
 

 
 

 

 
Agriculture 2021, 11, 531. https://doi.org/10.3390/agriculture11060531 www.mdpi.com/journal/agriculture 

Article 

Evolution in Configuration and Productivity of New Zealand 

Hill Country Sheep and Beef Cattle Systems 

Januarius Gobilik 1,*, Stephen Todd Morris 2 and Cory Matthew 2 

1 Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag 3,  

Sandakan 90509, Sabah, Malaysia 
2 School of Agriculture and Environment, Massey University PN433, Private Bag 11 222,  

Palmerston North 4442, New Zealand; s.t.morris@massey.ac.nz (S.T.M.); c.matthew@massey.ac.nz (C.M.) 

* Correspondence: jgobilik@ums.edu.my; Tel.: +60-89-634-000 (ext. 102317) 

Abstract: Metabolic energy budgeting (MEB) was used to evaluate evolution over 30 years 

(1980–1981 to 2010–2011) in New Zealand southern North Island ‘hill country’ sheep and beef cattle 

systems. MEB calculates energy required by animals for body weight maintenance, weight gain or 

loss, pregnancy, and lactation to estimate the system feed demand and thereby provide a basis for 

calculating feed conversion efficiency. Historic production systems were reconstructed and mod-

eled using averaged data from industry surveys and data from owners’ diaries of three case-study 

farms and reviewed for patterns of change over time. The modeling indicated that pasture 

productivity was 11% lower and herbage harvested was 14% lower in 2010–2011 than in the early 

1980s. This productivity decline is attributable to warmer, drier summer weather in recent years. 

However, primarily through increased lambing percentage, feed conversion efficiency based on 

industry data improved over the study period from 25 to 19 kg feed consumed per kg lamb 

weaned, while meat production rose from 137 to 147 kg per ha per year. Similar improvements 

were observed for the three case farms. The New Zealand MEB model was found effective for 

analysis of tropical beef production systems in Sabah, Malaysia. 

Keywords: herbage harvested; production system configuration; feed conversion efficiency;  

metabolic energy budgeting; pastoral system technology transfer 

 

1. Introduction 

A primary aim of this study was to understand key details of how system configu-

rations of pastoral production systems utilizing hill land grazed by sheep and beef cattle 

in New Zealand’s southern North Island have evolved over the last 30 years. This in-

formation will provide a basis for pastoral farm managers internationally to evaluate and 

compare the configuration, productivity, and ecological or environmental sustainability 

status of their own systems with those described here. In New Zealand, the hill land 

pastoral systems are locally referred to as ‘hill country farms’, but they share many of the 

characteristics of rangeland and differ from the intensive pastoral systems of the river 

plains and terraces for which New Zealand is well known. They face slope-imposed 

limitations, including a lower soil fertility status than intensively managed farms on 

flatter land and slope-induced drought arising from loss of precipitation to surface 

run-off before it can infiltrate into the soil for use by plants. As a result, the majority of 

land in these hill grazing systems is typically never cultivated and since establishment by 

European settlers over a century ago has developed permanent, specialized, locally 

adapted plant communities comprising different combinations of European and New 

Zealand native grasses, forbs, and legumes [1]. These plant communities are adapted to 

grazing but are spatially variable in species composition, reflecting factors such as as-

pect-related differences in diurnal temperature, spatial variability in animal dung and 
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urine return, and variation in soil properties linked to topographic factors. 

Metabolic energy budgeting (MEB) is an ideal methodology for the proposed study, 

as MEB is able to infer the quantity of feed eaten by animals in a production system (in-

cluding recreation by computer simulation of historic production systems where the 

numbers and body weights of animals are known) and thereby provide a basis for cal-

culating conversion efficiency (kg forage dry matter consumed per kg carcass produced) 

in order to compare performance of the different production systems evaluated. The 

theoretical framework for MEB derives from animal calorimetry research, which was a 

part of the agricultural research effort in the second half of the 20th century, especially in 

the three decades following World War 2, and it resulted in the publication of livestock 

energy demand tables by national research organizations in a number of countries, for 

example Australia and the UK [2,3]. 

The application of MEB has evolved differently in different countries depending on 

the socio-political context and production patterns. In southeast Australia and New 

Zealand, animal production is largely from pasture-based systems where comparatively 

little feed is imported and producers do not receive government subsidies. In this con-

text, MEB is used by land holders and their professional advisors for computer simula-

tion of the systems to optimize the product generated from the feed that can be naturally 

grown on each property [4,5]. By contrast, in the UK, owners receive comparatively large 

subsidies in return for managing their grazing lands in an environmentally sensitive way 

and the provision of ecosystem services such as hiking access to the wider public. In this 

context, MEB is more often used by researchers to evaluate the environmental impact of 

pastoral activities or alternative production system configurations [6]. In the USA, meat 

production systems tend to be either extensive rangeland systems where herbage utili-

zation is less intense and MEB therefore less often practiced, or they involve feedlots or 

housed animals where a greater part of the feed is imported. In this context, system 

modeling must not only consider the energy needs of the animals but also the balance of 

carbohydrate, fiber, protein, and other nutritive components of the feed [7]. 

To quantify the cumulative impact of incremental system configuration changes in 

New Zealand, this study aimed to assess the feed conversion efficiency change in New 

Zealand sheep and beef cattle hill country production systems of the southern North Is-

land that had occurred in the 30-year period from the 1980s to 2010/2011. International 

application of the findings is also discussed. 

2. Materials and Methods 

The study focuses on New Zealand southern North Island hill country sheep and 

beef cattle production systems of medium slope, which are categorized by the producer 

organization ‘Beef + Lamb NZ’ (B+LNZ) as ‘Class IV’ systems. New Zealand has a Land 

Use Capability (LUC) classification system in which mapped land units are classed on a 

1–8 scale (1 most versatile, 8 most limited). In this context, hill country is defined to in-

clude all lowland and montane hill and steeplands of slope >15°, which is classified as 

belonging to LUC Classes 5, 6, or 7 [8]. B+LNZ Class IV systems are essentially those 

comprised predominantly of LUC Classes 5 and 6, with those on predominantly steeper 

land identified by B+LNZ as ‘Class III’. B+LNZ Class IV systems are the most common 

category of sheep and beef cattle production system in the southern North Island of New 

Zealand, and their placement in LUC Class 5 and Class 6 indicates significant land use 

limitations. The above-cited [1] describes species composition in three slope classes 

(0–12°, 13–25°, >25°) in a representative Class IV system. 

The approach used was to carry out MEB using a self-built model in Microsoft Excel 

(hereafter the ‘Excel MEB’ model). MEB uses information on animal numbers on a pro-

duction farm as well as their body weights, weight change, pregnancy status, and other 

physiological factors to calculate the animals’ energy demand over a given period. From 

energy demand, feed demand (i.e., herbage harvested by animals within the production 

system) can be deduced, often to an accuracy of ±5% [5], and then, system performance in 
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terms of feed conversion efficiency can be assessed [9]. The Excel MEB model was used to 

assess the changes from the 1980s to 2010/2011 in system performance of a national ‘av-

erage system’ (hereafter the ‘Average System’), as defined by survey data collated by 

B+LNZ. To gain specific additional insight into the evolution of production system con-

figurations, calculations for the Average System were cross-checked against actual data 

for three case-study or specific production systems (Farms A, B, and C), as described 

below. 

