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Abstract: The quantity of land covered by various crops in a specific time span, referred to as a
cropping pattern, dictates the level of agricultural production. However, retrieval of this information
at a landscape scale can be challenging, especially when high spatial resolution imagery is not
available. This study hypothesized that utilizing the unique advantages of multi-date and medium
spatial resolution freely available Sentinel-2 (S2) reflectance bands (52 bands), their vegetation indices
(VIs) and vegetation phenology (VP) derivatives, and Sentinel-1 (S1) backscatter data would improve
cropping pattern mapping in heterogeneous landscapes using robust machine learning algorithms,
i.e., the guided regularized random forest (GRRF) for variable selection and the random forest (RF)
for classification. This study’s objective was to map cropping patterns within three sub-counties in
Murang’a County, a typical African smallholder heterogeneous farming area, in Kenya. Specifically,
the performance of eight classification scenarios for mapping cropping patterns was compared,
namely: (i) only S2 bands; (ii) S2 bands and VIs; (iii) S2 bands and VP; (iv) S2 bands and S1; (v) 52
bands, VIs, and S1; (vi) S2 bands, VP, and S1; (vii) S2 bands, VIs, and VP; and (viii) S2 bands, VIs, VP,
and S1. Reference data of the dominant cropping patterns and non-croplands were collected. The
GRREF algorithm was used to select the optimum variables in each scenario, and the RF was used to
perform the classification for each scenario. The highest overall accuracy was 94.33% with Kappa
of 0.93, attained using the GRRF-selected variables of scenario (v) S2, VIs, and S1. Furthermore,
McNemar’s test of significance did not show significant differences (p < 0.05) among the tested
scenarios. This study demonstrated the strength of GRRF in selecting the most important variables
and the synergetic advantage of S2 and S1 derivatives to accurately map cropping patterns in small-
scale farming-dominated landscapes. Consequently, the cropping pattern mapping approach can be
used in other sites of relatively similar agro-ecological conditions. Additionally, these results can be
used to understand the sustainability of food systems and to model the abundance and spread of
crop insect pests, diseases, and pollinators.

Keywords: agricultural productivity; cropping pattern; Kenya; multi-data analysis

1. Introduction

The quantity of land covered by various crops in a specific time span, referred to as
a cropping pattern [1], dictates the level of global agricultural production, which in turn
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influences the agricultural economy [2]. Thus, small-scale farmers who employ various
cropping patterns can play a critical role in the global food supply [3]. However, cropping
patterns and food security, particularly in Africa, are highly influenced by myriad factors
such as climate change and variableness, inadequate agricultural inputs, insect pests and
diseases, and other abiotic and biotic factors [4].

The types of cropping patterns can include monocropping, crop rotation, and inter-
cropping [5], which are practiced for various reasons such as environmental conditions,
profitability, adaptability to changing conditions, tolerance and resistance to insect pests
and diseases, the requirement for specific technologies during growing or harvesting,
and other elements in the production system [6]. These cropping patterns possess sev-
eral benefits and drawbacks. For instance, monocropping patterns ensure specialized
crop production and expected higher earnings due to mass crop production. However,
monocropping practice is characterized by, for example, a high risk of pests and low soil
microbe diversity [7]. By comparison, crop rotation minimizes the eroding of soil and
improves soil fertility, which results in improved crop yields [8]. Nonetheless, the necessary
and regular crop diversification required in crop rotation may be a strain for the farmers
if there are no readily available resources for its implementation. Intercropping also pro-
motes soil fertility (reducing risk to climate stress), reduces pest risks, and maximizes land
profit. Nevertheless, the different crops in an intercropping practice may require different
uptakes of resources such as water and fertilizer, which may not be adequately utilized by
the different crops [5]. Intercropping comprises variants such as rows, relay, and mixed
cropping, but the present study refers to the different groups of intercropping patterns
as mixed cropping in general. Thus, the present study focused on two types of cropping
patterns, i.e., monocropping patterns and mixed cropping patterns, that are commonly
practiced in the study area.

The choice of crops for planting by farmers varies spatially and among farmers
across the different agro-ecological systems [9]. Hence, their accurate characterization
is of paramount importance for policy making and implementation strategies necessary
for addressing food and nutrition insecurity through precision agriculture. In addition,
adequate characterization will improve understanding of the sustainability of food systems
and how they are affected by climate. Their characterization is equally important for
modeling and managing the abundance and spread of crop insect pests, diseases, and
pollinators [10,11]. Nonetheless, small-scale farms (<1.25 ha) and fragmentation of these
cropping patterns in Africa, triggered by their high intra- and inter-seasonal variability,
prohibit their accurate detection and characterization [10,12].

