
agriculture

Article

Evaluating Genotype × Environment Interactions of Yield
Traits and Adaptability in Rice Cultivars Grown under
Temperate, Subtropical and Tropical Environments

Xing Huang 1,†, Su Jang 1,† , Backki Kim 1, Zhongze Piao 2, Edilberto Redona 3 and Hee-Jong Koh 1,*

����������
�������

Citation: Huang, X.; Jang, S.; Kim, B.;

Piao, Z.; Redona, E.; Koh, H.-J.

Evaluating Genotype × Environment

Interactions of Yield Traits and

Adaptability in Rice Cultivars Grown

under Temperate, Subtropical and

Tropical Environments. Agriculture

2021, 11, 558. https://doi.org/

10.3390/agriculture11060558

Academic Editor: Diego Jarquin

Received: 27 May 2021

Accepted: 17 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute,
Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
starcuni@snu.ac.kr (X.H.); oryzasativa@snu.ac.kr (S.J.); uptfamily@hanmail.net (B.K.)

2 Crop Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
zzpiao@hotmail.com

3 Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA;
edr127@drec.msstate.edu

* Correspondence: heejkoh@snu.ac.kr
† Xing Huang and Su Jang contributed equally to this work.

Abstract: Rice yield is a complex trait that is strongly affected by environment and genotype ×
environment interaction (GEI) effects. Consideration of GEI in diverse environments facilitates the
accurate identification of optimal genotypes with high yield performance, which are adaptable to spe-
cific or diverse environments. In this study, multiple environment trials were conducted to evaluate
grain yield (GY) and four yield-component traits: panicle length, panicle number, spikelet number
per panicle, and thousand-grain weight. Eighty-nine rice varieties were cultivated in temperate,
subtropical, and tropical regions for two years. The effects of both GEI (12.4–19.6%) and environment
(23.6–69.6%) significantly contributed to the variation of all yield-component traits. In addition, 37.1%
of GY variation was explained by GEI, indicating that GY performance was strongly affected by the
different environmental conditions. GY performance and genotype stability were evaluated using
simultaneous selection indexing, and 19 desirable genotypes were identified with high productiv-
ity and broad adaptability across temperate, subtropical, and tropical conditions. These optimal
genotypes could be recommended for cultivation and as elite parents for rice breeding programs to
improve yield potential and general adaptability to climates.

Keywords: rice yield; genotype by environment interaction (GEI); genotype evaluation; multiple
environmental trials

1. Introduction

Rice (Oryza sativa L.) is a staple crop for more than half of the world’s population,
providing about 20% of the world’s dietary energy needs. More than 700 million tons of rice
is produced annually from approximately 116 million hectares worldwide [1]. To meet the
challenges of population growth, climate change, and limited arable land, rice production
must be expanded through increases in yield potential [2]. Rice is cultivated under different
climates, including temperate, sub-tropical, and tropical regions. Temperature is a particu-
larly important factor, significantly affecting both plant growth and grain ripening. Higher
minimum temperatures were found to decrease yield, whereas higher maximum tempera-
tures increased yield [3]. Conversely, very high maximum temperatures during flowering
drastically reduced rice yield due to lower spikelet fertility [4]. These observations indicate
that the effect of temperature on yield largely depends on growth stage.

Rice yield is determined by several yield-related factors, including panicle number,
spikelet number per panicle, and grain weight. Previous studies showed that rice yield was
strongly influenced by environment effects and genotype × environment interaction (GEI)
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in addition to genotypic effect [5–8]. GEI represents the response of different genotypes
to each environment, termed adaptation [9]. Thus, identifying GEI in specific or broad
environments is essential to accurately evaluate the yield performance of different rice
genotypes [10]. Wide adaptation is defined as the ability to produce stable high yields
across diverse environments [11,12], and a major goal in rice breeding programs is to
achieve stability of yield performance in different agricultural environments [13].

Genotypic main effect plus GEI (GGE) biplot analysis is a statistical method that
has been widely employed to detect the GEI of target traits in multiple environments.
GGE biplots graphically indicate the GEI of multiple environmental trials in a way that
facilitates the evaluation of varieties. GGE biplots are constructed using first and second
symmetrically scaled principal components derived from singular value decomposition of
environment-centered multiple environment trial data, facilitating genotype evaluation
and mega-environment delineation [14]. More recently, a method was proposed to measure
quantitative genotypic stability using WAASB, the weighted average of absolute scores from
the singular value decomposition of the matrix of best linear unbiased predictions (BLUP),
for GEI effects obtained in a linear mixed model (LMM) [15]. WAASB has the advantage
of avoiding biased interpretations of traditional additive main effects and multiplicative
interaction (AMMI) models, which occur when the proportion of the variance explained in
the first two interaction principal component axes (IPCA) is low [15].

