online grassland management systems that may
facilitate these goals are further outlined.

Keywords: pasture-based agriculture; precision agriculture; remote sensing; spectroscopy; grass
measurement; grassland sampling

1. Introduction

Demand for animal protein products is predicted to increase by >70% in the coming
decades as a consequence of the growing distribution of wealth in developing coun-
tries [1,2]. Consequently, this could potentially result in an 80% increase in agricultural
GHG emissions, which would critically impact the environment if not mitigated [3]. Grass-
land based agriculture has a significant role to play in terms of increasing food production
in an environmentally sustainable manner. Over recent decades, there has been a 30%
decrease in European pasture land usage as a result of the increased levels in production ef-
ficiency and feed controllability that are achievable with confinement based systems, where
animals are fed indoors [4,5]. Conversely, pasture-based systems in suitable climates have
the potential to be more economically and environmentally sustainable than confinement
systems. However, pasture-based systems are hindered by reduced feed controllability
due to the spatial and temporal heterogeneity of grassland swards [6,7]. The quantity of
herbage available for grazing within pastures can vary between 15% and 60% as a result
of selective grazing, dung pats, and seasonal changes in sward morphology, making it
difficult to accurately measure and allocate for grazing [8–10].

In Ireland, grazed grass is the predominant livestock feed source due to the suitability
of the temperate climate for grass production [11]. The Irish climate provides optimum
conditions for grazing, enabling cows to graze in excess of 300 days per year, which
allows Ireland to produce milk and beef at a relatively low cost and in a sustainable
manner [12,13]. Maximising pasture utilisation through optimal grassland management is
vital in terms of ensuring the economic sustainability and mitigation of the environmental
impact of pasture-based livestock production. A pasture-based system that can maintain
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concentrate and nitrogen (N) fertilizer levels while increasing grass utilisation and stocking
rate will increase N use efficiency [14,15]. Efficient and sustainable pasture-based livestock
production is primarily based upon synchronising the herd’s dietary requirements with
seasonal grass production rates. This allows for the maximum level of fresh grass to be
utilised through an increased daily intake of high-quality fresh grass dry matter (DM)
per grazing animal [16,17]. Increasing grass utilisation has major financial benefits, as
fresh grass is the cheapest feed source on Irish ruminant livestock farms [18]. Currently,
the average Irish dairy farmer is utilising approximately 7–8 t DM ha−1 of grass per
annum, but has the potential to utilise 12–16 t DM ha−1 [19–21]. The value of increasing
grass utilisation has been estimated to be up to €173 tonne−1 ha−1 year−1 [17]. Frequent
and accurate measurement of grass quantity and quality is one of the main methods of
maximising grass utilisation and production on pasture-based farms [20,22,23]. Optimal
grassland management is highly dependent on the accuracy of information on pasture
quantity and quality that is available to the farmer [16,24]. Precise grass allocation to the
herd is integral to optimal grassland management. Excess allocation of grass leads to
wastage and quality degradation within a pasture. Alternatively, not providing sufficient
herbage to the herd results in decreased milk and beef production [25]. Grass is quantified
and allocated in terms of herbage mass (HM), which is the unit weight of DM per hectare
(ha−1) and is measured in units of kg DM ha−1.

Several non-destructive methods and tools for measuring grass quantity have be-
come popular on Irish farms in recent decades. There are a range of issues with these
methods with regard to operator bias, precision, and difficulties in accounting for spatial
variation [26–28]. Another significant issue concerning current grass measurement prac-
tices is the absence of a definitive protocol for grass measurement that farmers can use to
objectively measure their grass and to account for the variation of grass growth within
paddocks [29].

In terms of grass quality, there are no established on-farm methods which a farmer
can use to estimate the quality of grass within their pasture. Pasture qualitative analysis
methods are typically laboratory based and involve time consuming pre-processing proce-
dures, such as grinding and oven drying, which can take several days to complete. Grass
quality parameters that are considered important for grazing systems include DM, dry
matter digestibility (DMD), metabolisable energy (ME), organic matter digestibility (OMD),
crude protein (CP) and water-soluble carbohydrates (WSC) [11,30]. Significant potential
exists for improving the availability and accuracy of grassland measurement information
by means of precision agriculture (PA) technologies. The concept of PA is focused on the
acquisition of precise field data at a spatial and temporal scale that would capture pasture
variation and enable targeted responses, with the aim of increasing economic returns and
reducing environmental impacts [31]. Precision technologies are a relatively new phe-
nomenon with regard to grassland management compared with larger, more industrial
scale agri-systems such as cropland industries [24]. Schellberg et al. [31] outlined reasons
for the comparatively slow uptake of PA technologies with regard to grassland farming.
The most significant factors included the greater diversity within grassland, in terms of the
spatial variation of soil and pasture characteristics, and the highly temporal dynamics of
grass species.

The aim of this review is to present an overview of the most seminal research pertain-
ing to recent precision grassland measurement technological developments. The develop-
ment of such technologies will be integral to achieving sustainable growth in grassland
livestock industries in the future. This review is primarily focused on grass measurement
systems that may be suitable for pasture-based livestock systems situated in temperate
regions such as Ireland, although the research discussed is also applicable to global pasture-
based industries. There has been no recent review of grass measurement technological
developments relevant to Irish grassland. Relevant literature was initially collected using
online databases prior to manual screening to select the most seminal research for inclusion
in this review.
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The first section of this review outlines the methodology used to select the literature
discussed in the subsequent sections. Secondly, significant factors pertaining to grassland
sward heterogeneity, conventional grass measurement methods, and the principles of
pasture sampling will be discussed. Thirdly, this review will focus on state-of-the-art
research on precision grassland measurement technologies. Finally, current challenges
facing the development of precision grass measurement systems and the future of grassland
measurement will be discussed.

2. Review Search Methodology and Literature Summary

Searches for seminal literature were performed on Google Scholar [32] and ScienceDi-
rect [33] using the following keywords: grass measurement, pasture, remote sensing,
temperate grassland, perennial rye grass, clover, grassland heterogeneity, spectroscopy.
Initially, studies from the period of 1970–2021 were selected (n = 313) to track developments
in conventional grass measurement over the past 50 years and provide the context for the
initial sections of this review. A subset of more recent studies from the period between
2001–2021 (n = 47) was then selected to identify seminal research relating to state-of-the-art
developments in grass measurement technology, which are discussed in the latter sections
of this review. The literature dataset was then manually refined to exclude non relevant
and duplicate studies. Inclusion criteria were: studies must contain original peer-reviewed
research and be published as either scientific journal articles or conference papers; research
was conducted on temperate pasture, preferably including perennial rye grass perennial
ryegrass (Lolium perenne L.) (PRG) and/or white clover (Trifolium repens L.; clover) (WC) and
articles were in the English language. Exclusion criteria included research conducted on
arid or tropical grassland with no relevance to Irish pasture and studies that had insufficient
information regarding the error of assessed measurement systems. Additional studies were
located by tracking references and citations from the most relevant literature in the initial
dataset. The refined literature dataset contained n = 99 studies relating to the measurement
of temperate grassland. A summary of the dataset indicating the technologies used, region,
grass species and scale of the selected studies can be viewed in Appendix A. The selected
studies are discussed in the following sections of this review.

3. Grassland Sward Heterogeneity

The availability of herbage for grazing can vary considerably within pastures, which
makes it difficult to accurately quantify and allocate on a regular basis. Sward heterogeneity
in terms of both quantity and quality can increase as a result of a number of factors,
including soil, environmental, temporal, compositional, and grazing conditions. Jordan
et al. [34] recorded mean variation in HM to be in the range of 15–30% on intensively cut
PRG dominant silage fields in the North of Ireland. This study further recorded increases
in sward variation as the growing season progressed in accordance with the morphological
growth stages of PRG. Heterogeneity is typically higher within grazed pastures compared
with silage fields, due to selective grazing by animals, which increases the difficulty of
estimating average HM [9]. Barthram et al. [8] recorded variation in sward height in the
range of 30–70% due to selective grazing on PRG dominant swards grazed by sheep in
Scotland. Klootwijk et al. [9] quantified that the area of rejected patches of pasture ranged
from 22% to 43%, which increased as the grazing season progressed in Dutch PRG pastures,
and recommended that the area of rejected patches be accounted for when calculating
available HM. Murphy et al. [35] found that average pre-grazing HM variation was 36%
over a grazing season within Irish PRG dominant dairy pastures. A summary of reported
values of sward heterogeneity in terms of grass quantity can be seen in Table 1.

A further cause of pasture variation and damage is poaching. In wet conditions, tread-
ing pressure from animals remoulds the soil surface damaging the sward and compacting
the soil, which can increase weed ingress and reduce pasture production. Grassland man-
agement factors, such as stocking rate and herbage allowance, also have significant impacts
on the variation of sward yield and quality within a pasture [36]. Sward composition, in
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terms of both species and morphology, is another significant factor with regard to pasture
heterogeneity. Mixed swards of WC and PRG are becoming more popular on Irish farms
due to their noted environmental and grazing benefits [37,38]. Clover has a lower canopy
height than PRG, resulting in mixed swards having greater variation in canopy surface
height, which can make measurement more difficult [39]. Multi-species swards, including
plants such as chicory (Cichorium intybus L.) and plantain (Plantago lanceolata L.), may
become more frequently used on grassland pastures in the near future with the objectives
of increasing quality and reducing N requirements [40]. Similar to PRG/WC swards,
multi-species swards may have greater variation in canopy height and structure compared
with PRG monocultures. Furthermore, the morphological growth stage of the PRG plant
has a major effect on sward structure and variation. The main components of the PRG plant
(leaf, stem, and dead leaf proportions) vary considerably depending on the morphology
of the plant, time of year, and grazing management [41]. Temporal and morphological
effects have further significant impacts on sward quality variation. Wilkinson et al. [23]
found that variation in most sward quality components increased rapidly as the sward
entered its reproductive growth stage, with variation at a maximum in the middle of the
grazing season in British pastures. The study also found that within month variation in
sward quality was large, resulting in either inadequate or excessive amounts of essential
nutrients being provided to grazing animals and recommended that regular sward quality
measurements be taken to allow for more optimum feeding of animals.