Currently, information on the spatial spread of these various cropping patterns is
scarce, especially over larger regions. This makes reporting and decision making regarding
pest and climate resilience of certain cropping patterns challenging. Moreover, traditional
terrestrial surveys and assessment methods used to determine the commonly grown crops
in an area are often inadequate, expensive, time consuming, and strenuous, and provide
insufficient information necessary for precision agriculture, efficient utilization of resources,
and effective pest management [10,12]. In contrast, the recent advancement in remote sens-
ing technology provides coherent, timely, concise, and affordable data that can effectively
capture the cropping variability at different spatiotemporal scales [13]. In this regard, the
usage of remotely sensed data for mapping and modeling cropping patterns and other
agronomic practices is well documented in the literature. This has been evidenced by
studies carried out on the mapping of various croplands [14-16], crop types [17-19], and
cropping patterns [20-23], with the aim of investigating the relevance of different remote
sensing systems and image classification methods for improving classification accuracy, re-
liability, and reproducibility of the results. Diverse imaging systems, analytical techniques,
and spectral variables have also been explored for cropping pattern classification. These
systems range from optical multispectral [10,24,25] and hyperspectral imaging [26,27]
to radar sensors [28,29] with high, medium, and coarse spatial resolutions. In addition,
several studies have used varying remotely sensed variables, such as single date [30] and
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multi-date (time-series) vegetation indices [21] and phenometrics [31,32], to map cropping
patterns. In these studies, various image classifications methods have also been applied,
which range from parametric classifiers such as K-means clustering [19] and maximum like-
lihood [22] to non-parametric or machine learning algorithms such as k-nearest neighbor
(KNN) [16], decision trees (DTs) [21,23], support vector machine (SVM) [22], random forest
(RF) [15,17], and fuzzy c-means clustering [18]. The selection of these methods is mainly
informed by the availability of training data, sample size, computation time, presence
of high data dimensionality, and multicollinearity [33]. One of the efficient methods for
reducing data dimensionality and simultaneously handling multicollinearity is the guided
regularized random forest (GRRF), [34,35]. Compared to the RF classifier [36], GRRF is
superior in selecting optimum uncorrelated variables [37], whereas RF is a robust classifier
because it adequately handles diverse scales, interactions, and nonlinearities, among other
numerical and categorical variables [36]. In other words, the GRRF is an efficient algorithm
for selecting the most relevant predictors because its trees are grown in a sequential manner
oriented towards the identification of the most important variables during the training
step in a classification experiment [38]. This type of training approach can lead to a high
variance of predictions, as suggested by Deng and Runger [37]. Hence, the GRRF should
not be used as a classification method, but variables selected by the algorithm should be
used as inputs in an efficient classification algorithm (e.g., RF) as predictors to evaluate
their values in discriminating among features of interest, such as cropping patterns [39].

Despite the efforts in selecting optimum datasets and classification algorithms, chal-
lenges in mapping cropping patterns remain evident in Africa [40]. These challenges
include the inter- and intra-season changes in crop phenological cycles due to variability
in farming practices or weather conditions, and highly fragmented landscapes on which
the crops are grown [18,21,41]. Moreover, accurate characterization of cropping patterns
in heterogeneous landscapes often requires high (<5 m) spatial resolution imagery [42],
whose accessibility can be constrained due to their cost implications. Previous studies have
proposed the use of optical and radar datasets of medium spatial resolutions [12], the use
of crop phenological variables extracted from the relatively new satellite sensors such as
Sentinel-2 (S2) [43], the use of multisource remotely sensed and ancillary data to improve
the quality and timeliness of in-season cropping patterns mapping [44], together with the
use of freely available multi-temporal remote sensing data [10].

This study hypothesized that utilizing the unique advantages of multi-date and
medium spatial resolution freely available S2 reflectance bands (52 bands), their vegetation
indices (VIs) and vegetation phenology (VP) derivatives, and Sentinel-1 (S1) backscatter
data would improve cropping pattern mapping in heterogeneous landscapes using robust
machine learning variable selection algorithms such as GRRF [37] and classifiers such as
RF [36]. The tested null hypothesis was that the performance of mapping cropping patterns
using eight different scenarios was not significantly different (p < 0.05) using McNemar’s
test [45]; these scenarios were: (i) only S2 bands; (ii) S2 bands and Vls; (iii) S2 bands and
VP; (iv) S2 bands and S1; (v) S2 bands, VIs, and S1; (vi) S2 bands, VP, and S1; (vii) S2 bands,
VIs, and VP; and (viii) S2 bands, VIs, VP, and S1. Therefore, this study’s objective was
to evaluate the strengths of the freely available multi-date medium resolution S2 bands,
their VIs and VP variables, and S1 backscatter data for mapping cropping patterns in a
heterogeneous agro-natural production system in Murang’a County, Kenya. Specifically,
the performance of the eight multi-sensor classification scenarios for delineating cropping
patterns utilizing a robust feature selection and classification algorithm (i.e., GRRF and RE,
respectively) was assessed and compared.

2. Study Area

The study was conducted using the case of Murang’a County of Kenya (Figure 1).
Murang'a lies between latitudes of 0°34’00” S and 1°07'00” S and longitudes of 36°00'00"
E and 37°27'00” E. The elevation ranges between 900 and 3355 m above sea level with an
area coverage of 2326 km?. Murang’a County is characterized by six agro-ecological zones
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and three climatic regions, i.e., equatorial, subtropical, and semiarid climatic regions [46].
The region has a bimodal rainfall pattern, with long rains occurring in March-May and
short rains in October-November of each year. On average, the annual rainfall ranges from
>800 mm in the southeast to >2600 mm in the northwest, and the annual temperature range
is 12-20 °C [47]. The study area has a complex heterogeneous landscape, translating into
heterogeneous cultivation of crops such as avocado, maize, common bean, sweet potato,
arrowroot, macadamia, pineapple, banana, tea, and coffee, which are planted in different
cropping patterns at different points in time across the cropping season. Monocropping
is predominantly practiced for commercial purposes and mixed cropping mostly for sub-
sistence consumption. However, some crops such as avocado, grown in mixed cropping
patterns by smallholder farmers in Murang'a, are also used for commercial purposes [48].
Murang’a County is a major avocado producing area in Kenya and is a horticultural
crop whose export value has increased during the past decade [49]. Three sub-counties
suitable for avocado faming in Murang’a County i.e., Kandara, Maragua, and Gatanga
were selected. Mapping of the cropping patterns in this region can be utilized, for in-
stance, to improve the understanding of the contribution of each cropping pattern to the
abundance of avocado pests and pollinators across different vegetation intensities for
sustainable management [50].
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Figure 1. Location of the study area comprising the three sub-counties, i.e., Kandara, Maragua, and Gatanga, in Murang’a

County, Kenya with overlaid field reference points and surface features. The background layer shows the elevation across

the study area that was generated from the shuttle radar topography mission of 30 m spatial resolution.