To validate the Excel MEB model, data for Farm C were evaluated in a commercially 

available MEB model, Farmax®Lite (www.farmax.co.nz, accessed on 19 November 2013), 

which is a commercial feed budgeting software package widely used in New Zealand 

(hereafter referred to as FARMAX; for an example of FARMAX use in systems research, 

see e.g., [10]). To determine if any time trends in herbage harvested detected by the Excel 

MEB model might be attributable to change in weather patterns between 1980 and 2010, a 

third model, GROW [11], which uses weather and soil data to predict potential pasture 

grown (i.e., herbage (or feed) supply, when there are no imported feeds or supplements 

in the system) on New Zealand sheep and beef cattle production systems was run in 

parallel with the MEB modeling of herbage harvested by animals. The ratio between 

herbage harvested calculated by the Excel MEB model and calculated herbage grown 

using GROW is also an estimate of the level of herbage utilization by animals in the 

production system. To summarize, the Excel MEB model was the primary tool for eval-

uation of system changes over the study period for the Average System and Farms A, B, 

and C. An alternative model (FARMAX) was also used for Farm C data as a ‘model cali-

bration’ to confirm that the self-built Excel MEB model was working as expected. Four 

data points from the model comparison were submitted to an ANOVA using the ‘GLM’ 

command of Minitab Version 10.51 to determine p-values of year and model differences. 

The ANOVA on the four data had one degree of freedom each for model, year, and error 

terms. A third model (GROW) was used to test whether change with time in calculated 

herbage harvested could be explained by change in weather patterns through the study 

period. 

2.1. Data Collection for the Beef + Lamb NZ Class IV Average System 

The initial plan was to model the feed demand and supply of the systems every five 

years from 1980. However, since data were unavailable for some years, the seasons 

studied were re-selected to match years for which necessary data were available. For the 

Average System, the farming seasons studied were 1980–1981, 1985–1986, 1992–1993, 

1999–2000, 2003–2004, and 2010–2011. Averaged data on numbers of animals by type and 

age class from B+LNZ surveys of Class IV farms were obtained for 1980–1981, 1985–1986, 

1992–1993, and 1999–2000 farming seasons from the Supplement to the New Zealand 

Sheep and Beef Farm Survey [12] and the New Zealand Sheep and Beef Farm Survey [13]. 

Since this publication series was discontinued from 2002, the equivalent data held by 

B+LNZ in their archives were obtained from them by email correspondence, to model the 

2003–2004 and 2010–2011 seasons. Further details are given by [14]. 

2.2. Data Collection for the Case-Study Production Systems: Farm A, Farm B and Farm C 

Farms A, B, and C were located in the southeast North Island, New Zealand, at 

40.346° S (latitude)/175.618° E (longitude), 40.653° S/176.128° E, and 40.842° S/175.618° E, 

respectively. Farms A and B have been operated by the current owners over the past 25 

and 30 years, respectively. Farm C (Riverside) has been operated by Massey University 

since 1979 [15]. These farms are also B+LNZ Class IV systems, and they were selected 

based on recommendations from a professional consultant familiar with properties in the 

region. All three farms were performing above the national average in terms of effective 

area and animal stock units (SU) per hectare at the time the records were collected. (Note: 

in New Zealand, an SU is defined as one female sheep rearing a lamb to weaning, and 

represents approximately 600 kg feed DM consumed per year.) For Farm A, the seasons 
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studied were 1985–1986, 1999–2000, 2003–2004, and 2010–2011. For Farm B, the seasons 

were the same as those studied for the Average System. For Farm C, the seasons included 

were 1980–1981, 1985–1986, and 2010–2011. Data equivalent to those of the Average 

System from the B+LNZ survey were obtained from historic diaries kept by the owners. 

For Farm C, the data were extracted from reports [15,16] and from the annual feed 

budgets prepared by the farm manager for the period 2009–2011. 

2.3. Modeling of Animal Feed Demand by MEB 

Monthly animal body weight data (Supplementary Table S1), retrieved from pre-

vious reports by New Zealand researchers and from the owners’ diaries of Farms A, B, 

and C, and reviewed by an expert professional consultant, were the primary input to the 

calculation of animal metabolic energy requirements. The Excel MEB utilized for the 

calculations was modified from a standard Microsoft Excel® template developed at 

Massey University over the last 15 years [5,9] and similar to the approach of [17]. Animal 

requirements were calculated following [18] (Supplementary Table S2), but three ad-

justments were made. First, the authors of [18] propose that above a threshold dietary 

metabolizable energy value of 10.5 MJ ME kg dry matter (DM)–1 (or 11 MJ ME kg DM–1 

for lactating ewes), body maintenance energy should be reduced by 7% (or 10% for lac-

tating ewes) compared to body maintenance energy at lower herbage ME. In this study, 

we did not assume a sudden change in body maintenance energy requirement at a 

threshold herbage ME value, but instead, we calculated the change as a gradual transi-

tion (%) using the formula: (|Monthly herbage ME—herbage ME threshold|) ÷ herbage 

ME threshold  100. Second, the energy cost of weight gain for adult steers and bulls was 

taken to be 70 MJ ME per kg body weight gain rather than 55 MJ ME per kg body weight 

gain as assumed by [18]. This second adjustment can be justified because weight gain in 

larger cattle is mainly adipose tissue, for which 70 MJ kg–1 is theoretically a more rea-

sonable energy value. Thirdly, energy recovered during weight loss of sheep was de-

creased by 10 MJ ME per kg body weight to 20 MJ ME per kg body weight lost, based on 

advice from an industry expert that the ratio of fat to protein in weight loss of New Zea-

land breeding ewes is likely lower than that assumed in published figures. 

The conversion of animal energy requirements to feed demand was based on as-

sumed monthly values for ME content of mixed-species pastures containing browntop 

(Agrostis capillaris L.), ryegrass (Lolium spp.), and various clovers (Trifolium spp.), which 

are commonly present in these particular New Zealand systems. For periods before 

2005–2006, the ME of herbage on the Massey University ‘Tuapaka’ hill farm reported by 

[19] was used (Supplementary Table S3). For 2005–2006 and later periods, the ME of 

herbage reported by [20] on the same property was used (Supplementary Table S3). 

These data were used because the ME of herbage is rarely measured on these New Zea-

land systems and thus, using known information from a similar system is acceptable for 

forecasting feed demand [17]. As cattle generally graze behind the sheep mob, the ME 

content of the herbage grazed by the cattle would be lower than that grazed by the sheep 

[21]; thus, for the Average System and for Farms B and C, the ME of herbage for finishing 

cattle was assumed to be lower than that for sheep (Supplementary Table S3). However, 

for Farm A, the ME of herbage for finishing cattle was assumed to be the same as that for 

sheep, because this farm did not prioritize sheep over cattle for feed access during graz-

ing. For Farms B and C, the ME of herbage was assumed to be the same as that of the 

Average System. In summary, we considered herbage ME to have increased over time by 

0.56 MJ ME kg DM–1 for cattle and by 0.7 MJ ME kg DM–1 for sheep between 1980–1981 

and 2010–2011, as indicated by the reports of [19,20]. We also considered herbage ME to 

be constant across systems or farms in the same year. 
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2.4. Modeling of Herbage Supply Using GROW 

The herbage supply (also known as herbage accumulation or pasture growth) in the 

production systems was modeled in GROW for the same periods as those used to calcu-

late feed demand in the Excel MEB model. GROW was designed and calibrated to re-

produce published herbage accumulation data for various New Zealand regions [11]. 