The objectives of this study are (1) to evaluate rice yield and its component traits from
the grain yield performance of 89 rice accessions cultivated in temperate, subtropical, and
tropical environments, (2) to investigate GEI for the yield traits using multi-environment
trial data, and (3) to identify ideal genotypes with high yield performance and wide
adaptation for yield stability in diverse environments.

2. Materials and Methods
2.1. Plant Materials

A total of 89 rice varieties, comprising 76 japonica, 7 indica, and 6 tongil-type varieties,
were used for field experiments. Japonica rice accessions were from five countries: South
Korea, China, U.S., Japan, and Taiwan. Tongil-type varieties, which are Korean high-
yielding rice varieties, were developed by inter-subspecies crosses between indica and
japonica cultivars. Six of the indica rice accessions, named ‘IR varieties’, were developed by
the International Rice Research Institute (IRRI), and the remaining indica accession, Gumei
4, was of Chinese origin (Figure 1a). All rice accessions were conserved at the Agricultural
Genetic Resource Center, Seoul National University (SNU), Suwon, South Korea, and are
listed in Supplementary data Table S1.

2.2. Location and Field Experimental Design

Field experiments were conducted in three different locations for two years (Figure 1b).
To evaluate the adaptability of varieties to temperate conditions, plant materials were
cultivated in the experimental field at SNU, Suwon, South Korea (37◦16′ N 126◦59′ E
and 28.5 m above sea level) during May–October 2010 and 2011 (SW10 and SW11). To
evaluate subtropical adaptability, field trials were conducted at the Shanghai Academy of
Agricultural Science, Shanghai, China (30◦54′ N 121◦24′ E and 5.6 m above sea level) during
May–October, 2011 and 2012 (SH11 and SH12). To evaluate tropical region adaptability,
plants were grown at the IRRI, Los Baños, Philippines (14◦10′N 121◦15′E and 16.3 m above
sea level) during June–September 2010 and 2011 (IR10 and IR11). In Suwon, plant materials
were seeded on 5 May 2010 and 29 April 2011 and transplanted on 5 June 2010 and 4
June 2011. In Shanghai, seeds were sown on 20 May 2011 and 22 May 2012, and seedlings
were transplanted on 15 June 2011 and 17 June 2012. In Los Baños, seeds were sown
on 28 June 2010 and 9 June 2011, and seedlings were transplanted on 20 July 2010 and
30 June 2011. Detailed environmental conditions are shown in Table S2. Seedlings were
transplanted into irrigated paddy fields as follows: one plant per hill, 15 cm between
plants in a row, 30 cm between rows, and two rows per variety. Fertilizers were applied at
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100 kg N ha −1, 80 kg P ha −1, and 80 kg K ha −1 (100-80-80 kg/ha N-P-K). Experimental
plots were arranged in a randomized complete block design with two replications, each
containing 89 rice varieties.
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Figure 1. Variation of yield-component traits and grain yield (GY) in different environments. (a) Plant materials used in
multiple environment trials. The length of bars indicate the percent of origin or subspecies of plant materials. (b) Locations
of experimental cultivation fields: Suwon, temperate; Shanghai, subtropical; and Los Baños, tropical. (c) Comparisons of
yield-component traits and grain yield (GY) performance among six environments (three locations over two years). Box
plots with different lowercase letters indicate statistically significant differences (one-way analysis of variance (ANOVA)
followed by Scheffe’s post hoc test; p < 0.05).

2.3. Measurement of Traits

Four yield-component traits, namely panicle length (PL; cm), panicle number (PN),
spikelet number per panicle (SN), and thousand-grain weight (TGW; g), as well as grain
yield (GY; g), were measured across all environments. Five replicate measurements were
taken in each duplicate block for each of the yield-component traits, according to the
Standard Evaluation System (SES) [16]. GY was determined from 10 plants in each block.