3. Methodology

Figure 2 illustrates the methodological approach used to map the cropping patterns
in the study area using different remotely sensed variables extracted from S2 and S1 im-
ageries. To ensure the compatibility and reliability of the already georeferenced (Universal
Transverse Mercator: UTM zone 37 south) S2 and S1 imagery, the respective standard
preprocessing and processing procedures that are described in the following sections
were employed.
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Figure 2. Workflow diagram of the methodology adopted for cropping pattern classification. NDVI
is normalized difference vegetation index, GRRF is guided regularized random forest, RF is ran-
dom forest, VV is the vertical transmit and vertical receive, and VH is the vertical transmit and
horizontal receive.

3.1. Remotely Sensed Data

The remotely sensed data utilized in this study included multi-date reflectance bands,
VIs and VP from S2, and backscatter from S1. These freely available datasets of S2 and S1
were selected to emphasize the various parts of the electromagnetic spectrum for accurate
cropping pattern mapping.

3.1.1. Sentinel-2

Freely available multi-date S2 level 1C imagery (n = 128 scenes) captured during
four seasons from 10 December 2017 to 15 December 2018 (Table 1) with cloud cover
less than 20% were obtained from the European Space Agency (ESA) Copernicus open
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access hub [51]. The S2 imagery were obtained from four tiles within the same UTM zone
37 South, i.e., tiles 37MBV, 37MCV, 37MCU, and 37MBU. S2 is a multispectral sensor with
a swath width of 290 km?, providing 13 spectral bands with pixel sizes of 10, 20, and
60 m across the visible, near-infrared, and shortwave infrared spectrum [51], as shown in
Table 2. The S2 images were atmospherically corrected using the Sen2cor module in the
Sentinel application platform (SNAP) toolbox [51]. Cloud masking, resampling of the S2
bands of 20 m spatial resolution to 10 m, layer stacking, mosaicking, and computation of
the median pixel image for each season were also performed in SNAP. The resampling
procedure was conducted using the nearest neighbor technique, which preserves the
original pixel spectral values while resizing their spatial resolution to a user-defined value
(i.e., 10 m) [52]. The error of the resampling procedure was less than a pixel, which is
considered acceptable in most studies [53,54]. The respective median images were subset
to the study area. Coastal and aerosol (band 1), water vapor (band 9), and cirrus (band 10)
bands were excluded from this analysis because they mostly contribute to atmospheric and
geophysical parameters [51], which were not the focus of this study.

Table 1. Sentinel-2 multispectral data acquisition dates and their specific seasons of the
year 2017-2018.

Acquisition Date Season Number of Images
10 December 2017-25 February 2018 Hot dry (Season 1) 42
26 February 2018-20 June 2018 Long rainy (Season 2) 24
21 June 2018-20 September 2018 Cool dry (Season 3) 22
21 September 2018-15 December 2018 Short rainy (Season 4) 40
Total 128

Table 2. Sentinel-2 multispectral sensor wavebands, description, resolution, and their respective central wavelengths. Bands

1,9, and 10 were excluded from this analysis.

Band Resolution (m) Central Wavelength (nm) Description

B1 60 443 Ultra-blue (Coastal and aerosol)

B2 10 490 Blue

B3 10 560 Green

B4 10 665 Red

B5 20 705 Vegetation red edge (RE1)

B6 20 740 Vegetation red edge (RE2)

B7 20 783 Vegetation red edge (RE3)

B8 10 842 Near-infrared (NIR)

B8a 20 865 Narrow NIR (NNIR)

B9 60 940 Short wave infrared (SWIR1)-water vapor
B10 60 1375 Short wave infrared (SWIR2)-cirrus
B11 20 1610 Short wave infrared (SWIR3)
B12 20 2190 Short wave infrared (SWIR4)

3.1.2. Vegetation Indices (VIs)

VIs are a combination of spectral characteristics of two or more wavelength bands that
indicate the relative abundance of vegetation components such as chlorophyll and water
contents [55]. The VIs described in Table 3 were selected and derived for this study from
the median images of a multi-date S2 imagery. Composite images of each of the VIs (1 = 8)
were then created. These VIs were selected for cropping pattern mapping because they
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are the most robust indices that mimic vegetation seasonality and are known to reduce
residual contamination due to atmospheric noise and soil background [30]. The multi-date
and multi-season features in the VIs can also cater for the normalized difference vegetation
index (NDVI) anisotropic effects [56], for instance.

Table 3. Vegetation indices used in the present study.

No. Index Abbreviation Reference
1 Normalized difference vegetation index NDVI [57]
2 Enhanced vegetation index EVI [58]
3 Two-band enhanced vegetation index EVI2 [59]
4 Normalized difference water index NDWI [60]
5 Modified soil adjusted vegetation index MSAVI [61]
6 Soil adjusted vegetation index SAVI [62]
7 Green normalized difference vegetation index GNDVI [63]
8 Atmospherically resistant vegetation index-2 ARVI2 [64]

3.1.3. Vegetation Phenological (VP) Variables

VP variables mimic the growth life cycle of a plant [65]. The VP variables as described
by Araya [66] were derived in the present study and are summarized in Table 4. The VP
variables were simulated from the multi-date NDVI curve of the S2 images of each of the
four seasons (Table 1). A composite image for the VP variables (n = 15) was created and
used in the cropping pattern classification experiment.

Table 4. Description of vegetation phenological variables derived in the present study.

