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Abstract: Soybean is planted in a wide span of the world, and flowering and maturity time is an
important trait determining soybean yield formation and adaptation. Maturity loci E1, E2, E3 and E4
were frequently reported as the most influential genetic loci for soybean flowering and maturity. To
understand the allelic variation and assess the phenological traits of cultivars with different E allelic
combinations in natural environments, 251 cultivars of maturity group (MG) I–V were field tested
in 42 locations across four sub-regions in the Huang-Huai-Hai and Northwest region of China and
genotyped with KASP markers for E1–E4 loci. The results indicated that mutant alleles were only
found in the E1 and E2 locus, all of the cultivars carried functional alleles in the E3 and E4 loci in
this area, with the frequency of mutant allele to be higher in early maturity groups (MGs) than late
MGs. Among nine E allelic combinations in this area, one photoperiodic insensitive mutation in E2
loci (E1/e2-ns/E3-Ha/E4 and E1/e2-ns/E3-Mi/E4) made up the largest proportion (25.10 and 18.33%),
while two photoperiodic insensitive mutations in both E1 and E2 loci (e1-as/e2-ns/E3-Ha/E4) (1.20%)
occupied the lowest proportion in this panel. The major combinations of E locus for MGI, MGII and
MG III in this area were E1/E2-dl/E3-Mi/E4, E1/e2-ns/E3-Mi/E4 and E1/e2-ns/E3-Ha/E4, respectively.
Cultivars carrying e1-as/e2-ns/E3-Ha/E4 genotype flowered earliest (34 days) on average, 7.6 days
earlier than the latest-flowering E haplotype (E1/e2-ns/E3-Ha/E4). This study provided an opportunity
to detect the E allelic combinations in the Huang-Huai-Hai River Valley and the Northwest China,
which would facilitate the improvement of soybean adaptation in the future.

Keywords: soybean; E genotype; flowering and maturity

1. Introduction

Soybean was originated from the Southeastern Asia and expanded to the tropical and
high latitude zones [1,2]. Flowering time and maturity are the key traits determining the
adaptation zone of soybean varieties. Soybean cultivars with different photo-thermal sensi-
tivity adapt to different geographic zones [3]. Understanding the adaptive performance of
soybean cultivars plays an important role in breeding.

Soybean flowering and maturity are regulated by the maturity genes, E1–E9 [4–10],
although more than 100 genes were involved in the process. Among them, E1 [11], E2 [12],
E3 [13] and E4 [14] were identified and characterized. Cultivars carrying dominant alleles
of E1, E2, E3, E4 genes showed a delay in flowering and maturity. Allelic variations in
each of E1, E2, E3, E4 loci were identified to have different functions on flowering and
maturity. E1 is a legume-specific transcription factor containing a B3 domain. e1-fs, a
single base deletion caused by frame-shift mutation, and e1-nl, a deletion of the entire
gene, are non-functional, while e1-as, a missense mutation, is not fully functional [11].
E2 is highly homologous to Arabidopsis GIGANTEA protein, which is participating in
the circadian clock of the flowering pathway. e2-ns, an SNP caused a nonsense mutation,
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is non-functional [12]. Both E3 and E4 are phytochrome A genes. E3-Mi and E3-Ha are
functional, while e3-ns, e3-tr, e3-fs and e3-Mo are nonfunctional [13,15]. e4 (SORE-1), a
retrotransposon caused truncated protein with 237 amino acids, and e4-oto, e4-tsu, e4-kam
and e4-kes, single base-pair deletions caused truncated proteins with different length,
respectively, are non-functional [14].

Allelic variations of E1 to E4 genes in cultivar from different geographic zones and
maturity groups were studied in China [16–18], Europe [19] and North America [20].
Allelic variation of E1 to E4 genes can explain 62–66% of variations in soybean flowering,
indicating that allelic combinations of E genes play major roles in determining soybean
flowering and adaptation zone [21]. Functional makers in E1–E4 were developed in our
previous study to genotype unknown variants in E1–E4 maturity genes, which were
useful for germplasm screening and molecular marker-assisted selection [15,18,21–23].
Competitive allele-specific PCR (KASP) genotyping with high throughput and low cost
was extensively used for identifying SNPs [24,25].