GROW uses precipitation, temperature, and soil fertility data as the main inputs and 

other parameters relevant to soil water storage as minor inputs. In this study, the default 

settings of the model were used, except for herbage composition (‘ryegrass–white clo-

ver–browntop’ was selected), soil fertility (Olsen P = 10), soil type (moderate clay loam), 

and defoliation interval (28 days). For the B+LNZ Average System, temperature and 

precipitation data were obtained from the New Zealand National Institute of Water and 

Atmospheric Research (NIWA) ‘Cliflo’ service [22] for weather stations distributed across 

the study area, and these data were averaged to obtain the model inputs as recorded in 

Supplementary Table S4. For Farms A and B, the data were obtained from the owners’ 

diaries. For Farm C, the data were obtained from [15,16,23,24] and from [22] for 

2010–2011 data (Supplementary Table S4). 

2.5. Feed Conversion Efficiency 

The feed conversion efficiency of the systems was estimated only for the 1980–1981 

and 2010–2011 farming seasons. Feed conversion efficiency was expressed as the calcu-

lated amount of feed required (kg DM) per farm of product (kg carcass of sheep + cattle, 

kg sheep carcass, lamb weight and number of lambs weaned, kg cattle carcass, and calf 

weight and number of calves weaned). The annual carcass weight data were obtained 

from [12,25]. Additional carcass weight data were obtained from the owners’ diaries 

(Farms A and B) and from [15,16] (Farm C). The body weight to carcass weight conver-

sion rates used were 40% and 51% for sheep and cattle, respectively, based on historic 

meat company records provided by the owner of Farm A. 

3. Results 

3.1. Key Changes in System Configuration Over Time in the Average System 

The New Zealand Class IV hill country Average System had a 25% larger total 

production area and 21% higher effective area in 2010 than 30 years before (Table 1). The 

hay and silage area increased by 50% during the same period but remained less than 2% 

of the total area (Table 1). The total fertilizer application for the Average System in-

creased from 122 kg ha–1 in the 1980s to 215 kg ha–1 in the 2000s, and the highest fertilizer 

application was recorded during the 2000–2001 season (Table 1). Fertilizer nutrients are 

not reported separately in the B+LNZ data (Table 1), but it can be assumed that sulfur, 

phosphorus, and potassium were typically applied together as superphosphate with a 

proportion of KCl added. Nitrogen fertilizer use had the greatest percentage increase 

over time with 0.55 kg ha–1 applied in 1985–1986 versus 6.19 kg ha–1 in 2010–2011 for the 

Average System. The total animal SU per ha (in this context, the number of animals 

overwintered) decreased by 20% (Table 1). The number of sheep decreased by 19%, but 

the number of cattle increased by 37%. The ratio of sheep to cattle SU decreased from 

70:30 to 58:42. The lambing percentage averaged 100% for the two years reported in the 

1980s and 121% for the two years reported in the 2000s, whereas calving percentage 

showed a small decreasing trend of about 3% (Table 1). 
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Table 1. Changes in average production area, effective area, sheep, cattle, animal stock units (SU), lambing and calving 

percentages, and chemical inputs in New Zealand southern North Island sheep and beef cattle systems from 1980 to 2011. 

All values are expressed on a per production system basis. Data were obtained from various B+LNZ sources as described 

in the text. 

System Information 1980–1981 1985–1986 1990–1991 1995–1996 2000–2001 2005–2006 2010–2011 

Production area (ha) 398 396 408 433 469 493 498 

Effective area (ha) 361 363 376 397 421 437 436 

Effective area (%) 90.7 91.7 92.2 91.7 89.8 88.6 87.5 

Hay and silage (ha) 6 7 5 10 8 8 9 

Sheep (head) 3118 3139 2817 2542 2569 2798 2532 

Sheep SU 2837 2874 2569 2315 2331 2538 2300 

Sheep SU ha–1 7.86 7.92 6.83 5.83 5.54 5.81 5.28 

Sheep:Cattle (SU) 70:30 72:28 65:35 56:44 58:42 59:41 58:42 

Cattle (head) 254 233 290 370 348 372 347 

Cattle SU 1236 1129 1394 1788 1675 1784 1658 

Cattle SU ha–1 3.42 3.11 3.71 4.5 3.98 4.08 3.8 

Lambing (%) 100.9 100 100.6 107.1 110.1 125.7 116.1 

Calving (%) 84.8 83.3 85.7 84.5 83.5 81.6 80 

Nitrogen (T) – 0.2 0.5 1.2 2.4 5.5 2.7 

Phosphorus (T) – 2.1 3.7 6.2 9.4 8.4 6.7 

Sulfur (T) – 2.7 3.9 7.1 11.2 8.5 8.4 

Potassium (T) – 0.7 0.7 1.8 2.2 1.9 1.4 

Total Fertilizer (T) 62.4 26.0 39.6 64.6 103.6 91.1 82.5 

Calculation of animal stock units (SU) follows the definition used by Beef + Lamb New Zealand 

(https://beeflambnz.com/data-tools/benchmarking-tool, accessed on 2 February 2014). 

3.2. Key Changes of System Configuration Over Time for the Case-Study Production Systems 

The effective area of Farms A and B was 138% and 61% larger in 2010–2011, respec-

tively, compared to the area in the 1980s (Table 2). By contrast, for Farm C, the increase in 

effective area between 1980–1981 and 2010–2011 was only 1% (Table 2). Owners of Farms 

A and B did not use or produce hay or silage since the 1980s, while the manager of Farm 

C reduced the area (–48%) allocated for hay or silage production in 2010–2011. 
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Table 2. Changes in effective area, number of sheep and cattle, animal stock units (SU), lambing and calving percentages, 

and chemical inputs on the case-study farms from the 1980s to 2010–2011. 

System Information Farm A  Farm B  Farm C  

 1985–1986 2010–2011 1980–1981 2010–2011 1980–1981 2010–2011 

Effective area (ha) 345 821 670 1081 670 677 

Hay or silage (ha) 0 0 0 0 63 33 

Precipitation (mm) 1094 1287 1602 1348 1560 927 

Temperature (°C) 12.8 13.4 12.8 13 12.6 13.2 

Sheep (head) 3080 4100 6531 12,364 11,574 6750 

Sheep SU 2359 3004 4815 8620 8830 4829 

Sheep SU ha–1 6.8 3.6 7.2 8.0 13.1 7.1 

Sheep:Cattle (SU) 57:43 34:66 69:31 80:20 90:10 81:19 

Cattle (head) 403 1288 453 441 221 238 

Cattle SU 1815 5808 2192 2089 1024 1169 

Cattle SU ha–1 5.3 7.1 3.3 1.9 1.5 1.7 

Lambing (%) 79 122 123 123 105 131 

Calving (%) NB NB 89 94 95 100 

Nitrogen (kg ha–1yr–1) 0 39.2 0 7.2 0 40 

Phosphorus (kg ha–1yr–1) 20.3 22.9 22 25 29.2 0.0 A 

Potassium (kg ha–1yr–1) 0 0 0 0 0 0.0 A 

Sulfur (kg ha–1yr–1) 0 0 27 27 0 20 A 

Total fertilizer (kg ha–1yr–1) 20.3 62.1 49 59.2 29.2 40 

Lime (kg ha–1yr–1) 0 0 0 454 1034 1.5 A 

Olsen P 16–19 19–29 12 18 14 25 A 

Copper 0 4 B 0 0 0 0 
A Riverside Farm leaflet (www.massey.ac.nz, accessed on 12 June 2013). B Four treatments per year. NB = No breeding 

cattle. 