Table 1. Summary of reported values of mean sward heterogeneity in terms of pre-grazing grass quantity on temper-
ate grasslands.

Study Year Grass
Species Region Sward Type Measurement

Parameter
Sward

Heterogeneity *

Murphy et al. [29] 2020 PRG/WC Ireland Dairy pasture HM (kg DM ha−1) 36%

Jordan et al. [34] 2003 PRG Ireland Silage field HM (kg DM ha−1) 25%

Murphy et al. [29] 2020 PRG/WC Ireland Dairy pasture CSH (mm) 29%

Klootwijk et al. [9] 2019 PRG The Netherlands Dairy pasture CSH (mm) 28%

Barthram et al. [8] 2005 PRG/WC Scotland Sheep pasture Height (mm) 46%

* Sward heterogeneity = coefficient of variation of measurement parameter, HM = herbage mass, CSH = compressed sward height, Height
= standing sward height, PRG = perennial rye grass, WC = white clover.

4. Conventional Grass Measurement

Destructive measurement refers to when herbage is cut and removed from the pasture
for direct analysis. Destructive techniques are typically used as reference methods for
modelling herbage parameters by means of non-destructive measurement methods. The
‘gold standard’ method of determining HM is by cutting and weighing herbage samples
using a quadrat, shears, and scales [16,42]. Despite cutting and weighing being the refer-
ence method for determining HM there are numerous potential sources of measurement
error including operator bias regarding sample area selection and post cutting height.
Furthermore, there are several well documented disadvantages to cutting and weighing
including labour intensity and herbage destruction [42–44]. A significant disadvantage
of cutting and weighing is the requirement of a large number of samples to account for
sward spatial variation within grazed pastures. Sward heterogeneity can be accounted for
by increasing sampling intensity. However, this leads to increases in measurement labour
and time, as well as increases in the quantity of herbage removed from the pasture [45–47].

Non-destructive measurement refers to when grass is analysed in-situ and modelling
techniques are used to predict selected parameters. This form of measurement enables real-
time analysis of pasture and ultimately allows for more responsive grassland management
decision making. Non-destructive measurement techniques are typically cheaper, less
laborious, and more practical than destructive methods. For these reasons non-destructive
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techniques are more commonly used by farmers on a regular basis. However, modelling
techniques are prone to error and non-destructive methods are typically less accurate than
destructive methods.

Visual estimation is the most fundamental method of non-destructive grass measure-
ment. It involves the farmer observing the pasture and estimating the average HM within
a paddock. It is the fastest, cheapest, and least laborious method of measuring HM. The
farmer is able to use their knowledge of the sward’s composition to account for the varia-
tion in HM within the pasture [48,49]. The most significant issue with visual estimation is
that it is highly subjective and variations in herbage estimations between observers have
been noted to be large [50–52].

The most established non-destructive tool for measuring pasture in Ireland is the
rising plate meter (RPM) [20,29]. The RPM records a combined measure of pasture height
and density, referred to as compressed sward height (CSH), using a weighted disc attached
to a scaled staff that is dropped onto the sward. Recorded CSH is then used to model
HM. Use of the RPM requires minimal training and a large number of samples can be
recorded and distributed throughout a paddock in a relatively short time duration [53,54].
A recent iteration of the RPM has been developed in Ireland [55] that uses a GPS integrated
ultrasonic sensor to record the height of the rising plate (Figure 1). The main advantages of
this RPM over conventional models are its rapid data processing capabilities via automated
links to online decision support tools (DST) and its ability to geo-tag measurement data.

Figure 1. Schematic of ultrasonic rising plate meter developed by McSweeney et al. [55].

Despite the RPM being an established grass measurement tool, its limitations in terms
of accuracy have been noted. A considerable source of RPM error is the large variation be-
tween CSH measurements recorded within pastures, resulting from the interaction between
the rising plate and the heterogeneity of the vertical profile of the sward. Factors reported
to affect this interaction include grass species, season, and grazing intensity [28,47,56].
There is no standardised RPM design and models vary considerably in terms of plate
pressure and measurement system. This makes it difficult to transfer established HM cali-
brations between different RPM models [57]. Despite the RPM being designed to reduce
the subjectivity of grass measurement, there is no robust measurement protocol on how to
use the RPM in an objective manner and this can contribute to measurement variation. A
recent study by Togeiro de Alckmin et al. [58] on controlled PRG trial plots in Tasmania
found that the RPM had a root mean square error (RMSE) of 522 kg DM ha−1. A similar
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study in Ireland on PRG dominant trial plots and grazed paddocks reported RPM errors
of 354 kg DM ha−1 and stated that this error could be reduced to 243 kg DM ha−1 by
combining RPM measurement with grassland management and meteorological data by
means of machine learning [59]. The study further included a comprehensive review of
RPM HM prediction error and its sources. A further study estimated the combined effects
of both measurement and calibration error for the RPM to be 28.1% relative prediction
error (RPE), when a robust measurement protocol was adhered to [35].

5. Pasture Sampling Techniques

To account for pasture heterogeneity multiple samples or measurements may need
to be taken at locations distributed throughout a paddock following a predetermined
protocol [34,45,60]. The effectiveness of a sampling protocol can be defined by its accuracy,
precision, and level of potential bias [43]. To determine an absolute mean parameter value
for a pasture, the entirety of the herbage within that pasture would need to be harvested
and analysed. This may be possible on small, controlled trial plots used in research but is
not practical on grazed paddocks. Therefore, the best possible representation of the absolute
mean must be determined, henceforth referred to as the ‘true’ mean. Accurately estimating
the ‘true’ mean of any herbage parameter can be difficult owing to the heterogeneous
nature of grazed swards.

A significant source of measurement error is inconsistent operator use, which is
defined in terms of reproducibility or operator bias [61]. Bias error can be minimised by
adhering to a robustly designed sampling protocol. Once a pasture measurement tool is
used in accordance with manufacturer guidelines, bias in terms of sample area selection
remains the greatest source of unknown bias. For example, when measuring a pasture area,
an operator may select the shortest path between the pasture entry and exit points and
take all of their samples along this path, as this is most convenient. This path may not give
an accurate representation of the variation of herbage within the pasture and is therefore
biased by the operator’s desire for convenience. Likewise, the operator may consciously or
subconsciously select sample locations with either consistently high or low proportions
of herbage. Similarly, an operator might choose to sample a paddock along transect lines
(Figure 2a) in an attempt to distribute samples more evenly. This method is also biased
by the operators preference with regard to the positioning of each transect line. There is
no definitive protocol for objective pasture sampling or measurement on Irish pastures.
With regard to the RPM, measurements are typically carried out 25–50 times in transects
or in a ‘W’ pattern (Figure 2b) throughout a paddock [27,43,52]. To avoid operator bias
and maximise measurement precision, sample locations should be randomly selected and
spatially balanced throughout a pasture, although this can be difficult to implement in
practice. If sample location selections are totally random, the entire area within a paddock
has an equal probability of selection. Measurement parameter values can be treated as
random variables and statistical analysis can be employed to determine parameter mean
and estimation error without bias [44,62].

Increasing sampling area and resolution may increase measurement precision, how-
ever, this further increases sampling time and cost. There is a trade-off between the benefit
of increasing accuracy versus time and cost. Reducing measurement time and effort is
vital, not only in saving labour costs for farmers, but also to encourage more farmers to
measure grass on a regular basis. The time and cost requirements of regular and accurate
grass measurement are significant barriers to promoting grass measurement on farms. A
study conducted by Creighton et al. [21] showed that only 20% of Irish dairy farmers used
technology to measure grass on a regular basis. Deming et al. [63], in a study of Irish
dairy farms that were classified as labour efficient, found that farmers spent between 0.28
and 0.41 h cow−1 year−1 at grass measurement. Behavioural studies by Hall et al. [64] in
Tasmania and Eastwood et al. [65] in New Zealand, reported that farmers reported a lack
of confidence in accuracy and regarded measurement time and effort as major barriers to
the adoption of measurement tools for pasture management.
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Figure 2. Illustration of (a) ‘X’ transect; (b) ‘lazy W’; (c) simple random; and (d) random stratified
sampling pasture measurement protocols on 1 ha grazed pasture, with orange circles indicating
measurement locations (n = 20) and blue dashed line outlining the measurement route for (a) and (b).

The requirement for the development of a universal pasture sampling methodology
to reduce operator bias, give more precise representations of spatial variation, and min-
imise measurement labour has long been acknowledged [34,46,56]. O’ Sullivan et al. [54]
presented a combined technique of quadrat cuts and RPM measurements with the aim of
reducing the number of herbage cuts required (by 50%) to accurately predict ‘true’ HM for
research purposes on Irish PRG pastures. Thomson et al. [52] outlined the need for HM
measurement protocol standardisation between dairy research centres in New Zealand
and recommended that 50–80 RPM measurements be taken per paddock. Nakagami [10]
developed a method to assess HM in Japanese pastures by RPM sampling just two areas
per paddock, but when validated on commercial paddocks, only half of the estimates were
found to be within 20% of ‘true’ mean. Hutchinson et al. [66] prototyped a pasture sampling
protocol for the RPM in the form of a decision tree that could be easily understood by
farmers, outlining the required number of RPM measurements in relation to an operators
desired level of precision. The study found that a depreciating exponential relationship
existed between RPM measurement rate and HM prediction error and recommended
random stratified sampling (RSS) as an accurate method of pasture sampling. Similar rela-
tionships between grass sampling rate and error have been reported by Jordan et al. [34],
O’ Sullivan et al. [54], and Murphy et al. [29] on Irish PRG swards. Using quadrat cuts,
Jordan et al., [34] recommended a sampling rate of 7 cuts ha−1 based on the principle of
RSS, to estimate ‘true’ mean HM to within 5% error and enable yield mapping of spatial
heterogeneity within silage fields. A study by Murphy et al. [35] utilised RSS to developed a
grass measurement optimisation tool to generate accurate and efficient grass measurement
protocols and concluded that eight measurements ha−1 was an optimum sampling rate for
the RPM.
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The RSS method involves dividing the target measurement domain into several
equally sized strata and then assigning an equal number of samples randomly within each
stratum, as seen in Figure 2d. This allows for a more efficient distribution of samples within
the domain in comparison with simple random sampling (Figure 2c) and average spatial
variation within and across strata can be estimated without bias [43,63,67]. The implemen-
tation of robust sampling protocols in conjunction with GPS technology enables the use
of geostatistical procedures such as Kriging interpolation, which can be used to develop
parameter heat maps of a pasture for spatial analysis and PA applications [63,67]. Accurate
geo-referenced measurement information of sward quantity and quality would enable
the use of variable rate fertilisation systems to reduce cost, GHG emissions, and nutrient
leaching to waterways. Moreover, such data could lead to more precise spatial analysis of
sward characteristics and ultimately lead to increases in pasture utilisation [24,68,69].