No. Phenological Variable Definition of the NDVI Curve and Physiological Description
1 Onset_value The NDVI value at the start of the growth (seedling growth stage)
2 Onset_time The time when the growth onset is achieved
3 Max_value The maximum NDVI value in the season
4 Max_time The time when the max_value is attained (anthesis growth stage)
5 Offset_value The NDVI value at the end of the season
6 Offset_time The time when growth offset is attained (senescence growth stage)
7 LengthGS The length of the growing season
8 BeforeMaxT The length of time between onset and max_value
9 AfterMaxT The length of time between max_value and offset
10 GreenUpSlope The rate of increase in NDVI value between onset and offset
11 BrownDownSlope The rate of decrease in NDVI value between max_value and offset
12 TINDVI The area under the NDVI curve between onset and offset
13 TINDVIBeforeMax The area under the NDVI curve between onset and max_value
14 TINDVIAfterMax The area under the NDVI curve between max_value and offset
15 TINDVIAsymmetry The difference between BeforeMaxTINDVI and AfterMaxTINDVI

3.1.4. Sentinel-1 Backscatter Data

Multi-date S1 imageries (1 = 30) of four seasons were obtained from the ESA Coper-
nicus open access hub [51] and used in this analysis (Table 5). The acquisition dates of
S1 imagery were slightly different from those of S2 due to image availability in the ESA
archive. The S1 sensor provides C-band synthetic aperture radar (SAR) images in both
singular and dual-polarization with a revisit cycle of 12 days [51]. Acquisition of these
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images was in four modes, i.e., stripmap (SM), interferometric wide swath (IW), extra-wide
swath (EW), and wave (WV) with different processing levels, i.e., Level-0, Level-1 (Sin-
gle Look Complex-(SLC), ground range detected-(GRD)), and Level-2 [51]. In this study,
Level-1 S1 products of GRD and IW were used. The S1 images were dual-polarized in
vertical transmit and vertical receive (VV), and vertical transmit and horizontal receive
(VH) mode. The pre-processing procedures of S1 images were performed in the SNAP
toolbox [51]. Based on Filipponi [67], these processes included applying the precise orbit
file (provides accurate satellite position and velocity information), removal of thermal
noise (normalizes the backscatter), removal of image border noise (compensates for the
change in earth’s curvature), radiometric calibration using beta nought (converts digital
pixel values to radiometrically calibrated SAR backscatter brightness), and speckle filtering
using the Lee sigma filter (reduces salt and paper effect). Terrain correction using 90 m
shuttle radar topography mission elevation data [68] was carried out, after resampling to
10 m using the bilinear resampling technique, which preserves the geometric properties
of the elevation data [69]. These processed images were then stacked to produce the per
season median pixel value of the VV and VH image bands that were then subset to the
extent of the study area.

Table 5. Sentinel-1 backscatter data acquisition dates and their specific seasons in the years 2017
and 2018.

Acquisition Date Season Number of Images
10 December 2017-1 March 2018 Hot dry (Season 1) 5
2 March 2018-15 June 2018 Long rainy (Season 2) 9
16 June 2018-15 October 2018 Cool dry (Season 3) 8
16 October 2018-31 December 2018 Short rainy (Season 4) 8
Total 30

3.2. Field Data Collection

A stratified random sampling technique was used for the collection of the field data
(i.e., ground-truthing), within three vegetation intensity classes (i.e., low, medium, and high)
as strata at a landscape scale that were generated using the K-means clustering method [70]
and the NDVI composite image. The detailed methods and results of the three vegetation
intensity classes can be found in Toukem et al. [50]. Stratified random sampling was
employed to provide a comprehensive representation of the cropping patterns within the
different vegetation intensities in the study area. A global positioning system (GPS)-based
mobile application, GPS Essentials [71], with a maximum allowable error of £3 m, was
used to collect the field reference data for the cropping patterns and non-croplands during
the period ranging from 13 December 2018 to 19 December 2018, corresponding to the short
rainy season. The cropping pattern classes included monocrop avocado, monocrop coffee,
monocrop maize, monocrop tea, monocrop pineapple, mixed crop avocado, and mixed
crop maize. The non-cropland classes included water bodies, built-up areas, grassland,
shrubland, and forest. The non-cropland classes were included due to the heterogeneity of
the landscape in the study area. Field reference points were randomly sampled at >20 m
apart from any direction within each of the three vegetation intensity strata, ensuring that
all classes had more than thirty data entries evenly spread across the strata. The sampling
distance of >20 m was a key criterion in ensuring that field reference points did not fall
in the same image pixels. Specifically, the field reference data of each class were collected
as points (i.e., pixels), which were then converted to homogenous units (i.e., polygons)
using on-screen digitization on high-resolution Google Earth imagery [72]. The pixel values
within the homogenous polygons were then extracted to be utilized for the cropping pattern
predictions, as summarized in Table 6. The number of pixels extracted in the different
polygons had some variation due to the polygons’ sizes, which were influenced by the
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necessity to accurately capture the heterogeneity of the classes in the landscape. The field
reference data were randomly divided into 70% training and 30% testing sets to train and
evaluate the accuracy of the RF classifier, respectively.

Table 6. The number of polygons (i.e., field reference points) and pixels used per class.

Class No. of Polygons No. of Pixels
Built-up area 86 375
Grassland 76 936
Mixed crop avocado 85 191
Mixed crop maize 54 299
Monocrop avocado 74 242
Monocrop coffee 49 1462
Monocrop maize 56 479
Monocrop pineapple 76 1451
Monocrop tea 78 406
Forest 85 3005
Shrubland 59 743
Water 38 1397
Total 872 10,986

3.3. Predictor Variables Selection and Classification

Although several image classification methods exist for remotely sensed data, the
method to be used should consider factors such as data multidimensionality and multi-
collinearity, computation time, and availability of the training dataset [33]. In this study,
data multidimensionality and multicollinearity were considered as analytical constraints;
hence, a robust feature selection algorithm was firstly utilized to select the most relevant
variables to map the cropping pattern classes. Secondly, a RF classification algorithm
was employed to accurately and reliably map the cropping patterns in the heterogeneous
study area.

3.3.1. Guided Regularized Random Forest (GRRF)

Prior methods that have been used for variable importance measurement and selection
in remotely sensed data analysis include RF and regularized random forest (RRF) among
others [36,37]. RF identifies variables’ importance based on their gain in all nodes of the
trees, but is constrained by the need to either apply a threshold of variable importance
or fixing the number of variables to select [53]. In addition, variables that are selected by
RF could be highly correlated [39]. In contrast, in RRF, a variable is commonly selected
by building only one ensemble in which the variable importance is evaluated on a part
of the training data at each node [37]. However, the limitation of RRF feature selection is
that several features can share the same information gain at a node with a small number of
instances and a huge number of features, causing a likelihood of RREF to select a feature
that is not robustly relevant.