Compared to the 1980s, Farms A and B had slightly increased phosphorus use in 

2010–2011, whereas Farm C did not use any phosphorous fertilizer in 2010–2011. How-

ever, all three farms had higher Olsen P soil tests in 2010–2011 than in the 1980s, indi-

cating enhancement of soil fertility from ongoing fertilizer application, and all three 

farms were using nitrogen fertilizer in 2010–2011 but had not been using any in the 1980s 

(Table 2). The use of lime in these systems is occasional, so no trends should be inferred 

from the data on lime use (Table 2). 

The total stocking rate was 6% lower on Farm A and 12% lower on Farm B in 

2010–2011 than in the 1980s (Table 2), reflecting the same trend but a smaller decrease 

than in the Average System. By contrast, Farm C had the highest stocking rate among the 

three case-study systems in the 1980s but the lowest in 2010–2011, with a decline in 

stocking rate of 40% over the study period reflecting a planned de-intensification of an-

imal production on this farm. The data for Farms A and B show system configuration 

preferences of the individual owners. On Farm A, the sheep/cattle ratio on a SU (feed 

demand) basis was 34:66 in 2010–2011, compared with 57:43 in 1985–1986 (Table 2), and 

this trend toward an increased proportion of cattle was coupled with a policy of having 

no breeding cattle on Farm A, but focusing on body weight gain of weaned steers and 

bulls purchased in late summer–early autumn. On Farm B, the sheep/cattle ratio was near 

80:20 in 2010–2011 compared with 69:31 in 1980–1981 (Table 2), and this evolving focus 

on lamb breeding and finishing was coupled with a policy of grazing 800–900 dry re-

placement ewe hoggets off the farm from August to December in more recent production 

seasons to allow more feed to be allocated to ewes and lambs during peak lactation. On 

Farm C, the sheep/cattle ratio was 81:19 in 2010–2011 compared with 90:10 in 1980–1981, 

and a specialization on this farm involved the purchase of dairy heifers in June that will 

be sold as pregnant rising 2-year-old heifers to dairy farmers. 
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The trends in lambing percentage between the 1980s and 2010–2011 differed be-

tween farms. Farm A moved from 22% below to 5% above the Average System perfor-

mance; Farm B recorded 123% lambing in both 1980–1981 and 2010–2011 seasons, which 

was 22% above the performance of the Average System in the 1980s but only 7% higher 

than that of the Average System in 2010–2011. On Farm C, lambing percentage was 4% 

higher than the Average System in 1980–1981 and 15% higher in 2010–2011. Farms B and 

C both improved their calving percentage between 1980–1981 and 2010–2011. 

In terms of animal breed and breeding policy, the farmers and the manager of the 

case farms had identified the best practice for their farms. Farmer A stated that he had 

used Romney sheep since 1985, and prior to the 1980s, his father purchased Friesian steer 

and bull calves for farming and selling, and he (Farmer A) maintained this policy 

throughout the period studied. Farmer B had moved from Romney to Romney  Coop-

worth sheep and from raising Hereford or Angus suckler cows to Hereford or Angus  

Charolais terminal sire for a better slaughter weight. On Farm C, Romney and a number 

of terminal sire breeds used Hereford x Friesian sucklers cows mated to Charolais bulls. 

3.3. Changes over Time in Feed Demand, Herbage Supply, and Herbage Utilization 

Feed demand per ha, as calculated by the Excel MEB model, decreased by 10% on 

the Average System and by 26% on Farm C between 1980–1981 and 2010–2011, and by 

12% on Farm A between 1985–1986 and 2010–2011. Only on Farm B was feed demand per 

ha maintained over time. Apparent time trends for herbage supply calculated using the 

GROW model based on local weather records displayed a similar pattern, with reduc-

tions of 23%, 31%, and 11% on the Average System, Farm C, and Farm A, respectively, 

and a calculated gain of 4% on Farm B (Figure 1; Table 3). Based on the regular scoring of 

pasture herbage mass of ungrazed paddocks, herbage supply on Farm C was reported by 

the manager to be 5.41 t DM ha–1 yr–1 in 2010–2011, which was slightly lower than the 6.34 

t DM ha–1 yr–1 determined by the GROW model. 
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Figure 1. Annual herbage supply () from GROW, feed demand () from MEB, and animal stock units (SU) per hectare 

() on the case-study farms and Average System (B+LNZ Class IV, medium slope, New Zealand southern North Island 

hill country sheep and beef cattle production system) from the 1980s to 2010–2011. 
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Table 3. Change in feed demand and herbage (feed) supply on the Average System and case-study farms between the 

1980s and 2010–2011. 

Feed information Average System Farm A Farm B Farm C 

 1980–1981 2010–2011 1985–1986 2010–2011 1980–1981 2010–2011 1980–1981 2010–2011 

Feed demand A         

Total, t DM ha–1 yr–1 7.43 5.76 C 7.94 7.04 6.01 6.25 8.21 5.64 A 

Off farm, t DM ha–1 yr–1 ND ND 0 0 0 0.33 0 0 

Herbage (feed) supply B         

Total, t DM ha–1 yr–1 9.64 8.70 8.87 7.79 7.27 7.41 8.61 6.34 

Estimate of utilization (%) 77 66 90 90 83 84 95 89 
A Including feed demand of grazing in dairy cattle; theoretically Feed demand = Herbage harvested, which was calculated 

using the Excel MEB model. B Herbage supply was derived using the GROW model. C Including feed demand of graz-

ing-in dairy cattle. Average System = B+LNZ Class IV, medium slope, New Zealand southern North Island hill country 

sheep and beef cattle production systems as calculated in this study. ND = Not determined, because stock carried off farm 

was not reported in the annual farm survey. 

When feed demand estimated by the Excel MEB model and herbage supply esti-

mated using the GROW model were compared, both models showed a declining trend 

across the study period, and the calculated herbage utilization of the Average System 

was 77% in 1980–1981 and fell by 11% to 66% in 2010–2011, but herbage utilization av-

eraged for the three case-study farms was 89% in 1980–1981 (or 1985–6 for Farm A) and 

almost unchanged at 88% in 2010–2011 (Table 3). On Farm B, feed was effectively pur-

chased by grazing ewe hoggets off-farm in late spring–early summer resulting in overall 

herbage consumption being increased by 0.57–0.66 t DM ha–1 yr–1 (Table 3). 