6. Grass Quality Analysis by Means of Near Infrared Spectroscopy

Most conventional grass quality measurement methods require herbage samples to be
taken from the field and analysed in the laboratory. One of the more established and rapid
methods of herbage quality analyses is near infrared spectroscopy (NIRS). Conventional
lab-based NIRS required removal of herbage samples from the field and pre-processing of
the samples prior to analyses. More recent NIRS developments have focused on reducing
the need for sample removal and pre-processing. Sample removal can be avoided by
means of in-situ or portable NIRS analysis. The main advantages of NIRS are that it is a
more rapid analysis technique and it has no chemical input requirements compared with
traditional wet chemistry analysis procedures. Disadvantages include the initial cost of
purchasing an NIRS spectrometer and its reliance on chemometric modelling techniques,
which are prone to error. Near infrared (NIR) light energy has characteristic wavelengths
ranging between approximately 700 and 2500 nm on the electromagnetic spectrum [70,71].
Near infrared spectroscopy analysis measures the absorption rates of low energy infrared
light radiation within matter, which are then used to quantify the chemical constituents of
said matter by means of empirical modelling methods, referred to as chemometrics.

Analyses of dried and milled forage quality by means of NIRS is well established
within the agri-food industry [72–74]. More recently, NIRS quality prediction calibrations
have been derived for dried and milled grass for research purposes in Ireland, such as
identifying desired traits for different grass varieties [30,75,76]. Recent research has focused
on applying NIRS to predict quality parameters of fresh herbage with the aim of further
reducing laboratory workloads by eradicating the need for sample pre-processing, which
can also have detrimental effects on sample composition [77]. Spectroscopic analysis of
fresh forages and grasses is largely restricted by the high presence of moisture, which
results in large spectral peaks that overshadow spectral identifiers for numerous quality
traits, such as CP [77–79]. Despite this, breakthroughs have been made with regard to
NIRS analyses of fresh forage and grass using conventional NIR instruments. Thomson
et al. [80] investigated if a pre-existing fresh grass silage NIRS calibration could predict
quality in grass/clover silage samples in the UK. The study found that some parameters
such as DMD could be predicted with acceptable accuracy. However, bias for parame-
ters such as CP increased with clover content and clover specific calibrations performed
better. Alomar et al. [81] concluded that reflectance NIRS could accurately predict the
compositional components, including DM (R2 = 0.99, SE = 6.5 g kg−1) (SE = standard
error) and CP (R2 = 0.91, SE = 18.4 g kg−1), of a variety of fresh grass swards in Southern
Chile. Dale et al. [82] developed fresh grass NIRS calibrations to investigate optimum
sampling and storage techniques on Irish PRG dominant pastures and reported R2 val-
ues of 0.92 (SE = 0.95 g kg fresh weight−1), 0.90 (SE = 0.543 g kg fresh weight−1) and
0.79 (SE = 0.622 g kg fresh weight−1) for DM, N and WSC, respectively. Lobos et al. [83]
reported good prediction performance (R2 ≥ 0.84) for fresh grass NIRS analysis for param-
eters DM (RMSE = 1.13%) and CP (RMSE = 2.22%), in comparison with low prediction
performance (R2 ≤ 0.78) for DMD (RMSE = 2.41%), OMD (RMSE = 2.61%), and WSC
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(RMSE = 0.06%) in Chilean permanent pasture. A summary of the accuracy of relevant
NIRS calibrations for grass quality is presented in Table 2. A more recent study by Murphy
et al. [84] presented NIRS calibrations that could predict DM with a high degree of accuracy
(R2 = 0.86, SE = 9.46 g kg−1) and CP with moderate accuracy (R2 = 0.84, SE = 20.38 g kg−1)
in Irish PRG swards. The development of rapid NIRS calibrations to predict fresh grass
quality would significantly reduce laboratory labour, inputs, and cost. Furthermore, fresh
grass NIRS would enable more precise grassland and feed management decisions to be
made on a daily basis.

Table 2. Summary of NIRS grass quality studies and calibration statistics relevant to temperate grassland presented in
Murphy et al. [84].

Study Analyte Region Species Parameters Sample
No. R2 Error (g

kg−1) RPD

Murphy et al.
(2021) Fresh grass Ireland PRG DM, CP 1812 0.85, 0.84 9.5, 20.4 2.57, 2.37

Lobos et al.
(2019) Fresh grass Chile Permanent

pasture DM, CP 915 0.93, 0.84 11.3, 22.2 3.7, 2.5

Parrini et al.
(2019) Fresh grass Italy Natural

pasture DM, CP 100 0.87, 0.88 2.75, 2.14 2.75, 2.26

Bonnal et al.
(2013) Fresh grass France Mixed

swards CP 103 0.93 1.55 1.97

Alomar et al.
(2009) Fresh grass Chile Mixed

swards DM, CP 107 0.99, 0.91 6.55, 18.4 7.15, 3.69

McClure et al.
(2002) Fresh grass USA Fescue N 31 0.88 6 -

Park et al.
(1998) Fresh grass silage Ireland - DM, N 136 0.85, 0.78 23.3, 28.1 -, 4.8

Burns et al.
(2014)

Dried & milled
grass Ireland PRG CP 2076 0.98 5.1 -

Jafari et al.
(2003)

Dried & milled
grass Ireland PRG CP 153 0.96 6.8 -

PRG = perennial rye grass, DM = dry matter, CP = crude protein (g kg−1 DM), N = nitrogen, R2 = coefficient of determination, Error =
standard error of cross-validation, standard error of prediction or root mean squared error depending on study, RPD = ratio of percent
deviation, ‘-‘ = denotes where data was not published as part of study.

In the past two decades, NIRS technological developments in the area of diode array
spectrometers and micro-electric-mechanical-systems (MEMS) have allowed new possibili-
ties regarding real-time in-situ NIRS analysis of fresh grass [85,86]. Portable spectrometers
have numerous advantages over lab-based systems including, in-situ measurement, lower
costs, real-time results and non-destructive sampling. Portable NIRS has noted limitations
regarding light noise, particle size, wavelength range and moisture effects [86]. A high
speed and durable portable spectrometer has been developed for the selection of grass
species for breeding purposes [87]. This NIRS sensor was capable of predicting DM of
fresh grass, with an acceptable correlation in relation to wet chemistry analysis (R2 = 0.73),
in real-time and was built into a grass plot harvester. Mendarte et al. [88] outlined the
potential for using portable NIRS to determine the quality of standing mountain pasture
in the Basque Country, reporting reasonable prediction results for DM (R2 = 0.82, SECV
= 0.56 g kg−1) (SECV = standard error of cross validation) and CP (R2 = 0.62, SECV =
1.50 g kg−1 DM) in relation to laboratory reference analysis. Reddersen et al. [79] assessed
the use of portable NIRS to evaluate the feed quality of mixed species standing swards in
Germany and concluded that it was only capable of predicting approximate values (R2 =
0.72, SECV = 3.9 g kg−1 DM) of N content, due to the high presence of moisture and low
levels of sample homogeneity. Smith et al. [89] used a similar technology in an Australian
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PRG breeding programme and recommended that portable NIRS was feasible as a high
speed and low cost method of evaluating nutritive value for parameters CP, DM, DMD,
WSC, acid detergent fibre, and neutral detergent fibre, reporting R2 values ranging between
0.49 and 0.89 and RMSE values between 1.84% and 3.41%.

An issue that constrains the development of portable NIRS applications is that many
portable spectrometers on the market are ‘closed box’ systems and researchers do not have
access to the calibration data within them [86]. In recent years, an on-line NIRS device
for silage and pasture quality assessment has been developed in the UK (NIR4) (Figure 3).
The NIR4 is capable of scanning fresh pre-cut grass and uploading the spectral data to the
user’s handheld smart device for rapid analysis, with calibrations for parameters DM, CP,
WSC and DMD [90]. However, no published data on the precision of this system could be
found in the literature. A study by Patton et al. [91] assessed the efficacy of three portable
NIRS sensors from different manufacturers to analyse quality traits of PRG swards in the
North of Ireland. They concluded that any of the instruments tested could not replicate
quality predictions made from a lab based NIRS spectrometer. Hart et al. [92] reported
high levels of systemic error (9–22%) using portable NIRS on Swiss mixed swards. There is
considerable scope for portable NIRS applications in grassland farming. More research
needs to be performed on environmental, moisture, and sample particle heterogeneity
effects to establish the feasibility of portable NIRS.

Figure 3. Image of NIR4 grass quality analysis system reprinted from ref. [90].

7. Terrestrial Sensing

In the context of this review, terrestrial sensing refers to non-spectral sensors that
interact with the sward at (or close to) ground level.

Terrestrial on-the-go soil electrode sensing has been used by Vogel et al. [93] to investi-
gate potential relationships between soil PH, moisture content, and the spatial variation of
herbage mass on grazed German pasture. The study utilised a tractor mounted Veris mobile
sensor platform (Figure 4) for rapid soil analysis and apparent soil electrical conductivity
was measured to predict soil moisture content.
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Figure 4. Tractor mounted Veris mobile sensor platform reprinted from ref. [93] for on-the-go soil
analysis on grazed pasture.