Huang-Huai-Hai River Valley is the second largest production region in China and is
a very important place of high-protein soybean production. The Northwest China is the
place of creating national soybean high-yield records. In the current study, 251 soybean
cultivars of MG I to MG V with nine E allelic combinations were planted in four sub-regions.
The aims of our study are to (1) analyze the allelic variation of E1 to E4 in the collection of
cultivars in the Huang-Huai-Hai and Northwest China and (2) analyze the phenological
performance of cultivars with different E combinations.

2. Material and Methods

2.1. Plant Material and Locations

The experiment consists of 251 soybean (Glycine max (L.) Merr.) cultivars from five
maturity groups (MG) MGI (5), MG II (42), MG III (193), MG IV (10) and MG V (1). It
originates from four sub-regions. Forty-seven cultivars were from the north sub-region,
64 were from the middle sub-region, 82 were from the south sub-region, and 25 were
from the northwest sub-region, and 33 cultivars were in the tests of multiple sub-regions
(Table S1). The soybean seeds were obtained from the breeders.

2.2. Experimental Design and Data Collection

The data were downloaded from the report of multiple-site soybean variety test
in the Huang-Huai-Hai region in 2017–2018, which did not include the replication data
(http://www.soybreeding.com/download/download.php?lang=cn&class2=77, accessed
on 15 May 2019). The experiment was carried out in 42 locations in four sub-regions,
with 11, 12, 11 and 11 locations in the north, middle, south and northwest sub-regions,
respectively. Among them, 3 locations, Fenyang, Zhengzhou and Taiyuan, carried out the
tests of two sub-regions. The latitude and longitude of locations were ranged from 32◦93′ N
to 40◦17′ N, from 102◦61′ E to 119◦15′ E, respectively (Table S2). Cultivars originating from
each sub-region were planted in the locations of the corresponding region. One hundred
and 95 cultivars were tested in 2017 and 2018, respectively, and 56 were tested in both
years. The experiment was arranged in a complete randomized block design with three
replications. Each plot consisted of 6 rows that were 6 m long with an inter-row spacing of
0.5 m. The plants were thinned to a uniform stand of 22 and 18 plants m−2 after emergence
in the north and middle, south and northwest sub-regions, respectively. A basal fertilizer
was applied (150 kg ha−1 (NH4)H2PO4, 75 kg ha−1 urea, and 40 kg ha−1 K2SO4) prior to
planting. Weeds and pests were controlled normally. The phenological stages of emergence
(VE), beginning bloom (R1) and full maturity (R8) were recorded according to soybean
growth stages described by Fehr and Caviness [26]. The days to flowering (DTF) and
days to maturity (DTM) were calculated as the period from VE to R1 and from VE to R8,
respectively. Two other derived variables were calculated as follows: reproductive period
(RP) is the difference between DTM and DTF; R/V is the ratio of the reproductive period
(the period from R1 to R8) to the vegetative period (the period from VE to R1). Soybean
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varieties with the same maturity time may have different growth structure, namely, the R/V
ratio, which indicates the comparison of the pre-flowering to the post-flowering duration.

2.3. Genotyping of Maturity Loci

The SNPs between different alleles of E1, E2, E3 and E4 were described in our previous
study [18]. KASP allele-specific primers were designed to genotype SNP variants in E1
and E2, or an InDel in E3 locus (Supplementary Table S3). Primers sequences are shown in
Table S3. Genomic DNA was extracted from fresh trifoliate leaves of each cultivar with
a modified cetyl trimethyl ammonium bromide (CTAB) method. KASP assays and InDel
assays were developed and conducted to genotype E1–E3 in this panel.

2.4. Statistical Analysis

Analyses of variance for DTF, DTM, RP and R/V were calculated across sub-regions
and in each sub-region separately, and it was conducted with a linear mixed-effect model
(lme) in the nlme package in R software (Version 3.6.1). The genotypes in E1, E2 and E3 loci
(only one genotype of E4, the dominant E4, is found; E4 locus is exclusive in the ANOVA
analysis), locations, the interactions between genotypes of E1, E2, E3 loci and location were
fixed effects, and year was a random effect, given its lack of replication data. Best linear
unbiased estimates (BLUEs) of DTF, DTM, RP and R/V of varieties across locations in each
sub-region were calculated and used as the mean phenotype in each sub-region.