3.4. Changes over Time in Feed Conversion Efficiency and Meat Production per ha 

For the combined production of sheep and beef carcass, feed conversion efficiencies 

of the B+LNZ Average System and on the three case-study farms all improved (i.e., less 

feed was required per kg of product produced) between the 1980s and 2010–2011, alt-

hough the improvement was only marginal on Farm B (Table 4). These data represent an 

average improvement in feed conversion efficiency of 28% (range 2% on Farm B to 50% 

on Farm C, with the B+LNZ Average System improving by 28%). 

Table 4. Changes in feed conversion efficiency on the Average System and case-study farms between the 1980s and 

2010–2011. 

Feed Conversion Information Average System Farm A Farm B Farm C 

 1980–1981 2010–2011 1985–1986 2010–2011 1980–1981 2010–2011 1980–1981 2010–2011 

Feed consumption per animal class         

* Sheep, kg DM ha–1 4983 3299 3753 2250 4214 5091 7284 4741 

* Beef cattle, kg DM ha–1 2444 2430 4184 4791 1794 1049 908 888 

Dairy cattle, kg DM ha–1 0 36 0 0 0 0 0 15 

Feed conversion per product         

kg DM kg sheep + cattle carcass–1 54 39 44 32 44 43 62 31 

kg DM kg sheep carcass–1 65 47 76 48 46 41 100 46 

kg DM kg cattle carcass–1 40 31 32 28 39 52 24 16 

kg DM per kg lamb weaned 25 19 28 18 18 14 23 18 

kg DM per lamb weaned 574 611 672 661 417 450 649 490 

kg DM per kg calf weaned 28 22 NB NB 38 37 19 16 

kg DM per calf weaned 4182 3239 NB NB 3305 3498 2852 2653 

* Sheep and beef cattle on New Zealand Average System are heavier in recent years, meaning meat production per kg DM 

ha–1 is also higher. Average System = B+LNZ Class IV, medium slope, New Zealand southern North Island hill country 

sheep and beef cattle production system as calculated in this study. NB = No breeding cattle. 

Feed conversion efficiency gains expressed per kg lamb weaned were similar for the 

B+LNZ Average System and the case-study farms (24% and 27%, respectively), but they 
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were greater for sheep carcass production (28% and 39%, respectively) than for cattle 

carcass production, the latter averaging 4% across all farms or 23% if an anomalous result 

for Farm B is excluded (Table 4). 

A second factor targeted by managers aiming to achieve higher feed conversion ef-

ficiencies in recent years has been the sale of offspring at heavier weights. Such a trend is 

evident in the lamb and steer carcass weight data (Table 5). Averaged across all farms, kg 

feed demand per kg lamb or calf carcass weaned between 1980 and 2010 decreased, re-

spectively, by 26% and 13%, indicating improved conversion efficiency, but corre-

sponding per animal feed demand decreased by only 3% and 8% respectively (Table 4). 

This data pattern is as expected when lambs and calves are kept longer on the farm and 

sold off at higher weights. 

Table 5. Changes in annual carcass production on the Average System and case-study farms between the 1980s and 

2010–2011. Lambing and calving percentages are presented in Tables 1 and 2. 

Carcass information Average System Farm A Farm B Farm C 

 1985–1986 2010–2011 1980–1981 2010–2011 1980–1981 2010–2011 1980–1981 2010–2011 

kg sheep + cattle carcass ha–1 137 147 181 219 137 148 146 222 

kg sheep carcass ha–1 76 70 49 47 91 128 73 104 

kg cattle carcass ha–1 61 77 132 172 46 20 74 188 

kg lamb weaned per ewe 23 39 18 43 28 38 30 35 

kg calf weaned per cow 125 137 0 0 140 159 140 171 

Lamb carcass weight, kg hd–1 13.9 A 18.2 B 14.7 16.3 11 17 7.8 12.0 

Steer carcass weight, kg hd–1 277 C 316 C 0 NA 277 308 188 240 

Bull carcass weight, kg hd–1 252 C 310 C 262 260 296 329 NR NR 
A 1990 and B 2010: from B+LNZ (www.beeflambnz.com, accessed on 2 February 2014). C From [26,27]. Average System = 

B+LNZ Class IV, medium slope, New Zealand southern North Island hill country sheep and beef cattle production sys-

tem as calculated in this study. NA = Not applicable; owner of Farm A did not rear steers in 1980–1985. NR = No record. 

Interestingly, when the data are considered on a per ha basis (Table 5), the gains in 

feed conversion efficiency have resulted in increased annual sheep + cattle carcass pro-

duction per ha on all farms (range 7% to 52%, Table 5), despite reducing feed supply 

(Table 3; Figure 1). However, the farms differ in whether the production gains were 

achieved in the sheep or cattle component of the system (Table 5), reflecting differences 

between farms in how the ratio of sheep/cattle SU changed between the 1980s and 

2010–2011 (Tables 1 and 2). 

3.5. Comparison of Feed Demand Estimates from the Excel MEB Model and FARMAX 

As noted above, one case-study farm (Farm C) was chosen for validating or cali-

brating the authors’ self-built MEB model in Excel against a commercial software MEB 

package, FARMAX. The MEB model in Excel and FARMAX produced highly similar es-

timates of annual feed harvested per ha. Compared with the values from MEB of 8.21 and 

5.64 t DM ha–1 yr–1 in 1980–1981 and 2010–2011, respectively (Table 3), corresponding es-

timates by FARMAX were 8.14 and 5.58 t DM ha–1 yr–1, indicating a 1% difference be-

tween models and a 32% decline between 1980–1981 and 2010–2011 years. ANOVA on 

these four values for difference between models (Excel MEB and FARMAX) and years 

(1980–1981 and 2010–2011) is technically valid and returns p-values of 0.049 and 0.001, 

respectively, for the model and year effects. Compared with FARMAX, the Excel MEB 

model gave higher feed demand estimates for winter (+0.51 kg DM ha–1 d–1) and spring 

(+3.48 kg DM ha–1 d–1), while it gave lower estimates for summer (−1.11 kg DM ha–1 d–1) 

and autumn (−2.04 kg DM ha–1 d–1). 
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4. Discussion 

4.1. System Feed Conversion Efficiency, System Energy Requirement, and MEB as a Tool  

for their Calculation 

Since data on herbage intake of animals in more extensive pastoral systems are rare, 

and MEB as used here provides a calculation of energy requirement of animals, from 

which feed consumption can be calculated, this study was able to provide a seldom cal-

culated, or possibly unique estimate, of improvement in production system feed conver-

sion efficiency over time. The feed-to-meat conversion ratio in the early 1980s for Farms 

A, B, and C, respectively, was 44, 44, and 62 kg feed DM per kg sheep + cattle carcass. In 

2010–2011, corresponding values for Farms A and C were 32 and 31 kg feed DM per kg 

sheep + cattle carcass, respectively (Table 4), showing a feed conversion efficiency im-

provement of around 27–50%. Farm B made only a marginal gain to 43 kg feed DM per 

kg sheep + cattle carcass in 2010–2011. This can be partly attributed to the fact that sheep 

fecundity was already high in 1980–1981, leaving no opportunity for further improve-

ment, as occurred on other farms (Table 2). A second potentially relevant factor is that the 

expansion in area from 670 to 1081 ha (Table 2) was onto adjacent land of greater slope, 

which would have had intrinsically lower productive capacity, and likely an increased 

presence of grass species of lower nutritional value such as browntop, which was not 

recognized in model assumptions. Hence, the maintenance of production efficiency sta-

tistics in the context of expansion onto inferior land was effectively also an improvement 

in system performance. 