The use of a sensor to directly measure sward height using ultrasonic waves has been
investigated on mixed species German swards by Reddersen et al. [94], who found that it
predicted HM with reasonable accuracy (R2 = 0.73–0.76, RMSECV = 0.88–1.17 t DM ha−1)
(RMSECV = root mean squared error of cross-validation). The study further found that
combining ultrasonic sward height (USH) and remote sensing data in a multi-sensor (leaf
area index and hyperspectral sensors) approach increased HM prediction accuracy by
30%. An earlier study by Fricke et al. [95] investigated combining USH with GPS on a
vehicle for real-time ‘on the go’ measurement and rapid yield mapping of pasture, as
seen in Figure 5a. A number of USH measurement limitations were highlighted in that
study, including poor precision caused by the wide ultrasonic response area and poor
responses to changes in sward geometry and heterogeneity. The study further outlined
the potential for combining arrays of low cost USH sensors, which could be fitted onto
tractors or mowers to generate cheap and minimal effort HM predictions. Safari et al. [96]
compared the use of mobile USH and spectral sensing (Figure 5b) with static sensing,
reporting lower prediction accuracy for mobile measurement due to positional errors
caused by variation in the ground profile. Moeckel et al. [97] found poor results (R2 =
0.36–0.74, SE = 675–1118 kg DM ha−1) for predicting HM using USH on mixed species
swards, reporting high errors in mature swards as a result of patches of rejected grass left
after grazing. The study further investigated the potential for combining spectral data from
spectrometers and satellites with USH and found that utilising both visible and NIR spectral
data improved HM prediction performance (R2 = 0.66–0.88, SE = 485–866 kg DM ha−1). A
similar USH measurement system that could be fixed to a farm vehicle to measure pasture
height while traveling at speeds of 20 km h−1 achieved HM prediction accuracies of
R2 = 0.75 and SE = 270–350 kg ha−1 on New Zealand grassland [98]. Apparent advantages
of USH sensing for grass measurement are that it is relatively fast, low cost, and simple to
implement, with the potential for mobile application. Conversely, limitations exist with
regard to the precision of USH as a result of high variation in signal responses to canopy
heterogeneity.

The C-DAX Pasturemeter is a terrestrial sensing device for predicting HM that has
been developed and is in common use in New Zealand. The C-DAX is mounted on wheels
and is designed to be towed behind a quad bike at approximate speeds of 20 km/h, as
illustrated in Figure 6. This device measures pasture height using light emitting and sensing
photodiode arrays. As the C-DAX is towed through the pasture the photodiode sensors
record a height profile of the pasture. Studies have concluded that measuring pasture
standing height has notable limitations with regard to predicting HM in comparison with
the RPM [26,27]. Despite this, the C-DAX has one significant advantage over the RPM.
The C-DAX is capable of acquiring much more data (200 measurements per second) in a
more rapid manner than the RPM without the need of walking [99,100]. King et al. [101]
compared the measurement accuracies of the C-DAX and RPM over a range of pastures
in New Zealand throughout a single grazing season. Results in terms of RMSE ranged
between 576 and 655 kg DM ha−1 for the C-DAX and 441 and 552 kg DM ha−1 for the
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RPM. Oudshoorn et al. [102] discovered that the C-DAX predicted HM to within acceptable
accuracy (R2 = 0.76) on Danish PRG/WC swards. The prediction error calculated by
Schori [103] was slightly higher for the C-DAX (SE = 311 kg DM ha−1) compared with
the RPM (SE = 285 kg DM ha−1), on Swiss mixed swards over three grazing seasons. The
C-DAX also has in-built GPS geo-tagging capabilities, which have been utilised to generate
yield maps for targeted pasture management applications [104]. Currently, the C-DAX
is not commonly used by Irish grassland farmers. This may be due to a perception that
predicting HM by measuring standing sward height is not as accurate as CSH because it is
not as sensitive to sward density, as outlined by Shalloo et al. [24].

Figure 5. (a) Schematic of ‘on the go’ grass measurement system presented in Fricke et al., reprinted with permission from
ref. [95]. Copyright 2021 Elsevierand (b) image of similar system reprinted from ref. [96].

Figure 6. Elevation and cross section schematic of the C-DAX Pasturemeter.

Terrestrial sensing of pasture may enable grass measurement to be conducted by
autonomous ground vehicles (AGV), which work within close proximity to the ground in
a remote manner. Research into these vehicles for PA applications has predominantly been
focused on the arable sector. A more recent novel modification of the C-DAX is a proposed
pasture robot currently under development in New Zealand [105]. The concept combines
an AGV with the C-DAX system. The robot is designed to autonomously navigate from a
central charging station to a paddock and traverse the pasture using a pre-programmed
sampling strategy, negating the need for physical labour. The entire area of a 2-ha paddock
could be sampled for field mapping purposes within 5 h, or a representative area of the
same paddock could be sampled for basic grassland management purposes in under
30 min. Potential for fitting soil sampling and grass quality sensors to this system is also
being considered. Gobor et al. [106] proposed a similar pasture robot system for use on
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German pastures. Their concept incorporates a mulcher system on the robotic platform
(Figure 7) so that areas of rejected pasture, identified by a sward height sensor on the robot,
can be mulched to encourage the regrowth of high-quality pasture. Likewise, areas of poor
HM could be treated with a seeder incorporated on the proposed robotic rover platform.
Sampling protocol design would need to be a significant consideration with regard to the
potential use of AGVs for pasture measurement. The design of optimum AGV sampling
protocols for pasture measurement would need to be in line with best practice for pasture
sampling. A significant advantage of an AGV system would be that measurement labour
and time do not place the same level of constraint on protocol design. Conversely, when
compared with unmanned aerial vehicle (UAV)-based remote sensing, AGV systems have
a number of disadvantages, including slower data collection, damage to sward caused
by movement paths, and higher cost. Theses disadvantages may be offset by the higher
resolution of measurement data and reduced climate noise interference that is achievable
using AGVs when compared with remote sensing [107,108].

Figure 7. Pasture robot system concept proposed by Gobor et al. [108] incorporating mulcher
and seeder.

8. Proximal Spectral Sensing

In the context of this review, proximal spectral sensors refer to spectral sensors that
operate within 2 m of the soil surface, as defined by Viscarra Rossel et al. [109]. Proximal
spectral sensing includes the previously discussed portable NIRS technologies, but the
following section deals with all other prevalent proximal spectral sensing technologies.

Hyperspectral sensing (HS) has the ability to capture a wide range of spectral data,
ranging from the visible to NIR light regions, which results in greater availability of data for
prediction modelling in comparison with NIRS. Devices for HS can be handheld for manual
proximal sensing or mounted on un-manned aerial vehicles and satellites. Disadvantages
of HS include the capture of a large amount of data that is redundant for modelling and the
high cost of instrumentation [94]. Similar to NIRS, HS data can be used to model pasture
quantity and quality using chemometric modelling techniques. Pullanagari et al. [110]
used a HS canopy probe sensor (500–2400 nm) to predict a range of in-situ standing sward
quality characteristics on PRG/WC dominant swards in New Zealand. The study achieved
satisfactory prediction results for CP (R2 = 0.78, RMSE = 2.33% DM), ME (R2 = 0.83, RMSE =
0.46 MJ kg−1), and OMD (R2 = 0.83, RMSE = 4.02% DM). The samples used were not spread
across an entire growing season and reference analysis was conducted by lab based NIRS.

Hyperspectral sensing enables the prediction of sward characteristics by more basic
means of spectral modelling referred to as vegetation indices (VI), which are commonly
used for remote sensing applications. One of the most used VI is the normalised deference
vegetation index (NDVI), which estimates the quantity of vegetation present by the ratio of
red and NIR light wavelengths that are absorbed by pasture photosynthesis [24]. Another
commonly researched VI is the leaf area index (LAI), which is a measure of the sward foliage
area against ground area [94]. Reddersen et al. [94] found poor results for HS prediction
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of HM using LAI (R2 = 0.36–0.44, SE = 1.5–1.8 t DM ha−1) using the HS configuration
illustrated in Figure 8. The study further investigated the use of HS imagery (350–2500 nm)
to predict HM by means of chemometric modelling with more positive results (R2 = 0.70–
0.89, SE = 0.66–0.85 t DM ha−1). Moeckel et al. [97] discovered that normalized difference
spectral index (NDSI) in combination with USH significantly improved HM prediction
(R2 = 0.52, SE = 1000 kg DM ha−1). Results for HS (305–1700 nm) prediction of HM were
poor (R2 = 0.48, SE = 950 kg DM ha−1) and limitations in HS caused by the high presence
of senescent material in the sward were observed later in the growing season. Ancin-
Murguzur et al. [111] found a significant correlation between HS and HM on Norwegian
mixed species swards (R2 > 0.55, RMSE ≤ 180 g m−2), but noted increased error due to
environmental influences on spectral signatures observed in cloudy and wet conditions.
The study further showed that spectral data captured in the range of 350–900 nm was more
robust against the influences of moisture. Pullanagari et al. [112] found strong correlations
for CP (R2 = 0.65–0.83) on dairy pasture in New Zealand using HS. Askari et al. [113] found
positive results for predicting HM (R2 = 0.88, RMSE = 160 kg DM ha−1) and CP (R2 = 0.82,
RMSE = 10.0 g kg DM−1) using a handheld HS camera on Irish PRG swards over two
growing seasons.

Figure 8. Schematic of hyperspectral sensing measurement system reprinted with permission from
ref. [94].Copyright 2021 Elsevier.

There are evident advantages to HS including non-destructive sampling, large sample
area coverage, spatial variation identification and potential incorporation with autonomous
vehicles or tractor mounts. One of the main barriers to this technology is the high cost of
HS devices, although this may decrease in the near future. Furthermore, HS and all other
proximal spectral sensing technologies also have sampling issues with regard to accounting
for spatial heterogeneity within swards.
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9. Remote Sensing

Remote sensing refers to all sensing techniques that operate at a distance greater than
two meters from ground level [109]. This includes sensing methodologies that use UAVs,
manned aircraft, and satellites. In the past decade, research on remote sensing methods
for predicting grass yield and quality has increased. Remote sensing has the potential to
cover larger sampling areas with minimal labour requirements. A range of remote sensing
technologies can be fixed to UAVs, which can fly at low altitudes to obtain spectral data at
high resolutions. Rueda-Ayala et al. [108] found weak correlations (R2 < 0.6) between red,
green, blue (RGB) wavelength sensing data and HM on PRG dominant Norwegian swards
and reported difficulties in measurement precision due to environmental factors such as
wind speed, sunlight and cloud cover. Conversely, that study found that UAV sensing was
less variable than terrestrial sensing data. Askari et al. [113] determined that red and green
wavelength bands were important for predicting CP by means of UAV sensing on Irish
PRG swards. Capolupo et al. [114] showed that UAV HS could predict sward height (R2 =
0.70–0.86, RMSE = 2.13–2.29 cm), HM (R2 = 0.36–0.83, RMSE = 2.95–3.81 kg DM plot−1),
and CP (R2 = 0.56–0.76, RMSE = 11.73–12.28 g kg−1 DM) on German controlled trial plots.