3. Results

3.1. Genotyping of E1–E4 in the Huang-Huai-Hai River Valley and the Northwest China

Among the 251 cultivars, 84% carried wild type allele (E1), and 16% carried the mutant
allele (e1-as). At the E2 locus, three allelic variations were found with the frequency of
28, 28 and 44% for E2-dl, E2-in and e2-ns alleles, respectively. At the E3 locus, E3-Ha was
identified in 58% of cultivars, and E3-Mi was identified in 42% of cultivars. Only one
dominant allele (E4) was found in the E4 locus.

A total of nine allelic combinations of these four E genes were identified across
251 cultivars. Among them, the most abundant E haplotypes were E1/e2-ns/E3-Ha/E4
(25.10%) and E1/e2-ns/E3-Mi/E4 (18.33%), which contained one recessive photoperiodic
insensitive allele in E2 loci, while e1-as/e2-ns/E3-Ha/E4 (1.20%) occupied the least proportion
in this panel, which carried recessive photoperiodic insensitive alleles in both E1 and E2
loci (Figure 1).

Figure 1. Frequency of E1–E4 combinations (a) in four sub-regions; (b) north sub-region; (c) middle
sub-region; (d) south sub-region; (e) northwest sub-region. Different colors represent different
E genotypes.
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3.2. Distribution of E Genotypes in Different Maturity Groups and Sub-Regions

In the Huang-Huai-Hai River Valley and the Northwest China, the soybean cultivars
with mutant E1–E4 alleles would have early flowering and maturity. Mutant allele (e1-as)
occupied 40.0, 18.8, 16.4, 30.8 and 0.0% of cultivars in the MGI, MG II, MG III, MG IV and
MG V, respectively, which showed an approximately decreased trend from early to late
MGs. The highest percentage for E2-dl, e2-ns and E2-in alleles were in cultivars of MGI
(40.0%), MG III (46.6%) and MGIV (38.5%), respectively (Figure 2a). The frequency of e2-ns
was higher in early MGs (MG I-III) than late MGs (MG IV-V); to the contrary, the frequency
of E2-in was higher in late MGs (MG IV-V) than early MGs (MG I-III). The proportion of
E3-Ha became larger from early MGs to late MGs, whereas the proportion of E3-Mi showed
an opposite trend. The major combinations of E locus for MGI, MGII and MG III were
E1/E2-dl/E3-Mi/E4, E1/e2-ns/E3-Mi/E4 and E1/e2-ns/E3-Ha/E4 with the proportion of 40.0,
23.8 and 28.0%, respectively. Three E genotypes, E1/E2-dl/E3-Ha/E4, E1/E2-in/E3-Mi/E4 and
E1/e2-ns/E3-Ha/E4, occupied the highest proportion in MG IV in this region (Table 1).

Figure 2. Distribution of E1–E4 alleles among different (a) maturity groups (MGs) and (b) sub-regions. Columns with
different colors represent different E alleles.

The distribution of E alleles was different across different sub-regions. E1 allele
presented a higher frequency than e1-as allele in the cultivars across four sub-regions.
With regards to E2 locus, E2-in played a dominant role in the northwest cultivars (64.3%),
while e2-ns played dominant roles in the north (48.3%), middle (56.7%) and south (40.2%)
cultivars, respectively. E3-Ha was identified at a higher frequency than E3-Mi across
four sub-regions. E1/e2-ns/E3-Mi/E4, E1/e2-ns/E3-Ha/E4, E1/e2-ns/E3-Ha/E4 and E1/E2-in/E3-
Ha/E4 made up the largest proportion of cultivars in the north, middle, south and northwest
sub-regions, which were 29.2, 33.3, 38.7 and 34.8%, respectively, indicating that E1/e2-ns/E3-
Ha/E4 is the most dominant E combination in the Huang-Huai-Hai River Valley and the
Northwest China (Figure 2b).

3.3. The Performance of Flowering and Maturity Time with Different E Allelic Combinations

Analyses of variation showed that E genotype, location and their interaction were
significant for all phenological traits (DTF, DTM, RP and RV), with the exception of E3
locus suggesting that E genotype, environment and E genotype by environment interaction
contributed to the phenotypic variation. Location is the largest contributor to the pheno-
typic variation, which is 4.53 to 49.29 times of that of E genotype effect, and E genotype by
environment interaction is the least important source of variation; this may be due to the
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large number of locations (42 locations) in the current study and the variation contributed
by the flowering genes other than E1 to E4. Analyses of variation in each sub-region were
conducted and demonstrated that E3 × Loc interaction and E3 were non-significant across
all sub-regions, with the exception of E3 genotype in the south sub-region. E genotype and
location interaction was non-significant in most sub-regions (Table 2). E1 contributed a
larger effect to the variation of DTF, DTM, RP and RV compared with E2 and E3.