For the lamb production component of the systems, the average feed conversion on 

Farms A, B, and C in the 1980s was 23 kg feed DM per kg lamb weaned, and this was 

decreased to 16.7 kg feed DM per kg lamb weaned by 2010–2011. Clearly, the fecundity 

gain on Farms A and B (Table 2) was a major factor. 

Other calculated feed conversion efficiencies for New Zealand systems are scarce in 

the literature, and those located by the authors also used MEB methodology. One study 

[28] reported feed conversion efficiencies of 29–38 kg DM feed per kg carcass for model 

New Zealand sheep and beef cattle production systems, while another [29] reported 27 

kg feed DM per kg lamb weaned for a farm in the northern North Island with similar 

system configuration to Farms A–C. 

For performance analyses of pasture-based systems where pasture productivity or 

herbage harvested is not known, researchers need to devise different criteria to assess 

efficiency; for example, [30] discussed production system ‘eco-efficiency’ changes (i.e., 

meat and fiber production per farm of nitrogen leached to the environment) over the 

preceding 20 years for North Island ‘hard hill country’ systems (i.e., greater slope and 

lower herbage production and stocking rate than systems considered in our study), 

without quantifying feed conversion efficiency, as there was no measure of feed supply 

available to them. Clearly, a comparison of the eco-efficiency of different production 

systems would be enhanced by parallel consideration of feed conversion efficiency. If not 

estimated by MEB, herbage consumed by grazing animals must be directly measured by 

pre- and post-grazing herbage cuts as in the study of [31] or estimated by techniques such 

as the measurement of differential concentrations of indigestible markers in herbage 

eaten and feces, for example n-alkanes [32]. Both of these techniques are logistically 

challenging to implement, and neither can be applied to historic systems without physi-

cal samples of the feed on offer. Therefore, these techniques are unsuitable for investiga-

tions of more extensive systems or reconstruction of historic systems such as in this 

study. 

More generally, information on system energy requirements and feed conversion 

efficiencies provides a basis for comparison across a diverse range of animal production 

systems and is also relevant to land use planning and the design of environmentally 

sustainable future grazing systems, enabling informed choice about planning food sup-
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ply options for future human populations. For example, the research of [33] in Ireland 

examined records of 5172 growing beef animals fed a total mixed ration and reported 

energy conversion ratios of 81–108 MJ per kg body weight gain, which at 9.51 MJ ME/kg 

DM (Supplementary Table S3) corresponds to 8.5–11.4 kg feed DM per kg animal body 

weight produced. This feed conversion performance can be compared with the 14–19 kg 

feed DM per kg lamb weaned observed in these hill country systems (Table 4), and along 

with information on other factors such as opportunity cost of the land use and environ-

mental impacts in each case, it can be used to identify preferred future meat production 

systems. Similarly, it is likely that as global population increases, the human carrying 

capacity of land now regarded as recreational or wilderness will need to be estimated by 

planners, and information on the energy capture of grazing systems on that land will be 

useful for this purpose. The unique capability of MEB as a tool to perform such calcula-

tions is well demonstrated in this study. 

4.2. System Configuration Drivers of Feed Conversion Efficiency 

The configurations of New Zealand sheep and beef cattle production systems have 

evolved over time, and they have been driven by various factors, including financial ne-

cessity to meet the lifestyle aspirations of the landowner’s family. MEB does not provide 

a comprehensive road map for all facets of system optimization, but it does quantify the 

proportion of energy in the form of feed that is being allocated by the system to unpro-

ductive activities such as animal body maintenance. It is likely that over the 30-year 

study period, breeding selection decisions by farmers would have resulted in some ge-

netic gain in feed conversion efficiency at the animal physiology level. Our study design 

does not allow us to elucidate the magnitude of this effect, but if efficiency gains at the 

animal physiology level were biologically important, we would expect to see effects such 

as stocking rates increasing over time, all else unchanged, or a gradual emergence of 

discrepancies between model predictions and farmer observation. These models have 

been extensively used across the industry since the 1980s, and in wide experience with 

the models, the authors are unaware of any such indications being reported either in the 

research literature or anecdotally among farmers and farm consultants, and we conclude 

that the increase in lambing percentage is the driver of the feed conversion efficiency 

gains identified in our study. Thus, a principle of production system configuration that 

emerges from the data is that an increase in lambing percentage or an increase in sale 

weights will act as a major driver of feed conversion efficiency. This is intuitively logical, 

since the mother’s annual body maintenance, which is a major feed cost in producing a 

lamb, increases little if she carries twins or if lambs are sold at a higher weight. A similar 

link between lambing percentage and system feed conversion efficiency was also illus-

trated in the study of [30]. 

In the present study, the higher lambing percentage in 2010–2011 compared to the 

1980s for the Average System (Table 1) and for Farms A and C can be attributed to mat-

ing policies aimed at increased fecundity as well as to changes in management that better 

allocate feed to animal demand. (Farm B had already achieved 123% lambing in 

1980–1981.) Owners of Farms A and B (personal communication) both advised that scan-

ning of ewes in early-mid pregnancy to identify twin- or triplet-bearing ewes for differ-

ential feeding in late pregnancy had been key to preventing deaths of young lambs and 

increasing lambing percentage. Moreover, across all the case-study farms, there was a 

proportional increase in lamb weight weaned per ewe averaged 65% (Table 5), whereas 

the proportional historical increase in lambing percentage was 21% (Tables 1 and 2). 

Therefore, it can be inferred that a general increase in lamb weight at sale from the 1980s 

to 2010–2011 across the farms studied has been more important than any increase in 

lambing percentage to the observed increases in system feed conversion efficiencies, 

although the two factors acting together account for the greater movement over time in 

feed conversion efficiency of lamb production than of beef production. This principle of 

setting system configurations to increase feed allocation to growing animals would be 



Agriculture 2021, 11, 531 14 of 20 
 

 

widely applicable to other systems elsewhere. In terms of contribution of breed and ge-

netic improvement to system feed conversion efficiency, owners of Farms A and B and 

the manager of Farm C had identified the best sheep and beef cattle breeds to farm as 

early as the 1980s and continued that selection policy throughout the period studied. The 

contribution of genetic improvement at least for the case farms was already in place 

when the present study was carried out, and without overlooking the importance of this 

factor, the impressive feed conversion efficiency during the 30-year period studied was 

likely attributable to the farm system configuration setup discussed in this paper. 