2.4. Statistical Analyses

All statistical analyses were performed using R version 3.3.1 [17]. Multiple compar-
isons of yield-related traits and GY among environments were conducted by one-way
analysis of variance (ANOVA) with Scheffe’s post hoc test (p ≤ 0.05) using the ‘Agrico-
lae’ package [18]. Combined ANOVA was performed to test the presence of GEI using a
complete data set of experiments across six environments (three regions and two years).
To evaluate the contribution of each factor to the yield-component traits and GY, percent-
ages of explained sum of squares of genotype, environment, and GEI were calculated
as the sum of squares of each source divided by total sum of squares. Adaptability of
genotypes and mega-environments (MEs), a group of environments that share the same
winning genotypes, in the six environment trials were evaluated using genotypic main
effect plus GEI (GGE) biplot analysis [19], using the ‘metan’ package [20]. Environments
were evaluated using the ‘discriminativeness vs. representativeness’ view of the GGE
biplot. MEs and winner genotypes in a given set of environments were identified using
a ‘which-won-where’ GGE biplot. Adaptability of genotypes to multi-environments was
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evaluated using a ‘ranking genotypes’ GGE biplot, comparing the ideal genotypes for the
four yield-component traits, which were defined as showing the highest performance in
all environments. To evaluate the GY stability of genotypes across environments, WAASB
(Weighted Average of Absolute Scores from the singular value decomposition of the matrix
of BLUP for GEI effects generated by a linear mixed-effect model) [15] was estimated,
assuming genotype and GEI as random effects and environment and blocks within environ-
ments as fixed factors. The WAASBY index [15], a superiority index that allows weighting
between performance (i.e., GY) and stability (WAASB), was calculated to identify geno-
types that combined high GY with stability. Path coefficient analyses were performed using
the ‘lavaan’ package [21] to estimate the contributions of each yield-component variable
to GY across all environments. The direct effects of yield-component traits on GY were
represented by standardized path coefficients.

3. Results
3.1. Variation of Grain Yield and Its Components in Rice Cultivars in Multiple Environments

A panel of 89 rice accessions was cultivated in temperate, subtropical, and tropical
conditions over two years. Environmental conditions, including temperature, relative
humidity, and precipitation, varied substantially among the three locations. In Suwon
(temperate environment, SW10 and SW11) and Shanghai (subtropical environment, SH11
and SH12), higher mean temperatures were observed from July to August in both years,
whereas consistent temperatures were observed throughout the growing season in Los
Baños (tropical environment, IR10 and IR11) (Table S2). Shanghai showed relatively higher
mean temperatures in July compared with other locations. In Suwon, relative humidity
was higher in July–August, after rice heading. In Shanghai, humidity was higher after
transplanting (June) and heading (August) than at other periods in the growth season.
In Los Baños, high humidities of >80% were observed throughout the growing season.
High variability was observed in yield-component traits and GY among the genotypes
and across the different environments (Figure 1c, Table S3). Averages of PL and SN were
significantly lower in the tropical IR10 and IR11 conditions than in temperate or subtropical
environments. By contrast, average PN in IR10 and IR11 conditions was significantly
higher than in other environments. TGW was significantly different between years, even
in similar environmental conditions. Average TGW was highest in SW11 and IR11 and
lowest in SH12 conditions. Average GY was significantly higher in temperate conditions
(SW10 and SW11) than in subtropical or tropical conditions. The combined analysis of
variance of the six trials (three environments × two years) showed significant main effects
of genotype, environment, and GEI for all traits (Table 1). The percentage of explained sum
of squares values showed that the highest proportion of PL variation was due to genotype
(52.9%) and the highest proportion of PN variation was due to environment (69.6%). Large
proportions of SN and TGW variation were explained by both genotype (33.9–40.6%) and
environment (34.8–35.8%) effects. Genotype and GEI had larger effects on GY, accounting
for 35.6% and 37.1% of total variation, respectively.

Table 1. Combined analysis of variance (ANOVA) of yield-component traits and grain yield.

Source Df
PL PN SN TGW GY

MS ESS
(%) MS ESS

(%) MS ESS
(%) MS ESS

(%) MS ESS
(%)

E 5 692.9
*** 23.6 4114.3

*** 69.6 212,686.3
*** 35.8 613.1

*** 34.8 151,970.4
*** 16.5

Rep (E) 6 5.4
** 0.2 9.9

* 0.2 1459
*** 0.3 8.5

*** 0.6 955.7
ns 0.1
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Table 1. Cont.

Source Df
PL PN SN TGW GY

MS ESS
(%) MS ESS

(%) MS ESS
(%) MS ESS

(%) MS ESS
(%)

G 88 88.1
*** 52.9 32.7

*** 9.7 13,729.7
*** 40.6 34.0

*** 33.9 18,606.4
*** 35.6

GEI 440 6.0
*** 18.1 8.4

*** 12.4 1210.5
*** 17.9 3.9

*** 19.6 3881.8
*** 37.1

Residuals 528 1.4 5.2 4.5 8.0 302.3 5.4 1.9 11.1 925.8 10.6

PL, panicle length; PN, panicle number; SN, spikelet number per panicle; TGW, thousand-grain weight; GY, grain yield; E, environment;
Rep, replication; G, genotype; GEI, Genotype× environment interaction; Df, degrees of freedom; MS, mean square; ESS (%), proportion of
explained sum of squares. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant.