Multi-spectral (MS) sensors that emit light radiation in discrete spectral bands and
at broader resolutions than HS have been more commonly deployed in UAV research for
pasture analysis. One major advantage of MS devices is that they are typically cheaper
than HS instruments. Pullanagari et al. [115] reported reasonable precision (R2 = 0.6, 0.66,
0.68; RMSE = 2.88%, 065%, 5.27%) for parameters CP, ME, and OMD on New Zealand
PRG dominant pastures over two grazing seasons using a proximal MS sensor, spanning
16 discrete wavelengths (460–1680 nm). A prominent issue with MS sensing was further
highlighted in the study. Many MS sensors depend on natural light to illuminate the sward.
Consequently, low atmospheric light intensity can cause sampling problems. Askari
et al. [113] reported good prediction results for HM (R2 = 0.78, RMSE = 215 kg DM ha−1)
and CP (R2 = 0.77, RMSE = 13.6 g kg DM−1) using UAV MS (Figure 9) on Irish PRG pastures
over two grazing seasons. Togeiro de Alckmin et al. [58] reported that MS (R2 = 0.79, RMSE
= 405.8 kg DM ha−1) had a 116 kg DM ha−1 lower RMSE compared with the RPM for HM
prediction, when an optimal selection of VI was used. Oliveira et al. [116] showed that a
combination of HS sensing and 3D imagery out-performed MS measurements on Finish
swards, accurately predicting silage sward HM (RPE = 14.6%), digestibility (RPE = 1.9%),
and N content (RPE = 13.6%).

A number of similar limitations have been reported for both proximal and aerial spec-
tral sensing of pasture. The most significant limitation is the heterogeneity of grassland,
which is much greater than tillage, where remote spectral sensing has become more estab-
lished. The temporal change in the ratio of photosynthetically to non-photosynthetically
active (vegetative vs. dead) material in grassland swards has significant effects on spec-
tral absorption. Achieving adequate levels of spatial resolution to distinguish significant
variations in pasture performance for targeted management purposes is also an issue with
pasture sensing. Sensors with sufficient spatial and sensing resolution to identify pasture
variation can be very expensive. Similar to NIRS, high moisture content within standing
swards can obscure spectral features of certain quality parameters [112].

Light detection and ranging (LiDAR) is another potential technology that could be
used in conjunction with UAVs for remote sensing of pasture. This technology utilises
light beams (visible/infrared) emitted at a high irradiance rate to measure the distance and
shape of terrestrial objects. The time it takes for each emitted light beam to be reflected
back to the LiDAR sensor receiver is used to develop a point cloud dataset for each target
object. Obanawa et al. [117] reported an average absolute error of 12 mm (±10 mm) (R2 =
0.93) at a 20 mm resolution for LiDAR prediction of grass height on Italian ryegrass pasture
in Japan. Disadvantages of LiDAR include its relatively high cost and susceptibility to high
measurement error in windy conditions [118,119]. Moreover, the use of grass height to
predict HM has further limitations as previously discussed.
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Figure 9. (a) UAV with multispectral sensor and (b) UAV plot sensing fly over from study by Askari et al. [113].

Several studies have investigated the potential of utilising satellite-based MS and HS to
predict pasture quantity and quality [111,113,120]. The distinct advantages of satellite sens-
ing relate to the larger spatial coverage, in terms of data acquisition, that can be achieved.
The European Space Agency’s Sentinel-2 project comprises of two orbital satellites loaded
with MS technology capable of monitoring land use variations at 10 m, 20 m, and 60 m
resolutions [121]. Sibanda et al. [120] outlined how Sentinel-2 MS data could be used to
predict HM with comparable accuracy to proximal HS on South African experimental
grassland plots (27–250 m2)(R2 = 0.58, RMSE = 67.9 kg ha−1). Askari et al. [113] reported
moderate success for predicting HM (R2 = 0.82, RMSE = 600 kg DM ha−1) and poor results
for CP (R2 = 0.62, RMSE = 13.3 g kg−1 DM) using Sentinel-2 data on Irish grassland plots
(7.5 m2) and grazed paddocks (≥ 1 ha). The study illustrated that the overriding limitation
for satellite spectral sensing on Irish pasture is frequent cloud cover, as data acquisition
was not possible on days with over 30% cloud cover.

An alternative technology for satellite remote sensing of pasture that may overcome
cloud cover and illumination limitations is synthetic aperture radar (SAR), which uses
high resolution radio wave reflectance to predict pasture height. Barrett et al. [122] utilized
SAR to overcome cloud cover limitations for satellite classification of Irish grasslands. A
more recent study that used SAR on Irish PRG dominant dairy pasture (≥1 ha) yielded
promising results for both sward height (R2 = 0.55) and HM (R2 = 0.75) [123] at a 25 cm
spatial resolution. However, research into this technology is still at an early stage.

In light of the research outlined for terrestrial, proximal, and aerial sensing techniques,
it is evident that longer, more detailed studies over numerous seasons and sward types need
to be conducted before these technologies can become established within pasture-based
agriculture. Results from the most recent research findings discussed in this review, which
were most relevant to the measurement of temperate grasslands used for pasture-based
livestock production (PRG/WC Irish pasture), are summarised in Table 3.
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Table 3. Summary of grass measurement systems from the research discussed in this review that were most relevant to temperate (Irish) grasslands.

System Relevant
Studies Region Measure Prediction Sample

No. Herbage Quantity Herbage Quality Advantage Disadvantage

Conventional systems

R2 Error (kg DM
ha−1 a, mm b)

R2
Error (g kg c, g
kg DM−1 d, % e,

% DM f)

Rising plate meter Murphy et al.
[59] Ireland Compressed

sward height HM 1977 0.77 354 a,* - - Rapid, usability,
cost

Labour intensive,
accuracy

Visual assessment O’ Donovan et al.
[26] Ireland Perceived

herbage cover HM 2205 0.95 193 a, I - - Minimal labour High subjectivity

NIRS Murphy et al.
[84] Ireland Spectral

absorption DM, CP 1812 - - 0.86, 0.84 9.46 c, 20.38 d, I Accuracy High cost, lab
based, destructive

State of the art

Light sensing
(C-DAX) Schori [103] Switzerland Sward surface

height HM 439 0.77 311 a, I - - Rapid, automation Accuracy

LiDAR Obanawa et al.
[117] Japan Sward surface

height SSH 25 0.93 12 b,** - - Remote sensing High cost, wind
error, accuracy

Ultrasonic Reddersen et al.
[94] Germany Sward surface

height HM 167 0.76 880 a,* - - Rapid, automation Accuracy

Portable NIRS Smith et al. [89]
Victoria,

Aus-
tralia

Spectral
absorption

DM, DMD, WSC
CP 540 - - 0.69,

0.82,0.49,0.74
3.14 e, 2.70, 2.77,

2.02 f,*
In-situ quality

analysis Accuracy

Hyperspectral
sensing

Askari et al.
[113] Ireland Spectral

absorption HM, CP 84 0.88 160 a,* 0.82 10 d,*
Remote sensing,

accuracy High cost

Multispectral
sensing

Askari et al.
[113] Ireland Spectral

absorption HM, CP 126 0.78 215 a,* 0.77 13.6 d,*
Remote sensing,

cost
Lack of long term

studies

Satellite
multispectral

Askari et al.
[113] Ireland Spectral

absorption HM, CP 176 0.82 600 a,* 0.62 13.3 d,* Remote sensing Cloud cover,
accuracy

Synthetic Aperture
radar Ali et al. [123] Ireland Sward surface

height HM 264 0.75 - - - Satellite sensing Lack of research

Measure = measurement parameter, Prediction = prediction parameter; HM = herbage mass (kg DM ha−1 a); DM = dry matter (g kg−1 ha−1 c, % e); CP = crude protein (g kg DM−1 d, %DM f); SSH = sward surface
height (mm b); DMD = dry matter digestibility (%DM f); WSC = water soluble carbohydrates (%DM f); R2 = coefficient of determination; Error = * RMSE, I standard error, ** mean absolute error depending on
study; ‘-‘ = denotes where data was not published as part of study.
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10. Decision Support Systems for Grassland Measurement

Decision support tools (DST) are becoming more frequently used by grassland farmers
to optimise the end use of their grass measurement data for the purposes of herbage
allocation and pasture management. A number of grassland management DSTs have been
developed in Europe [124,125] and an increasing amount of grassland data is being stored
on cloud computing platforms. PastureBase Ireland (PBI) is a DST that assists farmers in
determining appropriate actions to be taken to optimise grassland management, mainly
by processing uploaded pasture HM cover estimations to determine appropriate herbage
allocations in accordance with on-farm growth rates [20]. One significant advantage
of DSTs, such as PBI, is that they can perform as national databases for research and
innovation. PastureBase can capture data for a range of paddock management parameters
from farms across Ireland, which can be used for regional research studies [126]. User
collaboration by means of online discussion group portals is also enabled through PBI’s
interface [24]. Recent data from PBI indicates that farmers using the system are utilising
more grass than the Irish national average (8 t DM year−1) and are growing between 11
and 15 t DM year−1 [127].

Studies have utilised online DST databases to combine grassland management factors
with measurement and meteorological data from local weather stations to forecast HM
growth rates [128,129]. Romera et al. [130] utilised an algorithm to continuously train
a model to simulate growth factors between measurement dates on New Zealand dairy
pastures. These growth factor simulations were based on a combination of meteorological
and grass measurement data. Herrmann et al. [131] combined N fertilization, defoliation
frequency, grass species, and daily weather data to predict HM and CP on pastures in
Germany. In the near future, on-farm sensor technologies could provide data on site-specific
meteorological and soil conditions to increase HM prediction accuracy [69].