With respect to stocking rate, balancing animal feed demand against a seasonally 

variable herbage supply (with additional interannual variability) is necessary to ensure 

high system feed conversion efficiency and profitability. Profitability is adversely af-

fected by non-utilization of feed grown (lost production opportunity) when animal de-

mand in a system is too low relative to herbage supply. Equally, profitability is generally 

decreased when system animal demand exceeds herbage supply and animals are un-

derfed. Hence, in these systems, setting the stocking rate to optimally balance feed de-

mand with herbage supply is an important determinant of system performance. The re-

duction in stocking rate of the Average System over the study period recorded (Table 1) 

is well known in industry circles, and it is anecdotally assumed to be a consequence of 

managers positioning their systems to increase the per-animal intake to improve per-

formance indicators such as lambing percentage, which will increase the number of off-

spring for sale. However, investigation of the data shows otherwise. System annual feed 

allocation per SU can be calculated by dividing feed demand or supply (Table 3) by 

stocking rate (Tables 1 and 2). For this calculation, averaged across all case-study farms 

from the 1980s to 2010–2011, the feed consumption per SU increased by 5% (range –4% 

for the Average System to 14% for Farm C), and the feed supply per SU increased by 10% 

(range –1% on Farm A to 22% on Farm C). Meanwhile, the stocking rate (SU ha–1) fell on 

average 19% in the same period (range 6% on Farm B to 40% on Farm C). Therefore, this 

research shows unexpectedly that a trend of reducing feed supply (shown by the GROW 

model to be attributable to weather change) is also a driver of falling stocking rates. We 

assume that stocking rate adjustment occurs through managers intuitively assessing their 

farm’s feed supply/demand balance each season as part of the decision process on 

whether to maintain, raise, or lower animal numbers for the next season. For the future, 

an ongoing temperature increase trend is expected with a resultant increase in potential 

evaporation demand [34], but the projected impact on precipitation varies regionally 

with increases predicted in the south and west and decreases in the north and east of the 

country. Contrary to some popular reports, global demand for red meat is predicted to 

increase over the next decade [35]. However, while these factors bring uncertainty, there 

is general confidence that the industry will adapt production strategies and find new 

markets as required. Current indications are that the trends in farm systems changes 

identified in our study for the period from the 1980–1981 farming season to the 2010–2011 

farming season is continuing. For example, for the 2018–19 season, the reported statistics 

for a Class IV Average Farm include [36]: effective ha 444 (1% increase on 2010–2011), 

total sheep + cattle SU 3889 (1.8% decrease on 2010–2011, with sheep/cattle ratio slightly 

increased to 62:38) and lambing percentage 133.5% (10.8% increase on the average for 

2005–2006 and 2010–2011). The exploitation of recycled by-products from the human 

food chain such as vegetable or fruit pomace [37] is currently occurring in more intensive 

New Zealand dairy farming systems but is unlikely to occur on the farms in this study, 

because the studied Class IV hill farms are typically situated much further from popula-

tion centers where such materials might be available for purchase, and with larger 

numbers of animals more dispersed over larger areas of sloping terrain and managed by 

only 1.79 labor units on the average Class IV farm [36]. Hence, the logistics of supple-

mentary feeding are currently uneconomic and likely to remain so. The emerging change 

trend that presents the greatest threat to the future of these farming systems is the pur-
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chase of sheep and beef farms for conversion to forestry, which is driven by the income 

that can be earned from carbon credits even without harvesting the trees. 

4.3. Significance of Change over Time in Supplementary Feed, Fertilizer Use, and Sheep: Cattle 

Ratio 

With its temperate oceanic climate, the southern North Island of New Zealand has 

some natural herbage accumulation in winter, and the provision of supplementary feed 

such as hay or silage is expensive compared to pasture grown and grazed in situ, so it 

forms only a small component of the total annual feed supply in these systems. On many 

farms, winter feed supply is supplemented by a rationed release of stockpiled au-

tumn-grown standing pasture through rotational grazing [38]. Hence, the reported in-

crease of hay and silage areas for the Average System (Table 1) is superficial compared to 

the total forage supply in these production systems and is not a significant contributing 

factor to system feed conversion efficiency. 

Fertilizer application is important to the maintenance of pasture productivity, and it 

represents a comparatively inexpensive way to generate additional feed in the system 

[39,40]. The fertilizer usage data in Tables 1 and 2 are not amenable to detailed evaluation 

or economic analysis because of the lack of detail on forms of fertilizer used, but they do 

reveal that use of phosphorous fertilizer has been greater post-2000 than pre-2000, and 

that for all case-study farms, nitrogen fertilizer was introduced during the study period. 

In these systems, phosphorous fertilizer application is aimed at generally increasing 

herbage production in the system [40] so as to sustain or increase the stocking rate, while 

nitrogen fertilizer is applied tactically in periods of high animal feed demand not 

matched by high herbage accumulation, such as early lactation where parturition occurs 

before the spring herbage accumulation flush. Phosphorous fertilizer also encourages 

legumes in the sward, which in turn supply additional nitrogen to the soil-plant system 

and likely also increase average herbage ME. Therefore, it is likely that without the on-

going fertilizer use and increased soil fertility status indicated in Tables 1 and 2, the ob-

served herbage productivity decline in the study period would have been even greater, 

and it would have been more difficult for managers to provide animals with additional 

spring feed to support the evolving higher lambing percentages over the study period. 

With respect to future projections for fertilizer use, it is now clear that there is a conflict 

between the economic optimum use of fertilizer and the environmental optimum. There 

is growing recognition in New Zealand of the environmental impacts of dairy farming 

[41]. As a result, regulatory authorities in New Zealand are currently working with 

farmers to reduce fertilizer application so as to reduce losses of N in particular, from farm 

systems to the environment. In the meantime, it appears that pursuit of the economic 

optimum is a primary driver for farmers, as recent statistics for Class IV farms [36] show 

total N + P + K + S fertilizer applications as 29.6 T farm−1 yr−1 in 2018–2019, compared to 

19.2 T farm−1 yr−1 in 2010–2011 (Table 1). Almost certainly, sheep and beef farmers will in 

the future face scrutiny of the environmental impacts of their operations similar to that 

[41] now directed at more intensive dairy farming activities. 

Lastly, although sheep/cattle ratios vary between the case-study farms (Tables 1 and 

2), these changes do not appear to have any major direct effect on system performance. 

Beef cattle are important for controlling pasture quality, and cattle have typically been 

reared as a breeding herd, together with sheep, since European settlement in New Zea-

land, with the ratio of sheep/cattle varying with landowners’ individual preferences, lo-

cal trading opportunities, and fluctuations in returns from each class of stock. More in-

tensive beef production with the purchase of young stock from other landowners has 

capital implications and can be less profitable if the landowners use only high-quality 

herbage [21], but it has received a boost as sheep and beef producers recognized the po-

tential feed conversion efficiencies of rearing male calves from the dairy industry for beef 

production, so avoiding the feed cost of the mother’s body maintenance [42]. 
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4.4. Model Performance 

Clearly, independent validation of the self-built Excel MEB model is required in a 

study of this type, and as noted above, we addressed this in the first instance by com-

paring the Excel MEB model and FARMAX outputs for Farm C for 1980–1981 and 

2010–2011. FARMAX was originally launched as STOCKPOL, following some years of 

development [43]. Since rebranding as FARMAX, there has been ongoing development 

[4], and FARMAX is currently used by many New Zealand sheep and beef cattle pro-

ducers and professional consultants to adjust production system configuration for im-

proved profitability, and it is also used as a research tool where an estimation of system 

productivity is required to fulfill research objectives [44]. The agreement of the self-built 

model and FARMAX in this study to within 1% for the calculation of annual feed de-

mand is probably as close as could ever be achieved by two independent grazing systems 

models, and it is better than the 5% reported by [9] when output from a similar self-built 

MEB model in Excel was compared with that from the widely used fertilizer manage-

ment model Overseer™, which has animal MEB equations built into the nutrient balance 

calculations and can output the herbage consumption of animals in the system [45]. As 

equations in FARMAX are not visible to users, we could not ascertain the reasons for the 

seasonal variance between FARMAX and the Excel MEB model noted in our results, but 

these differences would be consistent with a higher energy allocation to the growth of 

large beef animals increasing winter–spring predicted feed demand and a lower energy 

allocation to the growth of lambs decreasing summer feed demand in the Excel MEB 

model (as outlined above), compared to FARMAX. 