To address the limitations of RF and RRF, GRRF uses a similar concept as RF but
includes a double regularization based on the RF feature importance and penalizes each
feature individually [37]. This results in the generation of a subset of the most important
variables that are non-redundant and representative [37]. Mainly, GRRF maintains the
base coefficient of lambda (A) value of 1 but assigns a penalty coefficient to each feature
by changing the importance coefficient of gamma (y) value of 0 to 1, which controls the
weight of normalized importance. This ensures that the most relevant and uncorrelated
variables are retained [38]. However, it is important to note that y = 0 in GRREF is expected
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to perform similarly to the RRF in terms of the most important variable selection [37]. Thus,
in this study v = 0.7 was set in the “CoefReg” function in the “caret” package in R software
to select the most important variables [73]. The level of importance of the variables was
measured using the mean decrease in accuracy (MDA) score variable ranking approach
that is based on RF [74]. The MDA approach unlinks the relationship between independent
and dependent variables by randomly permuting their feature values [74]. Hence, in
this study, the GRRF algorithm was used to select the most important variables in the
eight individual cropping patterns classification scenarios shown in Table 7. A detailed
explanation of GRRF can be found in Deng and Runger, [37]. However, GRRF was not used
for the cropping pattern classification experiment because the algorithm may have higher
variance compared to the RF because the trees in the GRRF are not built independently [37].
Thus, the RF classifier was applied to the most important variables selected by the GRRF in
each scenario for the cropping pattern prediction.

Table 7. The classification scenarios and the remotely sensed variables that were used in each scenario.

No. of Total

Classification Scenario Variables Combined Variables
C1 40 Sentinel-2 reflectance bands (52 bands)
Cc2 48 52 bands vegetation indices (VIs), i.e., 52 bands and VIs
C3 55 52 bands and vegetation phenology (VP), i.e., S2 bands and VP
C4 48 S2 bands and Sentinel-1 (S1) backscatter bands, i.e., S2 bands and S1
C5 56 S2 bands, VIs, and S1
Co6 63 S2 bands, VP, and S1
c7 63 S2 bands, VIs, and VP
C8 71 S2 bands, VIs, VP, and S1

3.3.2. Random Forest (RF) Classifier

RF is a supervised machine learning method that is non-parametric, i.e., it uses an
adaptable number of predictor variables by combining a large set of decision trees and
does not adhere to the normal distribution of the predictor variables [36]. A bootstrapping
technique is used to build RF, whereby each decision tree is fitted based on a random subset
of training samples containing 2/3 of the original data, commonly referred to as in-bag
data, which is taken with replacement [75]. Before classification, the RF classifier usually
requires two parameters to be set, i.e., number of decision trees (ntree) grown and variables
used at each split (mtry). From the mtry selected variables, the variable that produces the
highest reduction in impurity is chosen to split the samples at each node [35]. A tree is
grown to its maximal size and trimmed only when the nodes are pure and thereafter used
for prediction. The purity of the nodes is determined when the nodes carry samples of the
same class or contain a certain number of samples [76].

RF was used because it is fast, insensitive to overfitting, and minimizes prediction
errors by ensuring that the out-of-sample error of a forest of tree classifiers is dependent on
the strength of the individual trees in the forest and their correlation [77,78]. A comprehen-
sive explanation of RF can be found in Breiman [36], and Liaw and Wiener [76], among
others. Like in the GRRF variable selection experiment, the same default settings of ntree
and mtry to train and validate the RF classifier were used. Furthermore, a tune length of 3
was employed to control the algorithm to attempt different values for the main parameter
in the prediction [73].

3.3.3. Classification Accuracy Assessment

A 10-fold cross-validation method with 10 repeats was used to estimate the accuracy of
the RF classification model internally [79]. Subsequently, the model testing data (30%) were
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used to construct the confusion matrices of each cropping pattern classification scenario [33].
The performance of each classification scenario and hypothesis testing was then evaluated
using the area under class method [80]. The area under class method establishes the
unbiased total area of each class because it includes the area of the map omission error of
each class, leaving out the commission error. The producer’s accuracy (PA), user’s accuracy
(UA), overall accuracy (OA), and Kappa were then computed from the classification error
matrix of estimated area proportions, taking into account the portion of each class in the
study area. For an in-depth description of the theoretical and mathematical background of
the area under class accuracy assessment method, readers are referred to Olofsson et al. [80].
Moreover, a class-wise accuracy assessment was performed for each class using the F1-
score criterion [81]. F1-score is a measurement that balances the difference between PA and
UA for each class i through the formulation of the harmonic mean of PA and UA as shown
in Equation (1).

(F1); = (2 x PA; x UA;) + (PA; + UA)) 1

The unbiased estimated area of each class and a confidence interval of 95% [80] were
also calculated from the most accurate scenario. Additionally, a McNemar’s chi-square
test [45] was carried out to test for any statistically significant differences (p < 0.05) among
the cropping pattern mapping results from the classification scenarios.

4. Results
4.1. Variable Selection Using the Guided Regularized Random Forest (GRRF) Algorithm

Reflectance bands from the 52 sensor across the four seasons in all the GRRF scenarios
dominated the most relevant variables selected. Specifically, the S2 bands of RE1, NNIR,
SWIR3, Red, Green, and Blue were selected. Additionally, NDWI and GNDVI were the most
relevant VIs selected from the eight indices investigated. The most relevant VP variables
selected were the Offset_value, TINDVIBeforeMax, and TINDVIAfterMax, whereas the
S1 bands of VV and VH were selected. The specific variables selected in each of the eight
scenarios C1 to C8 are shown in Figure 3.