Table 1. The number of varieties with different E allelic combinations in different maturity groups (MG).

MG E allele Combinations No. of Variety

I

e1-as/E2-in/E3-Ha/E4 1
e1-as/e2-ns/E3-Ha/E4 1

E1E2-dl/E3-Mi/E4 2
E1/e2-ns/E3-Mi/E4 1

II

e1-as/E2-in/E3-Ha/E4 7
e1-as/e2-ns/E3-Ha/E4 1
E1/E2-dl/E3-Ha/E4 4
E1/E2-dl/E3-Mi/E4 8
E1/E2-in/E3-Ha/E4 3
E1/E2-in/E3-Mi/E4 2
E1/e2-ns/E3-Ha/E4 7
E1/e2-ns/E3-Mi/E4 10

III

e1-asE2-in/E3-Ha/E4 17
e1-as/E2-in/E3-Mi/E4 9
e1-as/e2-ns/E3-Ha/E4 1
E1/E2-dl/E3-Ha/E4 27

MG E allele combinations No. of Variety

III

E1/E2-dl/E3-Mi/E4 27
E1/E2-in/E3-Ha/E4 18
E1/E2-in/E3-Mi/E4 6
E1/e2-ns/E3-Ha/E4 54
E1/e2-ns/E3-Mi/E4 34

IV

e1-as/E2-in/E3-Ha/E4 1
e1-as/E2-in/E3-Mi/E4 1

E1/E2-dl/E3-Ha/E4 2
E1/E2-in/E3-Ha/E4 1
E1/E2-in/E3-Mi/E4 2
E1/e2-ns/E3-Ha/E4 2
E1/e2-ns/E3-Mi/E4 1

V E1/E2-in/E3-Ha/E4 1

MG, maturity group.

Table 2. Analysis of variance of E genes with days to flowering, days to maturity, reproductive period
and R/V across all regions and in each region.

All Regions

DF DTF a DTM a RP a R/V a

E1 1 53.50 ***b 358.1 *** 655.1 ** 425.71 ***
E2 2 29.24 *** 313.6 *** 241.6 *** 61.17 ***
E3 1 10.87 *** 31.3 *** 6.0 *c 0.29
Loc 42 144.13 *** 227.7 *** 86.1 *** 58.30 ***

E1 × Loc 42 3.26 *** 2.6 *** 2.6 *** 5.74 ***
E2 × Loc 84 2.78 *** 3.1 *** 2.0 *** 1.85 ***
E3 × Loc 42 0.99 1.0 1.0 0.83
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Table 2. Cont.

North Region

E1 1 129.62 *** 0.36 93.39 ** 181.55 ***
E2 2 10.49 *** 2.81 8.49 **c 12.73 ***
E3 1 0.03 1.11 1.46 1.46
Loc 11 39.35 *** 55.52 *** 52.71 *** 57.01 ***

E1 × Loc 11 1.73 1.13 1.90* 3.49 ***
E2 × Loc 22 1.02 0.73 0.80 1.18
E3 × Loc 11 0.52 0.90 0.82 0.88

Middle Region

E1 1 241.55 *** 11.6 *** 143.73 ** 278.22 ***
E2 2 76.05 *** 15.1 *** 80.19 *** 81.46 ***
E3 1 0.56 0.9 0.01 0.58
Loc 12 46.68 *** 87.6 *** 120.49 *** 64.35 ***

E1 × Loc 12 2.84 *** 0.9 1.95 * 4.22 ***
E2 × Loc 24 1.25 2.3 *** 1.58 * 1.53
E3 × Loc 12 0.32 0.7 0.46 0.52

South Region

E1 1 276.50 *** 0.7 142.38 *** 378.75 ***
E2 2 16.55 *** 3.8 * 18.70 *** 36.51 ***
E3 1 45.46 *** 16.0 *** 0.93 24.33 ***
Loc 11 10.05 *** 80.1 *** 43.18 *** 7.16 ***

E1 × Loc 11 2.12 *d 0.6 0.91 3.36 ***
E2 × Loc 22 0.60 0.6 0.95 0.94
E3 × Loc 11 0.66 0.5 0.69 0.57