The coincidence of the declining trend with time in the herbage production and 

consumption estimates of the GROW and Excel MEB models (Table 3) provides a second 

indirect validation of the Excel MEB model, and the finding of the GROW model that the 

decline in herbage production through the study period can be attributed to a trend to-

ward warmer drier summers in recent years is also corroborated by the long-term trend 

of a climate-based pasture growth index (PGI), as reported by NIWA (Supplementary 

Figure S1). The NIWA PGI index utilizes a methodology very similar to the GROW 

model, but it draws on a much larger body of climate data. The NIWA PGI index indi-

cated that the pasture growth potential of New Zealand production systems had de-

creased steadily (with interannual fluctuations) from an arbitrary value of 0.48–0.49 in 

1980 to 0.42–0.43 in 2010 (i.e., around 10–14% reduction) (Supplementary Figure S1). MEB 

also allows insight into seasonal feed supply–demand variation. For example, in a drier 

summer (2010–2011), feed supply was greatly decreased in contrast to a wet summer 

(1980–1981) (Supplementary Figure S2), and impact of the drought-decreased summer 

feed supply in a system with increased lamb production emphasis (2010–2011) was a 

large negative late-spring/early-summer feed balance, which was larger than the winter 

feed deficit (July) (Supplementary Figure S3). It is salutary to note that the owner of Farm 

B has already made changes to his system to mitigate the emerging seasonal feed deficit 

of this putative climate change effect by arranging off-farm grazing for ewe hoggets in 

early summer to prioritize feed allocation to weight gain of lambs. 

It is useful to note here that traditional measures of animal intake in research on 

grazing systems require either a pre- and post-grazing measure of herbage mass to de-

termine herbage removed (not possible in continuously grazed rangeland systems) or 

some kind of fecal marker technique, meaning that measurement is generally intermit-

tent. By contrast, MEB calculations capture and integrate the complete energy demand of 

the production system over the budget period when the number of animals and their 

weights and pregnancy details are known, and the uncertainties or errors associated with 

MEB are generally less than the errors in direct measurement of herbage removal or use 

of fecal markers. Thus, MEB is a sensitive measure of any year-to-year variation in annual 

herbage harvested by animals in a grazing system [38], and it deserves to be more widely 

used in management and policy formulation for grazing systems worldwide. It is a con-
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firmation of the versatility of MEB that the self-built Excel-MEB model reported here was 

subsequently successfully applied to analyze tropical beef production systems in Sabah, 

Malaysia [14,46], with analyses performed for a cut-and-carry feedlot system, a pasture 

grazing system, and an oil-palm-integrated system. 

4.5. Herbage Utilization 

With respect to estimation of herbage utilization, values for herbage supply from 

GROW were typically 0.4 to 1.0 t DM/ha (5–13%) above the annual feed demand calcu-

lated in the Excel MEB model, with the gap somewhat larger for the Average System. 

These relativities are intuitively as expected for well-run systems of this type and if taken 

at face value provide estimates of the average herbage utilization of 90% (Farm A), 84% 

(Farm B), and 92% (Farm C) for the three case-study farms and approximately 72% for the 

Average System, as noted in our results. The case-study farm utilization percentages are 

at the upper end of the 70–95% herbage utilization on New Zealand beef cattle and sheep 

hill production systems reported by [17], and a lower herbage utilization value for the 

Average System than for the case-study farms would be expected. 

5. Conclusions 

This work demonstrates the successful application of MEB to the quantification of 

change over a 30-year study period in the feed conversion efficiency of New Zealand 

southern North Island hill land sheep and cattle grazing systems. The methodology is 

universally relevant for quantifying the herbage consumption of animals in pasture or 

rangeland systems, and this work demonstrates that MEB can be carried out successfully 

with a self-built model using generic animal energy equations and does not require 

commercial software tuned to a specific system. The findings provide insight into the 

ongoing evolution of system configuration and management practice of the studied sys-

tems and show (unexpectedly) that a change in weather patterns reduced herbage pro-

duction in these systems by about 10% over the study period. However, through the in-

creased lambing percentage and the sale of lambs for slaughter at heavier weights in the 

sheep component of the systems, the average feed conversion efficiency increased by 

24%, and meat output per ha increased by 7%. The power of MEB to describe the energy 

capture of grazing systems is highly relevant for the formulation of environmentally 

sustainable future pasture and rangeland systems and for land use planning where the 

food supply potential of present wilderness areas may be useful information for explor-

ing the sustainability of systems or determining ecosystem service values of farmed land 

in a wider geographic region. 

Supplementary Materials: The following are available online at 

www.mdpi.com/2077-0472/11/6/531/s1, Table S1: Liveweights by stock classes used in the model 

for the calculation of energy requirements of animals in New Zealand North Island (Class IV) 

sheep and beef cattle production systems in the 1980s and 2010–2011a, Table S2: Energy equations 

and constants used in the Excel MEB model to calculate energy requirements of animals in New 

Zealand North Island (Class IV) sheep and beef cattle production systems, Table S3: Herbage me-

tabolizable energy content used in the Excel MEB model for the calculation of energy requirements 

of animals in New Zealand North Island (Class IV) sheep and beef cattle production systems, Table 

S4: Mean precipitation (P, mm) and temperature (°C) data used in the modeling of herbage supply 

using GROW, Figure S1: Annual Pasture Growth Index (average in red line) for New Zealand from 

1977 to 2011 (redrawn from NZXAGRI, 2012). “The national pasture growth index has a more sta-

ble long-term trend, although there has been significant downward movement in the past decade. 

The low PGI over the last few years is due mainly to drier than normal conditions.”—NIWA 

(NZXAGRI, 2012), Figure S2: Seasonal herbage accumulation rates in the 1980s () and 2010–2011 

() based on actual data of case-study Farms A, B, and C and on statistics of the New Zealand 

southern North Island Average System (B+LNZ Class IV, medium slope, New Zealand southern 

North Island hill country sheep and beef cattle production systems), Figure S3: Feed balance (feed 

supply minus feed demand) in the 1980s () and 2010–2011 () of case-study Farms A, B, and C 
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and southern North Island Average System (B+LNZ Class IV, medium slope, New Zealand 

southern North Island hill country sheep and beef cattle production systems). 
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