4.2. Cropping Pattern Mapping

The cropping pattern maps of the tested classification scenarios are shown in Figure 4.
The southeastern side of the study area is mainly characterized by monocrop pineapple, the
southwestern side is characterized by monocrop coffee, the western side is characterized
by monocrop tea, and the eastern side is dominated by mixed crop maize, monocrop maize,
mixed crop avocado, and monocrop avocado. The non-croplands such as shrublands and
grasslands are shown to be dominant on the eastern side whereas forest is most evident on
the northwestern side.

4.3. Mapping Accuracy Assessment

The OA of all the GRRF-selected variable classification scenarios (Figure 3) was above
90.00% and Kappa was above 0.88, as shown in Figure 5a,b. Regarding the class-wise
performance of the cropping patterns, the highest PA (100%) was shown in monocrop
avocado in scenarios C1-C3 and monocrop tea in scenarios C3, C4, and C6. The highest
UA (100%) was predicted for monocrop pineapple in scenarios C1-C7 and monocrop tea
in scenarios C7 and C8. The highest F1-score (100%) was shown for monocrop pineapple
in scenarios C7 and C8. In contrast, the lowest PA (77.56%) was predicted for mixed crop
maize in scenario C4, and the lowest UA (72.54%) and lowest Fl-score (80.55%) were
recorded for the mixed crop maize in the C4 and C1 scenarios, respectively. Although the
non-croplands were not a focus of the present study, they were mapped with acceptable
Fl-score accuracies of above 80%. A summary of all the class-wise accuracies of the tested
scenarios is shown in Figure 6. McNemar's test for significance showed no statistical
significance (p < 0.05) difference between the tested scenarios (Table 8).
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Figure 3. Guided regularized random forest- selected variables in each of the eight cropping pattern classification scenarios
C1 to C8. C1 = Sentinel-2 reflectance bands, i.e., S2 bands; C2 = S2 bands and vegetation indices (VIs), i.e., 52 bands and
VIs; C3 = S2 bands and vegetation phenology (VP), i.e., S2 bands and VP; C4 = S2 bands and Sentinel-1 (51) backscatter
data, i.e., S2 bands and S1; C5 = S2 bands, VIs and S1; C6 = S2 bands, VP and S1; C7 = S2 bands, VP and VIs; C8 = 52
bands, VIs, VP and S1; NDWI = normalized difference water index; GNDVI = green normalized difference vegetation
index; NIR = near infrared band 8 of 52; RE1= vegetation red edge band 5 of 52; SWIR3 = short wave infrared band 11 of
S2; NNIR = narrow near infrared band 8a of S2; VV = vertical transmit vertical receive of S1; VH = the vertical transmit
horizontal receive of S1; TINDVIBeforeMax = area under the NDVI curve between onset and max_value of VP variables
and TINDVIAfterMax = area under the NDVI curve between max_value and offset of VP variables.
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Figure 4. Cropping pattern and non-cropland maps produced using the guided regularized random

forest-selected variables of each classification scenario (C1-C8) and the random forest classifier.
C1 = Sentinel-2 reflectance bands, i.e., 52 bands; C2 = S2 bands and vegetation indices (VIs), i.e., S2
bands and VIs; C3 = S2 bands and vegetation phenology (VP), i.e., S2 bands and VP; C4 = 52 bands
and Sentinel-1 (S1) backscatter data, i.e., S2 bands and S1; C5 = S2 bands, VIs and S1; C6 = S2 bands,
VP and S1; C7 = S2 bands, VIs, and VP; and C8 = S2 bands, VIs, VP and S1.
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Figure 5. Summary of the (a) overall accuracy and (b) Kappa of cropping pattern and non-cropland

classification using Figure 3 reflectance bands (S2 bands), vegetation indices (VIs), vegetation phenol-

ogy (VP), and Sentinel-1 (S1) backscatter data.

Table 8. McNemar'’s test for comparing the performance of cropping patterns classification using

guided regularized random forest-selected variables of scenarios C1-C8. C1 = Sentinel-2 reflectance
bands (52 bands); C2 = S2 bands and vegetation indices (VIs), i.e., S2 bands and VIs; C3 = S2 bands
and vegetation phenology (VP), i.e., 52 bands and VP; C4 = 52 bands and Sentinel-1 (S1) backscatter
data, i.e., S2 bands and S1; C5 = S2 bands, VIs, and S1; Cé6 = S2 bands, VP, and S1; C7 = S2 bands, Vs,
and VP; and C8 = S2 bands, VIs, VP, and S1 used for mapping the studied cropping patterns. The

level of significance (p-value) is set at <0.05.

Comparison C1 Cc2 C3 C4 C5 Cé6 Cc7 C8
C1 - 0.9517 0.9514 0.9527 0.9594 0.9527 0.9527 0.9564
C2 - - 0.9488 0.9501 0.9568 0.9501 0.9501 0.9538
c3 - - - 0.9499 0.9566 0.9499 0.9499 0.9536
C4 - - - - 0.9577 0.951 0.951 0.9548
C5 - - - - - 0.9574 0.9574 0.9611
C6 - - - - - - 0.951 0.9548
C7 - - - - - - - 0.9548

cs - - -
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Figure 6. Summarized class-wise accuracies of (a) producer’s accuracy (PA), (b) user’s accuracy
(UA), and (c) F1-score using the guided regularized random forest (GRRF)-selected variables of each
scenario (C1-C8). C1 = Sentinel-2 reflectance bands, i.e., S2 bands; C2 = 52 bands and vegetation
indices (VIs), i.e., S2 bands and VIs; C3 = S2 bands and vegetation phenology (VP), i.e., S2 bands and
VP; C4 = S2 bands and Sentinel-1 (S1) backscatter data, i.e., S2 bands and S1; C5 = S2 bands, VIs and
S1; C6 = S2 bands, VP, and S1; C7 = S2 bands, VIs, and VP; and C8 = S2 bands, VIs, VP and S1.