One limitation of the previously mentioned DSTs is that they are currently only
capable of processing HM and sward height data, which are acquired using conventional
measurement techniques. Scope for a holistic grass management DST that incorporates
state of the art grass technologies, which can measure both pasture quantity and quality,
has been identified [132]. GrassQ was a European wide project that aimed to develop a
holistic precision grassland measurement and management system, which encompassed
both ground based and remote sensing measurement technologies [133]. For new DSTs
to be adopted for regular use by grassland farmers, they will need to ensure reduction in
labour and return of investment. The GMOT, a prototype grass measurement optimisation
tool developed by Murphy et al. [35], generated grass measurement protocols that were
optimised for both precision and labour efficiency. The tool was capable of optimising
measurement routes and simulating measurement error, which facilitated cost benefit
analysis to be conducted for each measurement protocol based on measured HM vs.
estimated labour and error costs. Cost–benefit analysis should be an integral part of
the design of any future grass management support system to determine the efficacy of
investing in new measurement technologies at farm level [24].

11. Current Challenges Relating to Precision Pasture Measurement

Significant challenges currently restricting the implementation of precision pasture
measurement at farm level that have been highlighted in the reviewed literature include
sward heterogeneity, labour, and perceived measurement value amongst farmers. The
lack of validation, robustness, and high cost of state-of-the-art measurement technolo-
gies are further challenges to the optimisation of pasture measurement. The high spatial
and temporal variability of grazed pasture has represented a significant hindrance to the
precision of conventional grass measurement technologies. One perceived solution to over-
come poor measurement precision relating to highly variable swards has been to increase
measurement sampling rates and ultimately measurement labour. Measurement errors
caused by sward heterogeneity, high labour cost, and the poor precision of conventional
grass measurement methods have resulted in poor perceptions and low uptakes in grass
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measurement amongst farmers. Some of the state-of-the-art technologies discussed in this
paper have the potential to overcome these issues. However, a period of time is required for
long term studies that have performed sufficient validation of the proposed technologies
to become established in the literature. A number of studies outlined in this review have
indicated the detrimental effects that climate conditions, such as excessive cloud, wind,
and rain, have on pasture sensing data. Additionally, the potential high cost of new grass
measurement sensors will not alleviate the poor perception that some farmers have of the
value of frequent grass measurement.

12. Future of Grassland Measurement

Within the literature outlined in this review, it is evident that there is considerable
scope for the development of grassland sensing techniques to increase measurement
precision, pasture mapping capabilities, and labour efficiency. Considerable potential exists
to develop holistic grass measurement systems including multi-sensor configurations,
which incorporate the benefits of a range of measurement technologies. Concurrently,
the combination of new grassland sensing technologies with state-of-the-art modelling
techniques should lead to more precise predictions of pasture parameters. This will enable
the exploitation of a wide range of data sources, including measurement, management,
and climate factors, which would be facilitated by online DSTs. Moreover, analysis of
mixed species swards should be accounted for within the design and calibration of future
grass measurement technologies. Regarding the new technologies discussed in this review,
more detailed long-term studies that account for annual and seasonal sward variation
are required.

Furthermore, scope exists to automate grass measurement using either manned or
unmanned vehicles and this would aid the promotion of precision grass measurement
amongst farmers. More research is required regarding the optimisation of grass mea-
surement protocols that account for spatial and temporal heterogeneity in pasture in line
with the principles of PA. The development of such protocols should be applicable to
both herbage quantity and quality measurement techniques. The adoption of new preci-
sion grassland measurement technologies within pasture-based industries will only be
justified if these technologies are proven to be significantly more precise and practical
than established methods. Detailed cost–benefit analysis will be required to justify the
implementation of new measurement technologies at farm level. Additionally, new mea-
surement technologies will need to have minimal labour requirements, be easy to use, and
adequate training will need to be provided to farmers to promote frequent measurement
of pasture. This will further ensure that high resolution and accurate grassland data are
regularly recorded.

13. Conclusions

This review summarised the basic principles of optimal grassland management on
temperate pastures and the requirement for more precise and efficient measurement tech-
nologies in line with the concept of PA. The development of more robust and rapid
technologies to predict pasture quantity and quality would enable the optimisation of
herbage allocation and utilisation. Subsequently, this would lead to increases in profitabil-
ity and reductions in emissions within pasture-based systems. The main findings from this
review were:

• The dominant factors that need to be addressed with regard to the development of pre-
cision grassland measurement technologies are sward heterogeneity and measurement
labour and cost

• There are no established technologies for determining real-time in-situ pasture qual-
ity. The development of such technologies is vital for a more precise management
of pasture.

• The development and integration of holistic grassland management and measurement
systems is necessary to achieve precision grassland management.
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Appendix A

Table A1. Summary of literature review dataset of studies relevant to grass measurement on temperate (Irish) grassland.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Grassland sward heterogeneity

Jordan
et al. [34] 2003

Sampling strategies
for mapping

“within-field”
variability in the dry

matter yield and
mineral nutrient

status of forage grass
crops in cool

temperate climes

Develop a protocol
to measure and

map DM
Ireland PRG Herbage cuts 1 Paddock

Klootwijk
et al. [9] 2019

Correcting fresh
grass allowance for
rejected patches due
to excreta in intensive
grazing systems for

dairy cows

Measure the extent
of rejected patches

within pasture

The
Netherlands PRG RPM 2 Paddock

Barthram
et al. [8] 2005

Frequency
distributions of

sward height under
sheep grazing

Measure the range
and distribution of
grass height within

pasture

Scotland PRG/mixed Sward stick 2 Paddock

Wilkinson
et al. [23] 2014

Variation in
composition of

pre-grazed pasture
herbage in the United
Kingdom, 2006–2012

Measure the
variation of grass

quality in UK
pasture

UK Mixed NIRS 7 Paddock

Conventional grass measurement systems

Cayley &
Bird [43] 1996 Techniques for

measuring pastures

Critical analysis of
conventional

pasture
measurement

techniques

Australia -

Herbage
cuts, RPM,
capacitance

meter, sward
stick

- Paddock
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Klootwijk
et al. [28] 2019

The effect of
intensive grazing

systems on the rising
plate meter

calibration for
perennial ryegrass

pastures

Investigate the
effect of grazing
systems on RPM

calibration

The
Netherlands PRG RPM 2 Paddock

Martin
et al. [42] 2005

A comparison of
methods used to

determine biomass
on naturalized

swards

Comparison of
conventional

pasture
measurement

methods

Nova Scotia,
Canada Mixed

Visual
estimation,
sward stick,

RPM

1 Paddock

Mannetje
[44] 2000

Measuring biomass
of grassland
vegetation

Comparison of
conventional

pasture
measurement

methods

The
Netherlands -

Visual
estimation,
sward stick,

RPM, remote
sensing

- Paddock

Thomson
[45] 1983

Factors influencing
the accuracy of
herbage mass

determinations with
a capacitance meter

Calibration of
capacitance meter

New
Zealand Mixed Capacitance

meter 2 Paddock

Earle & Mc
Gowan

[46]
1979

Evaluation and
calibration of an
automated rising

plate meter for
estimating dry matter

yield of pasture

Calibration of RPM Victoria,
Australia PRG RPM 2 Paddock

Ferraro
et al. [47] 2002

Seasonal variation in
the rising plate meter
calibration for forage

mass

Calibration of RPM Ohio, USA Mixed RPM 3 Paddock

O’
Donovan
et al. [48]

2002 Visual assessment of
herbage mass

Calibration of
visual assessment Ireland PRG Visual

assessment 2 Paddock

O’
Donovan
et al. [26]

2002
A comparison of four
methods of herbage

mass estimation

Comparison of
conventional

pasture
measurement

methods

Ireland PRG

Visual
estimation,
sward stick,

RPM,
capacitance

meter

2 Paddock

Campbell
[49] 1973

The visual
assessment of
pasture yield

Calibration of
visual assessment

Western,
Australia Mixed Visual

assessment 1 Paddock

Stockdale
[50] 1984

Evaluation of
techniques for

estimating the yield
of irrigated pastures
intensively grazed by
dairy cows 1. Visual

assessment

Assessment of
double sampling

technique
involving herbage

cuts and visual
assessment

Victoria,
Australia PRG/WC/mixed

herbage cuts
and visual
assessment

1 Paddock

L’Huillier
&

Thomson
[51]

1988

Estimation of
herbage mass in
ryegrass/white

clover dairy pastures

Comparison of
conventional

pasture
measurement

methods

New
Zealand PRG/WC

Visual
estimation,
sward stick,

RPM,
capacitance

meter

2 Paddock
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Thomson
et al. [52] 1997

Estimation of dairy
pastures-the need for

standardisation

Investigate causes
of variation in

pasture
measurement
across regions

New
Zealand PRG/WC

Visual
assessment,

RPM
2 Paddock

Lile et al.
[53] 2001

Practical use of the
rising plate meter

(RPM) on New
Zealand dairy farms

Assess the
measurement

precision of the
RPM

New
Zealand PRG/WC

Visual
assessment,

RPM
3 Paddock

O’ Sullivan
et al. [54] 1987

The Value of Pasture
Height in the

Measurement of Dry
Matter Yield

Development of a
double sampling

technique for
measuring pasture

Ireland PRG Herbage
cuts, RPM 1 Paddock

McSweeney
et al. [55] 2019

Micro-sonic sensor
technology enables

enhanced grass
height measurement

by a Rising Plate
Meter

Development of
GPS enabled rising

plate meter
Ireland - RPM 1 -

Defrance
et al. [56] 2004

Greater
understanding the
density of grass to

calculate the growth
and biomass of a plot
and the stock of grass
available on a farm