3.2. Environmental Evaluation and Adaptability in Specific Environments

Evaluation of discriminativeness vs. representativeness was performed using GGE bi-
plots (Figure 2). The lengths of environment vectors from the biplot origin are proportional
to the standard deviation within each environment and thus represent the discriminating
ability of the environments [22]. Tropical conditions (IR10 and IR11) showed the highest
discriminating ability for PL, PN, SN, and GY among the six environments (Figure 2). For
the term of TGW, discriminating ability was ranked as follows: SH12 > SH11 > SW11 > IR11
> SW10 > IR10. The angle between the environment line and the average-environment axis
(AEA), which passes through the average environments and biplot origin, indicates the
representativeness of each environment. For PL, SH12 was more representative than the
other environments, exhibiting a smaller angle with the AEA line. For PN, temperate con-
ditions (SW10 and SW11) were the most representative, and tropical conditions (IR10 and
IR11) were the least representative. For SN, subtropical conditions (SH11 and SH12) were
more representative than other conditions. SW10 and IR10 were the most representative
for TGW and GY, respectively.

Environments were divided into potential MEs based on ‘which-won-where’ patterns
in GGE biplots (Figure 3). A polygon is constructed by connecting the genotypes furthest
from the biplot origin by straight lines, and thus all other tested genotypes are contained in
the polygon. Perpendicular lines starting from the biplot origin to each side of the polygon
divide the biplot into environment sectors [22]. Genotypes were assigned genotype codes
to facilitate their visualization in the plot (Table S1). For PL, the six environments were
segregated into two MEs, the first containing SW10, SW11, and SH11, and the second
containing SH12, IR10, and IR11. G59 was the vertex genotype for the first sector and G3,
G15, and G50 were vertex genotypes in the second sector. These results indicated that G59
(Kunmingxiaobaigu) was the winning genotype, exhibiting the longest panicle, for the ME
that included SW10, SW11, and SH11. Genotypes G3 (Bluebonnet), G15 (Della), and G50
(IR 8) were the best performing genotypes in the second ME. For PN, the six environments
were divided into two MEs. The first ME contained SW10, SW11, SH11, and IR10, and
G7 (Cheongan) and G11 (Chucheong) were the best performing genotypes. The second
ME included SH12 and IR11, and G83 (Sandeuljinmi) and G108 (Zhendao 88) were the
winning genotypes. For SN, G3 (Bluebonnet) and G15 (Della) were the best performing
genotypes in the first ME (SW10, SW11, SH11, and SH12) and the second ME (IR10 and
IR11), respectively. For TGW, the first ME contained SW10, SW11, IR10, and IR11, and
genotypes G5 (Chengcheong) and G29 (Hanmaeum) showed the highest performance.
SH11 and SH12 were included in the other ME, and G34 (Hopum) and G50 (IR 8) were
the winning genotypes. In multiple environment trials for GY, the six environments were
divided into four ME sectors. Two of these MEs represented locations: Shanghai and
Suwon. G24 (Gumei 4) and G28 (Hangangchal 1) were the best performing genotypes in
the ME containing SW10 and SW11. Genotypes G57 (Keunseom) and G94 (Taichung 178)
were the winning genotypes in IR10 and IR11, respectively.
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Figure 3. Polygon view of GGE biplot for ‘which-won-where’ analysis based on the yield-component traits and grain yield
data of 89 genotypes in six environments. Green diamonds represent individual trials as location-year combinations. IR,
IRRI, Los Baños; SH, Shanghai; SW, Suwon. Suffixes 10, 11, and 12 indicate trials in 2010, 2011, and 2012, respectively. Small
and large red circles show individual genotypes and the genotype with highest performance, respectively. PL, panicle
length; PN, panicle number; SN, spikelet number per panicle; TGW, thousand-grain weight; GY, grain yield.