4.4. Area Estimation

The unbiased area estimate calculated from the best RF classification scenario, i.e.,
GRRF-selected variables in C5 among the cropping patterns revealed that monocrop maize
had the greatest acreage (15,052.61 ha) followed by mixed crop avocado (14,404.16 ha),
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whereas the lowest acreage in the cropping patterns was the monocrop avocado (1642.60 ha)
class. In non-croplands, shrubland had the greatest acreage (20,479.06 ha) followed by
forest (20,177.30 ha), whereas water had the lowest acreage (1358.00 ha), followed by
built-up area (9740.52 ha). The acreages of other cropping patterns and non-croplands are
summarized in Table 9.

Table 9. The unbiased area estimates and approximate 95% confidence intervals (Cls) of the crop-
ping patterns and non-croplands obtained using the area under class method of the most accurate
variables combination result from the guided regularized random forest-selected variables of sce-
nario C5. C5 = Sentinel-2 reflectance bands (S2 bands), vegetation indices (VIs), and Sentinel-1 (S1)
backscatter data.

Unbiased Area 95% CI of Unbiased Area Estimates (ha)
Class Estimates (ha) Plus Minus
Built-up area 9740.523 10,408.55281 9072.496071
Grassland 16,563.03 17,477.96132 15,648.10646
Mixed crop avocado 14,404.16 16,021.45784 12,786.87399
Mixed crop maize 11,552.83 12,918.59 10,187.06
Monocrop avocado 1642.60 1718.80 1566.39
Monocrop coffee 8318.16 8615.92 8020.39
Monocrop maize 15,052.61 16,056.81 14,048.41
Monocrop pineapple 3709.18 3963.34 3455.01
Monocrop tea 4869.05 5070.43 4667.67
Forest 20,177.30 20,809.75 19,544.84
Shrubland 20,479.06 21,509.13 19,448.98
Water 1358.00 1402.05 1313.95

5. Discussion

This study leveraged the synergetic advantage of integrating the freely available
medium resolution multi-date and multi-sensor variables for classifying cropping patterns
in a heterogeneous agro-natural landscape in Kenya when high-resolution imagery is not
available. The performance of eight classification scenarios that resulted from combining
S2 bands, their VIs and VP variables, and S1 SAR backscatter imagery was tested. Seven
cropping patterns were classified. The study demonstrated that cropping patterns in a het-
erogeneous landscape in Murang’a, Kenya, can be accurately (OA > 90% and Kappa > 0.88)
mapped using the freely available multi-date medium resolution S2 bands, their VIs and
VP, and S1 backscatter data by employing a robust GRRF feature selection algorithm and RF
classifier. In summary, the objective and the tested hypothesis were successfully achieved.

Satellite-based data acquired over four seasons (i.e., hot and cool dry, in addition to
short and long rainy season) that were assumed to have captured all the changes in inter-
and intra-vegetation dynamics were utilized. The use of optical satellite time-series data
increased the chances of acquiring cloud-free imagery and hence resulted in higher chances
of improved classification results, corroborating results of other previous studies [82,83].
Persistent cloud coverage can considerably affect the quality of optical S2 imagery [84]. 52
and S1 have varied revisit periods of 5 and 12 days, respectively, and these differences were
accounted for using seasonal median composites. Furthermore, the performance of the
classification experiments using an error matrix that takes into account the estimated area
proportion of each class [80] was assessed. This is a robust and more reliable classification
accuracy assessment method compared to the traditional classification confusion matrix
that considers the number of mapped instances of each class.

The overall classification accuracies achieved were above 90% for all the tested sce-
narios, whereas Kappa ranged from 0.89 to 0.93 across the tested scenarios. This could
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be attributed to the use of the multi-date imageries and the selection of the most relevant
variables using GRRF. GRRF has the capability of reducing multidimensionality and the
expected multicollinearity by maintaining the most relevant variables for the analysis.
Therefore, the most important variables selected across the eight scenarios were 52 bands
of NNIR, SWIR3, RE1, Red, Green, and Blue; VI bands of NDWI and GNDVI, VP bands of
Offset_value, TINDVIBeforeMax and TINDVIAfterMax; and S1 bands of VV and VH. The
selection of NNIR can be explained by the narrowness of the NIR waveband region at 865
nm, which is known to be less contaminated by water vapor and represents the NIR plateau
for vegetation while also being sensitive to some soil chemical properties [51]. Moreover,
the reflectance in the SWIR3 band is sensitive to the internal leaf structure [85], whereas the
red edge band (RE1), in addition to visible bands of red, green, and blue, are also sensitive
to vegetation chlorophyll and other biochemical contents [86—88]. The dominance of S2
bands in the GRRF-selected variables in all the tested scenarios confirmed the strength and
importance of the raw S2 bands in discriminating vegetation land use/cover features [89].

Furthermore, the VIs were also useful in specific crop type identification [90] by
measuring the photosynthetic size of specific plant canopies, which could improve the
individual cropping patterns classification [91]. The selection of the VlIs, i.e., NDWI and
GNDV], can be attributed to the sensitivity of the NIR band in the NDWTI to leaf internal
structure and leaf dry matter content, whereas the SWIR3 band in the index is sensitive to
the vegetation water content and the spongy mesophyll structure in vegetation canopies,
reflecting biochemical metrics of vegetation [58]. On the other hand, the GNDVI is more
sensitive to the chlorophyll content of the plant because it constitutes the green channel
in lieu of the red band [63]. Challenges in mapping cropping patterns using VIs could
arise due to multicollinearity in the VIs [30], but this was catered for by using the GRRF
algorithm to select the most important VIs in the respective scenarios.