Calibration of
rising plate meter France PRG/WC RPM 13 Paddock

Holshof
et al. [57] 2015

Calibration of five
rising plate meters in

the Netherlands

Comparison of
different rising

plate meter models

The
Netherlands PRG RPM 1 Plots

Sanderson
et al. [27] 2001

Estimating forage
mass with a
commercial

capacitance meter,
rising plate meter
and pasture ruler

Comparison of
conventional

pasture
measurement

methods

Eastern, USA Mixed

Sward stick,
RPM,

capacitance
meter

2 Paddock

Creighton
et al. [21] 2011

A survey analysis of
grassland dairy

farming in Ireland,
investigating

grassland
management,

technology adoption
and sward renewal

Investigate
grassland

management
practices in Ireland

Ireland PRG - 1 Paddock

Murphy
et al. [59] 2021

Utilising grassland
management and

climate data for more
accurate prediction of
herbage mass using

the rising plate meter

Calibration of
rising plate meter
using state of the

art modelling
techniques

Ireland PRG RPM 3 Paddock/
Plots

Mannetje
[60] 2002 Advances in

grassland science

Review of
advancement of

grassland science
and measurement

techniques

The
Netherlands -

Herbage
cuts, remote

sensing
- Paddock

Beukes
et al. [22] 2019

Regular estimates of
herbage mass can

improve profitability
of pasture-based

dairy systems

Investigate the
effect of grass

measurement on
farm profitability

New
Zealand PRG - 1 Paddock
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Pasture sampling techniques

Murphy
et al. [29] 2020

Evaluation of the
precision of the rising

plate meter for
measuring

compressed sward
height on

heterogeneous
grassland swards

Assessment of
RPM measurement

precision and
sampling protocol

Ireland PRG/WC RPM 2 Paddock/
Plot

Nakagami
[10] 2016

A method for
approximate on-farm
estimation of herbage

mass by using two
assessments per

pasture

Development of a
double

measurement
method for pasture

Japan Mixed

Visual
assessment,

herbage cuts,
RPM

1 Paddock

Hall et al.
[64] 2019

Understanding
Tasmanian dairy

farmer adoption of
pasture management
practices: A Theory

of Planned Behaviour
approach

Investigate farmer
behaviour with

regard the
adoption of grass

measurement
technology

Tasmania - - 1 Paddock

Eastwood
et al. [65] 2020

Developing an
approach to assess

farmer perceptions of
the value of pasture

assessment
technologies

Identify perceived
value of grass
measurement

New
Zealand - - 1 Paddock

Hutchinson
[66] 2016

A protocol for
sampling pastures in

hill country

Develop a grass
measurement

protocol

New
Zealand Mixed RPM,

C-DAX 3 Paddock

Bernardi
et al. [68] 2016

Spatial variability of
soil properties and
yield of a grazed
alfalfa pasture in

Brazil

Map and evaluate
the spatial

variation of forage
yield

Brazil Alfalfa Herbage cuts 1 Paddock

Higgins &
Bailey [69] 2017

The role of precision
agriculture in

optimising soil
nutrient status and

grassland
productivity in

Northern Ireland,
while reducing

nutrient losses to air
or water

Review of the
potential for

precision
agriculture in

grassland
agriculture

Ireland - - - Paddock

Deming
et al. [63] 2018

Measuring labour
input on

pasture-based dairy
farms using a
smartphone

Quantification of
labour input for
specific tasks on
Irish dairy farms

Ireland PRG

Herbage
cuts, RPM,

visual
assessment

1 Paddock

State of the art grass measurement systems

Togeiro de
Alckmin
et al. [58]

2020

Comparing methods
to estimate perennial

ryegrass biomass:
canopy height and
spectral vegetation

indices

Comparison of
RPM and remote

sensing
Tasmania PRG RPM, hyper-

spectral 1 Plot
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Murphy
et al. [35] 2020

Development of a
grass measurement
optimisation tool to
efficiently measure
herbage mass on
grazed pastures

Development of a
decision support
tool to optimise

grass measurement

Ireland PRG RPM 3 Paddock/
Plot

Posudin
[70] 2007

Practical
spectroscopy in

agriculture and food
science

Review of the
fundamentals of

agri-spectroscopy
USA - NIRS - -

de Boever
et al. [72] 1995

The use of NIRS to
predict the chemical
composition and the

energy value of
compound feeds for

cattle

Development of
NIRS for

concentrate feed
quality analysis

Belgium - NIRS - -

Norris
et al. [73] 1976

Predicting Forage
Quality by Infrared

Reflectance
Spectroscopy

Development of
NIRS for dried and

milled forage
quality analysis

USA - NIRS - -

Lahart
et al. [74] 2019

Predicting the dry
matter intake of

grazing dairy cows
using infrared

reflectance
spectroscopy analysis

Development of
NIRS to predict dry

matter intake
Ireland PRG/WC NIRS 3 Paddock

Jafari et al.
[75] 2003

A Note on
Estimation of Quality

Parameters in
Perennial Ryegrass

by near Infrared

Development NIRS
calibrations to

predict quality of
dried and milled

grass

Ireland PRG NIRS 2 Paddock/
Plot

Burns et al.
[76] 2014

A note on the
comparison of three

near infrared
reflectance

spectroscopy
calibration strategies
for assessing herbage

quality of ryegrass

Development NIRS
calibrations to

predict quality of
dried and milled

grass

Ireland

PRG,
Italian &
hybrid
grass

NIRS 2 Plot

Burns et al.
[30] 2013

Assessment of
herbage yield and

quality traits of
perennial ryegrasses

from a national
variety evaluation

scheme

Development NIRS
calibrations to

predict quality of
dried and milled

grass

Ireland PRG NIRS 3 Plot

Alomar
et al. [77] 2003

Effect of preparation
method on

composition and NIR
spectra of forage

samples

Development NIRS
calibrations to

predict quality of
dried and milled

grass

Chile Mixed NIRS 1 Paddock

McClure
et al. [78] 2002

Near infrared
technology for

precision
environmental

measurements: Part
1. Determination of
nitrogen in green-

and dry-grass tissue

Potential of NIRS
to analysis fresh
grass N content

Australia Fescue NIRS 1 Plot
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Reddersen
& Wachen-

dorf
[79]

2013

Effects of sample
preparation and

measurement
standardization on

the NIRS calibration
quality of nitrogen,

ash and NDFom
content in extensive

experimental
grassland biomass

Development in
NIRS to analysis
standing sward

quality

Germany Mixed NIRS 2 Plot

Thomson
et al. [80] 2018

Assessing the
accuracy of current

near infra-red
reflectance

spectroscopy analysis
for fresh grass-clover
mixture silages and
development of new

equations for this
purpose

Development of
NIRS for

grass-clover silage
analysis

UK Mixed/WC NIRS 3 Paddock

Alomar
et al. [81] 2009

Prediction of the
composition of fresh

pastures by near
infrared reflectance

or interactance-
reflectance

spectroscopy

Development of
NIRS to analysis

fresh grass quality
Chile Mixed NIRS 1 Paddock

Dale et al.
[82] 2017

Impact of sampling
and storage

technique, and
duration of storage,
on the composition
of fresh grass when

analysed using
near-infrared

reflectance
spectroscopy

Use of fresh grass
NIRS to analysis

the impact of
sample storage and

preparation
techniques

Ireland PRG NIRS 1 Plot

Lobos et al.
[83] 2019

Calibration models
for the nutritional

quality of fresh
pastures by

near-infrared
reflectance

spectroscopy

Development of
NIRS to analysis

fresh grass quality
Chile Mixed NIRS 2 Paddock

Murphy
et al. [84] 2021

A near infrared
spectroscopy

calibration for the
prediction of fresh

grass quality on Irish
pastures

Development of
NIRS to analysis

fresh grass quality
Ireland PRG NIRS 3 Paddock/

Plot

Berzaghi
et al. [85] 2005

Prediction
performances of

portable near
infrared instruments

for at farm forage
analysis

Evaluation of
maize silage
quality with

portable NIRS

Italy Maize Portable
NIRS 3 Paddock

Teixeira
et al. [86] 2013

A review on the
applications of

portable
near-infrared

spectrometers in the
agro-food industry

Review of the use
of NIRS in

Agriculture
Portugal - NIRS - -
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Feuerstein
& Paul [87] 2007

NIR-Spectroscopy of
non-dried forages as
a tool in breeding for

higher
quality–laboratory

tests and online
investigations on plot

harvesters

Development of
portable NIRS to

analysis fresh grass
quality

Germany Mixed Portable
NIRS 6 Plot

Mendarte
et al. [88] 2010

Use of portable NIRS
equipment in field

conditions to
determine the

nutritional value of
mountain pastures

Development of
portable NIRS to

analysis fresh grass
quality

Basque
Country Mixed Portable

NIRS 1 Paddock

Smith et al.
[89] 2020

Machine learning
algorithms to predict
forage nutritive value

of in situ perennial
ryegrass plants using
hyperspectral canopy

reflectance data

Development of
hyperspectral

sensing for grass
quality analysis

Victoria,
Australia PRG Hyperspectral 1 Plot

Bell et al.
[90] 2018

The Use of Mobile
Near-Infrared

Spectroscopy for
Real-Time Pasture

Management

Development of
portable NIRS to

analysis fresh grass
quality

UK Mixed/PRG/WCPortable
NIRS 1 Paddock

Patton
et al. [91] 2018

Portable NIRS: a
novel technology for

the prediction of
forage nutritive

quality

Assessment of
portable NIRS for
fresh grass quality

analysis

Ireland PRG Portable
NIRS 1 Paddock

Hart et al.
[92] 2020

Comparison of
Spectral

Reflectance-Based
Smart Farming Tools
and a Conventional

Approach to
Determine Herbage

Mass and Grass
Quality on Farm

Comparison of
remote sensing and
conventional grass

measurement
technologies

Switzerland Mixed
Portable

NIRS, Multi-
spectral

1 Plot

Vogel et al.
[93] 2019

Evaluating
Soil-Borne Causes of
Biomass Variability

in Grassland by
Remote and Proximal

Sensing

Use of
multispectral UAV

and proximal
sensing to evaluate
biomass variability

Germany Mixed
Multispectral,

proximal
sensing

1 Paddock

Reddersen
et al. [94] 2014

A multi-sensor
approach for

predicting biomass of
extensively managed

grassland

The use of
hyperspectral
sensing and

ultrasound to
predict grass
quality and

quantity

Germany Mixed
Ultrasound,
Hyperspec-

tral
2 Plot

Safari et al.
[96] 2016

Comparing mobile
and static assessment

of biomass in
heterogeneous

grassland with a
multi-sensor system

The use of a mobile
muti-sensor unit to

measure grass
quantity and

quality

Germany Mixed
Ultrasound,
Hyperspec-

tral
2 Paddock
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Moeckel
et al. [97] 2017