3.3. General Adaptability of Yield Traits

Genotype evaluation was conducted by comparing genotypes to the ideal genotype
using an average environment coordinate (AEC) view of GGE plots (Figure 4). Ideal geno-
type is located at a point on the AEA in a positive direction and has a vector length the same
as the longest genotype vector on the positive side of the AEA. Thus, the ideal genotype is
indicative of the highest performance and the highest stability across environments. For
PL, genotypes G15 (Della) and G59 (Kunmingxiaobaigu) were located closest to the ideal
genotype: these genotypes had the longest PLs and exhibited moderate stability across
environments. For PN, genotypes G46 (IR 36) and G47 (IR 56) were closest to the ideal
genotype and exhibited relatively higher numbers of panicles along with higher stability.
G60 (LaCrosse) and G107 (Zenith) were closest to the ideal genotype for SN, exhibiting
high numbers of spikelets per panicle alongside higher stability. For TGW, genotypes G5
(Chengcheong) and G16 (Dianjingyou 1) exhibited elevated performance compared with
other genotypes, but G5 was more environmentally stable than G16.
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Figure 4. Genotype comparison to an ideal genotype using an average environment coordinate (AEC) view of GGE plot.
The ideal genotype is indicated by a red arrow surrounded by concentric circles. Red circles represent individual genotypes.
Gray diamonds represent individual trials as location-year combinations. IR, IRRI, Los Baños; SH, Shanghai; SW, Suwon.
Suffixes 10, 11, and 12 indicate trials in 2010, 2011, and 2012, respectively. PL, panicle length; PN, panicle number; SN,
spikelet number per panicle; TGW, thousand-grain weight.

3.4. Simultaneous Selection of High Grain Performance and High Environmental Stability

To precisely evaluate GY performance and stability, genotypes were ranked using
WAASBY (WAASB/GY ratio) scores (Table S4). In the WAASB/GY ratio, the first compo-
nent relates to environmental stability and the second to GY productivity. Thus, a ratio of
100/0 relates only to stability and a ratio of 0/100 relates only to productivity in genotype
ranking [15]. The genotypes were classified into four groups (Figure 5a). Group 1 included
genotypes with high GY (high productivity) but low stability, being highly ranked when
the WAASB/GY ratio was low (greater weight for productivity). Most of the indica (six out
of seven varieties) and tongil-type (five out of six varieties) cultivars that exhibited high
GY were found in Group 1. The genotypes in Group 2 had low productivity (i.e., low GY)
and were also unstable, with lower rankings with both low and high WAASB/GY ratios.
Conversely, Group 3, which contained 17 japonica, one indica, and one tongil-type cultivar,
contained highly productive (high GY) genotypes that were also stable across different
environments. Group 4 included genotypes with high stability performance but low GY.
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Path analyses were conducted using single- and multi-environment trial data to
investigate the contributions of the different yield-component traits to GY performance
in specific environments and across environments (Figure 5b). In tropical conditions,
SN had the highest direct positive effect on GY, with path coefficients of 0.52 (IR10) and
0.53 (IR11). In subtropical conditions, PN had the highest positive direct effect on GY,
with path coefficients of 0.63 (SH11) and 0.41 (SH12). PN also had the highest impact on
GY in temperate conditions, with path coefficients of 0.46 (SW10) and 0.74 (SW11). No
significance was found between PL and GY in either of the two years of cultivation in
subtropical or temperate conditions. When means of variables were considered across all
environments, SN was the major contributor to GY, with a direct effect coefficient of 0.46.
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of the heatmap (top-to-bottom). (b) Path analyses between yield-related traits and grain yield. Numerical values show
standardized path coefficients, and line thickness represents the strength of the direct effect. Individual trials are shown as
location-year combinations. IR, IRRI, Los Baños; SH, Shanghai; SW, Suwon. Suffixes 10, 11, and 12 indicate trials in 2010,
2011, and 2012, respectively. PL, panicle length; PN, panicle number; SN, spikelet number per panicle; TGW, thousand-grain
weight; GY, grain yield.

4. Discussion

The identification of genotypes with high yield, production stability, and adaptability
to a range of environments is one of the main targets of rice breeding programs. Investi-
gating the effects of genotype and the interactions between genotype and environment
is important for selection and evaluation of superior genotypes in multi-environment
trials [23].