Time-series phenology variables have been found to be the best at differentiating
temporal and spectral variability of crop growth [92]. The selection of the VP variables of
Offset_value, TINDVIBeforeMax, and TINDVIAfterMax can be explained by the sensitivity
of Offset_value to land use and land cover differences, whereas TINDVIBeforeMax and
TINDVIAfterMax describe the pre- and post-anthesis stages, respectively, which can differ
among different plants [66]. The specific phenological states of the different crops and
vegetation were not physically observed in the present because the aim was to utilize
the uniqueness of the phenological profiles in a broader sense, as a function of cropping
patterns to discriminate among them. Earlier studies, such as that of Makori et al. [93], have
utilized VP variables in a landscape of mixed vegetation species that included perennial
and annual plants to model some features of interest. It is speculated that a phenological
profile of a mixed cropping pattern (e.g., avocado and maize) would considerably differ
from that of a monocropping pattern (e.g., avocado). However, the mixed cropping pattern
classes were mapped with the least individual (F1-score) accuracy, which could be due
to the confounding VP variables of, for instance, a mixture of perennial (avocado) and
annual (maize) cropping pattern classes. This is one of the limitations of the present study;
therefore, future studies could develop advanced methods for differentiating among the
VP variables across mixed vegetation classes.

Regarding the contribution of S1 backscatter data, the sensitivity of VH polarization
to vegetation could have influenced the performance of the most accurate classification
scenario (C5), i.e., GRFF-selected variables in S2 bands, VIs, and S1, with an overall accuracy
of 94.33% and Kappa coefficient of 0.93. Interestingly, the sensitivity of VV polarization to
soil moisture [94] could have rendered the underperformance of scenario C4 i.e., GRFF-
selected variables in 52 bands and S1 compared to all other scenarios. This is contrary to
other previous studies, such as that of Tricht et al. [95], which reported an improvement in
classification accuracy when combining S2 and S1 datasets.

Cropping patterns including monocrop avocado, mixed crop avocado, monocrop
maize, mixed crop maize, monocrop tea, monocrop pineapple, and monocrop coffee,
grown in a highly complex, heterogeneous, and dynamic agro-natural setup in Murang’a
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County, Kenya, were accurately mapped. In the field, it was observed that most of the
mixed crop fields were small-scale avocado and small-scale maize fields that were mixed
with other crops such as common bean, banana, and macadamia. It is speculated that the
farmers intend to maximize the profit of their land by mixing the crops in the same piece
of land, particularly due to the uncertainty in rainfall trend and invasion of insect pests,
such as the fall armyworm, which could damage their maize crop [96]. High class-wise
UA, PA, and F1-scores were especially observed in the mapping of monocropping patterns
of avocado, coffee, tea, and pineapple. Presumably, this could be due to the high spectral
uniformity of the monocropping patterns, which also resulted in less intra-class variability.
However, mixed crop avocado and mixed crop maize cropping pattern classes had lower
F1-scores ranging from 80% to 91% compared to other cropping pattern classes in the
present study. This can be explained by high inter-class variability associated with the
different vegetation compositions, including non-croplands such as forest, grasslands, and
shrublands; hence, a high rate of misclassification was found within the farms [27]. In terms
of acreage estimation from the most accurate scenario (C5), i.e., GRRF-selected variables in
S2 bands, VIs, and S1, monocrop maize had the greatest acreage (15,052.61 ha) followed
by mixed crop avocado (14,404.16 ha). This could be explained by the fact that maize is a
staple crop in Kenya, and avocado farming is gaining popularity among small-scale farmers
in Murang’a County due to its increasing export value in Kenya [49,97]. Overall, all the
classes in the tested scenarios provided good agreement when compared with high spatial
resolution Google Earth imagery. The insignificant statistical differences from McNemar’s
test between the tested classification scenarios could be explained by the use of related
samples (i.e., the same training data used in the classification of all the scenarios) [45].
The use of the same training data in all the classification scenarios was necessary for this
study to enable the unbiased comparison of the performance of the classification scenarios.
Another reason for the insignificant differences among the eight classification scenarios
could also be due to the fact that all the scenarios included S2 bands.

In summary, this study’s approach for mapping cropping patterns performed sig-
nificantly better than most pre-existing approaches for classifying land use/land cover
and cropping systems in agro-ecological landscapes. For instance, Kyalo et al. [10], who
mapped maize-based cropping systems in a study area in Kenya using bio-temporal Rapid-
Eye bands and VIs, achieved about 85% mapping accuracy. Ochungo et al. [89], who
fused single-date S1 and S2 datasets to map different land use/land cover features in
Kenya, obtained an OA of 86%. Because the readily available S2 and S1 datasets, and a
semi-automated protocol to map smallholder farmer cropping patterns were utilized, it
is expected that these results are repeatable, and could be used to promptly provide feed-
back to different stakeholders, including farmers themselves, when high spatial resolution
imagery is not readily available due to cost implications.

6. Conclusions

This study investigated the synergetic advantage of integrating multi-date freely avail-
able medium spatial resolution S2 bands, their VIs and VP derivatives, and S1 backscatter
data for mapping cropping patterns using GRRF and RF machine learning algorithms for
relevant variable selection and cropping pattern classification, respectively, in an agro-
natural heterogeneous landscape in Kenya. The study also used the area under class
method for assessing classification accuracy, which provided an opportunity to obtain an
insight into the acreage of the various cropping patterns. The best performing classification
scenario was GRRF-selected variables of S2, VIs, and S1 combination with OA = 94.33%
and Kappa = 0.93. The selected variables in this scenario were VH, NDWI, SWIR, NNIR,
RE1, Red, and Green bands. In general, the mixed cropping patterns of avocado and
maize had the lowest accuracies compared to the monocropping patterns of tea, pineapple,
maize, avocado, and coffee. Future studies could examine the use of more advanced algo-
rithms such as artificial intelligence to improve the mapping accuracy of mixed cropping
pattern classes.
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Overall, this study’s approach could be extended to other locations of similar agro-
ecological conditions. Moreover, the study’s output could also be used as input pa-
rameters for the prediction of the abundance and spread of crop insect pests, diseases,
and pollinators.
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