Fusion of Ultrasonic
and Spectral Sensor
Data for Improving

the Estimation of
Biomass in

Grasslands with
Heterogeneous
Sward Structure

The use of
hyperspectral
sensing and

ultrasound to
predict grass
quality and

quantity

Germany Mixed
Ultrasound,
Hyperspec-

tral
1 Paddock

Legg &
Bradley

[98]
2019

Ultrasonic Proximal
Sensing of Pasture

Biomass

Development of
ultrasonic sensors

for rapid
measurement of

grass height

New
Zealand PRG Ultrasound 1 Plot

Rennie
et al. [99] 2009

Calibration of the
C-DAX Rapid

Pasturemeter and the
rising plate meter for

kikuyu-based
Northland dairy

pastures

Calibration of the
C-DAX to measure

grass quantity

New
Zealand PRG/WC C-DAX 1 Paddock

Lawrence
et al. [100] 2007 Pasture Monitoring

Technologies

Review of
precision

agriculture tools
for pasture

measurement and
mapping

New
Zealand - C-DAX,

NIRS - Paddock

King et al.
[101] 2010

Pasture Mass
Estimation by the
C-DAX Pasture
Meter: Regional

Calibrations for New
Zealand

Comparison of
RPM, C-AX and
herbage cuts for

grass measurement

New
Zealand PRG/WC/MixedC-DAX 1 Paddock

Oudshoorn
et al. [102] 2011

Calibration of the
C-DAX pasture

meter in a Danish
grazing system

Calibration of
C-DAX for grass

quantity
measurement

Denmark PRG/WC C-DAX 2 Plot

Schori et al.
[103] 2015

Sward surface height
estimation with a
rising plate meter

and the C-Dax
Pasturemeter

Comparison of
RPM and C-DAX

for grass
measurement

Switzerland Mixed C-DAX 4 Paddock

Dennis
et al. [104] 2015

Pasture yield
mapping: why &

how

Development of
measurement

protocol for the
C-DAX to map
pasture yield

New
Zealand - C-DAX 2 Paddock

Manderson
& Hunt

[105]
2013

Introducing the
Agri-Rover: An

Autonomous
on-the-go sensing

rover for science and
farming

Automation of
C-DAX using

robotics

New
Zealand - C-DAX - Paddock

Gobor et al.
[106] 2015

Advanced pasture
management through

innovative robotic
pasture maintenance

Development of
pasture care and

management
robots

Germany Mixed Laser, NIRS 1 Paddock

Marin et al.
[107] 2018

Urban Lawn
Monitoring in Smart
City Environments

Comparison of
remote and ground

automated grass
measurement

Spain - RGB sensing 1 Plot
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Viscarra
Rossel et al.

[109]
2011

Proximal Soil
Sensing: An Effective

Approach for Soil
Measurements in
Space and Time

Calibration of
proximal sensing
techniques for soil

analysis

France,
Australia - NIRS - -

Pullanagari
et al. [110] 2012

In-field hyperspectral
proximal sensing for

estimating quality
parameters of mixed

pasture

Calibration of
hyperspectral

sensing for grass
quality

measurement

New
Zealand Mixed Hyperspectral 1 Paddock

Ancin-
Murguzur
et al. [111]

2019

Yield Estimates by a
Two-Step Approach
Using Hyperspectral

Methods in
Grasslands at High

Latitudes

Calibration of
proximal and

satellite
hyperspectral

sensing for grass
measurement

Norway Mixed Hyperspectral 4 Paddock

Pullanagari
et al. [112] 2011

Pasture quality
measurement tools
for decision making

Investigation of
optical sensor for
the measurement
of pasture quality

New
Zealand -

Multispectral,
Hyperspec-

tral
1 Paddock

Askari
et al. [113] 2019

Evaluation of Grass
Quality under
Different Soil
Management

Scenarios Using
Remote Sensing

Techniques

Calibration of
proximal and

remote sensing
methods for

pasture quantity
and quality

measurement

Ireland PRG/WC
Multispectral,
Hyperspec-

tral
2 Paddock

Rueda-
Ayala et al.

[108]
2019

Comparing
UAV-Based

Technologies and
RGB-D

Reconstruction
Methods for Plant

Height and Biomass
Monitoring on Grass

Ley

Evaluation of aerial
and ground based
method for grass

quantity
measurement

Norway Mixed RGB-Depth
sensor 1 Paddock

Capolupo
et al. [114] 2015

Estimating Plant
Traits of Grasslands
from UAV-Acquired

Hyperspectral
Images: A

Comparison of
Statistical

Approaches

Statistical
modelling methods
for hyperspectral

grass measurement
data

Germany - Hyperspectral 1 Plot

Pullanagari
et al. [115] 2012

Proximal sensing of
the seasonal

variability of pasture
nutritive value using

multispectral
radiometry

Measuring the
variability of

pasture quality
using proximal

sensing

New
Zealand PRG/WC Multispectral 1 Paddock

Oliveira
et al. [116] 2020

Machine learning
estimators for the

quantity and quality
of grass swards used
for silage production

using drone-based
imaging

spectrometry and
photogrammetry

Utilisation of UAV
sensing to measure
silage grass quality

Finland Mixed RGB, Hyper-
spectral 1 Paddock



Agriculture 2021, 11, 600 29 of 37

Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Obanawa
et al. [117] 2020

Portable
LiDAR-Based

Method for
Improvement of

Grass Height
Measurement

Accuracy:
Comparison with

SfM Methods

Development of
LiDAR to measure

grass height
Japan Italian

ryegrass LiDAR 1 Plot

Vázquez-
Arellano

et al. [118]
2016

3-D Imaging Systems
for Agricultural
Applications—A

Review

Review of 3D
image technology

for precision
agriculture

applications

Germany - 3-D imaging
systems - Paddock

Cooper
et al. [119] 2017

Examination of the
potential of terrestrial

laser scanning and
structure-from-

motion
photogrammetry for

rapid
non-destructive field

measurement of
grass biomass

Comparison of
LiDAR and RPM
for grass quantity

measurement

South
Dakota, USA

Smooth
Brome LiDAR, RPM 1 Plot

Sibanda
et al. [120] 2016

Comparing the
spectral settings of
the new generation
broad and narrow

band sensors in
estimating biomass

of native grasses
grown under

different
management

practices

Comparison of
proximal and

satellite sensing for
grass quantity
measurement

South Africa Mixed
Multispectral,
Hyperspec-

tral
1 Plot

Barrett
et al. [122] 2014

Assessment of
multi-temporal,

multi-sensor radar
and ancillary spatial
data for grasslands

monitoring in Ireland
using machine

learning approaches

Calibration of
satellite radar for

grassland
classification

Ireland PRG/WC Satellite
radar - Paddock

Ali et al.
[123] 2017

Application of
Repeat-Pass

TerraSAR-X Staring
Spotlight

Interferometric
Coherence to

Monitor Pasture
Biophysical
Parameters:

Limitations and
Sensitivity Analysis

Calibration of
satellite radar for

grass quantity
measurement

Ireland PRG Satellite
radar 1 Paddock
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Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Grass measurement decision support systems

Hanrahan
et al. [20] 2017

PastureBase Ireland:
A grassland decision
support system and

national database

Development of
grassland

management
decision support
tool and national

database

Ireland PRG
Rising plate

meter, Visual
estimation

2 Paddock/
Plot

Delaby
et al. [124] 2015

Pastur’Plan: a
dynamic tool to
support grazing

management
decision making in a

rotational grazing
system

Introduction to a
decision support
tool for grassland
measurement and

management

France - RPM - Paddock

Zom &
Holshof

[125]
2011

GrazeVision: A
versatile grazing
decision support

model

Development of a
decision support

model for
grassland

management

The
Netherlands - - - Paddock

O’ Leary &
O’

Donovan
[127]

2019

PastureBase
Ireland—getting

Ireland utilising more
grass. Moorepark ’19

Irish Dairy

Development of
grassland

management
decision support
tool and national

database

Ireland PRG
Rising plate

meter, Visual
estimation

- Paddock

McDonnell
et al. [128] 2019

Weather forecasts to
enhance an Irish

grass growth model

The use of weather
forecasting to
predict grass

growth

Ireland PRG
Grass

growth
model

4 Paddock

Ruelle et al.
[129] 2018

Development of the
Moorepark St Gilles
grass growth model
(MoSt GG model): A
predictive model for

grass growth for
pasture based

systems

Development of a
grass growth

model for Irish
pasture

Ireland PRG
Grass

growth
model

2 Paddock

Romera
et al. [130] 2010

Use of a pasture
growth model to
estimate herbage

mass at a paddock
scale and assist
management on

dairy farms

Development of a
grass growth

model for New
Zealand pasture

New
Zealand PRG

Grass
growth
model

1 Paddock

Herrmann
et al. [131] 2005

Performance of
grassland under
different cutting

regimes as affected
by sward

composition,
nitrogen input, soil

conditions and
weather-A

simulation study

Calibration of
forage growth and

quality model
Germany PRG/WC/mixed

Grass
growth
model

3 Plot
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Table A1. Cont.

Study Year Title Study Focus Region Grass
Species

Measurement
System

No. of
Grazing
Seasons

Trial
Scale

Murphy
et al. [132] 2019

GrassQ-a holistic
precision grass

measurement and
analysis system to
optimize pasture
based livestock

production

Development of
decision support
system to process

data from multiple
measurement

systems

Ireland PRG

RPM, Hyper-
spectral,

multispec-
tral

2 Paddock

O’ Brien
et al. [133] 2019

Modelling precision
grass measurements

for a web-based
decision platform to

aid grassland
management

Development of
decision support
system to process

data from multiple
measurement

systems

Ireland PRG

RPM, Hyper-
spectral,

multispec-
tral

2 Paddock

DM = Dry matter, PRG = Perennial rye grass, WC = white clover, Paddock = predominately grazed pasture > 0.25 ha, Plots = simulated
grazed plots <0.25 ha.
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