Plant phenotypic plasticity resulting from GEI was apparent, with plant morphology
and phenology adjusting to environmental conditions [24,25]. In this study, field trials
were conducted over two years to evaluate genotypes and GY in temperate, subtropical,
and tropical environments. Yield-component traits and GY of genotypes varied according
to environments. PL, PN, and SN were significantly different between the tropical and
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subtropical/temperate regions (Figure 1c and Table S1). In tropical conditions (IR10 and
IR11), PN averages were higher, and SN and PL averages were lower, than in other
environments. In addition, yield-component traits exhibited varying patterns of direct
effects on GY (Figure 5b). These results indicate that yield-component traits are affected by
environment and GEI and are differentially expressed in specific environments, and plant
adaptive plasticity modulates the contribution of each of the yield-component traits to GY
in different environments.

Combined ANOVA revealed that the effects of both GEI (12.4–19.6%) and environment
(23.6–69.6%) significantly contributed to the variation of all yield-component traits (Table 1).
The highest proportion of PN variation was explained by environment (69.6%), and the
smallest proportion of variation was explained by genotype (9.7%). However, larger
proportions of variation were explained by genotype effects for PL (52.9%), SN (40.6%), and
TGW (33.9%). These results suggest that genotype evaluation based on the performance of
PL, SN, and TGW, which were more strongly impacted by genotype effects, was an efficient
approach for identifying adaptable genotypes with high GY stability.

For GY, 37.1% of variation was explained significantly by GEI, indicating that the GY
performance of genotypes was strongly affected by different climate conditions (Table 1).
A ‘which-won-where’ GGE biplot showed that superior genotypes for GY could be found
in temperate (SW10 and SW11) and tropical conditions (IR10 and IR11), but that winning
genotypes were not found in the subtropical region (Figure 3). The winning genotypes
were G57 (Keunseom) and G94 (Taichung 178) in tropical conditions and G24 (Gumei 4)
and G28 (Hangangchal 1) in temperate conditions. Indica varieties usually adapt to tropical
conditions better than japonica varieties, but japonica varieties exhibit higher performance
than indica cultivars under cooler conditions, as determined by their morphological and
physiological characteristics [26–28]. In this study, two tongil-type varieties, Keunseom and
Hangangchal 1, had higher GY performance than indica and japonica varieties in both tropi-
cal and temperate environments. This result suggests that inter-subspecific cross breeding
between indica and japonica might lead to improved performance in diverse environments.

Simultaneous selection indexing based on ranking additive main effects, multiplica-
tive interaction stability values (ASV), and mean performance has been widely used to
identify genotypes that combine high performance with stability [29–32]. However, if the
explanation of the GEI pattern in the first two-interaction principal component axis is low,
then the ASV ranking can be misleading [15]. Therefore, this study employed WAASBY
indexing to identify genotype groups that combined high GY with environmental stability
(Figure 5a). When the mean productivity of a genotype was prioritized over stability, the
varieties in Group 1, including high-yielding indica IR varieties and tongil-type varieties,
were defined as favorable genotypes across multiple environments. However, identifying
desired genotypes based on high performance or stability alone could lead to misinterpre-
tation. High performance is favorable only when combined with high stability, and high
stability is least desirable if combined with low performance [23]. Therefore, we focused
on varieties in Group 3, though the genotype ranking was lower than in Group 1 when
the WAASBY index was weighted towards GY. The varieties in Group 3 showed higher
rankings with high or low WAASB/GY ratios in multi-environment trials (Figure 5a).
These results suggest that the 19 genotypes in Group 3 are favorable genotypes, with rela-
tively high yield and stable performance in temperate, subtropical, and tropical conditions.
Thus, these ideal genotypes could be recommended for widespread cultivation and as elite
parents in rice breeding programs to improve yield potential and general adaptability in
various climates.

5. Conclusions

Some yield-component traits (PL, PN, and SN) differed according to environmental
conditions, indicating that the contributions of yield components to GY were mutable
between temperate/subtropical and tropical conditions. All yield-component traits and
GY were significantly influenced by GEI effects. In particular, genotype and GEI had
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large effects on GY, accounting for 35.6% and 37.1% of total GY variation, respectively.
Simultaneous selection indexing using WAASBY identified 19 optimal varieties, with high
productivity and stability in temperate, subtropical, and tropical regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agriculture11060558/s1, Table S1: Information of rice varieties used in this study, Table S2:
Information of the trial environments, Table S3: Statistics description of yield-related traits and GY
across environments, Table S4: The ranks of genotype depending on WAASBY index with different
WAASB/GY ratio.
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