Northwest Region

E1 1 39.62 *** 12.02 *** 1.66 17.31 ***
E2 2 16.38 *** 8.32 *** 5.09 ** 8.78 ***
E3 1 0.20 1.44 0.91 0.007
Loc 11 25.06 *** 37.98 *** 33.00 *** 23.84 ***

E1 × Loc 11 1.32 0.87 1.37 1.46
E2 × Loc 22 1.47 1.15 1.64 * 1.64 *
E3 × Loc 11 0.64 6.67 1.02 0.62

a DTF, the days to flowering; DTM, days to maturity. RP, the duratiion from R1 to R8. RV, the ratio between
reproductive phase to vegetative phase. b *** indicates that it is significant at the 0.001 level; c ** indicates that it is
significant at the 0.01 level; d * indicates that it is significant at the 0.05 level; Loc represents the factor of location.

To compare the duration of the vegetative growth, reproductive growth, total growth
phase as well as the ratio of the reproductive to the vegetative growth phase of cultivars
with different E combinations, we calculated the BLUEs of cultivars across locations with
the same E combinations regarding DTF, DTM, RP and RV. The haplotype with both muta-
tions in E1 and E2 locus (e1-as/e2-ns/E3-Ha/E4) reached the earliest flowering (34.0 days),
7.6 days earlier than the latest-flowering E haplotype (E1/e2-ns/E3-Ha/E4). However, the
haplotype of e1-ase2-nsE3-HaE4 has a relatively long reproductive stage (75.06 days), which
is 5.25 days longer than the shortest haplotype (E1/E2-dl/E3-Ha/E4) (69.81 days) (Figure 3).
The cultivars with similar maturity may have different growth period structures; for
instance, Andou109 (E1/e2-ns/E3-Ha/E4) (R/V = 1.7) have a 7-day longer pre-flowering
phase and a 7-day shorter post-flowering period than Cangdou 09Y1 (e1-as/E2-in/E3-Ha/E4)
(R/V = 2.4), but they have a similar growth period (109 days). We also observed variations
within the same E haplotype for flowering and maturity, indicating that additional loci also
participate in regulating flowering and maturity.
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Figure 3. DTF, DTM, RP and R/V of 9 different E genotypes. DTF, days from emergence (VE) to
beginning bloom (R1); DTM, days from emergence (VE) to maturity (R8); RP, days from beginning
bloom (R1) to maturity (R8); R/V, the ratio of the reproductive period to the vegetative period.

4. Discussion

Huang-Huai-Hai region is the second largest soybean production region, which was
the origin of the domesticated soybean [27]. The Northwest China is the place of creating
soybean national high-yield records. To expand to a wider geographic range, artificial
selections in maturity genes were made to match the natural photo-thermal conditions [3].
Natural variations of E1 to E4 genes were found to be limited in the cultivars of MG
I-V in the Huang-Huai-Hai and the Northwest region in the current study; only partial
non-functional mutations were identified in E1 and E2 loci, and no significant mutations
were in E3 and E4 loci, indicating that E3 and E4 loci were fixed in this zone. The results
were consistent with a previous report in America and in China of double mutant e1-as/e2
(MG I-III), single mutant e1-as/E2 (MG II-IV) and E1/e2 (MG II-V) and wild type E1/E2
(MG III-VIII) given that no mutations occurred in E3 and E4 loci [16,18,20]. Cultivars
carrying allelic combinations of E1/e2-ns/E3/E4 occupied the highest proportion in the
Huang-Huai-Hai River Valley, which is a mostly summer-planting soybean, and this agrees
with other studies [18]. The cultivars with E1/e2-ns/E3/E4 occupied 45.8% cultivars of MGs
I-VI, indicating that it played an important role in adjusting to wide ranges of geographical
region and multiple cropping systems.

The cultivars with the combination of both mutations in E1 and E2 loci had the earliest
flowering time compared with cultivars of other E combinations, which is consistent with
the result of another study on 308 Chinese cultivars with 12 maturity groups [18]. The
effect of E1 is different among different E2–E4 genetic backgrounds. Cultivars carrying
E1/e2-ns/e3-tr/E4 reached flowering and maturity very early, which is similar to e1-as/e2-
ns/e3-tr/E4, whereas cultivars carrying E1/e2-ns/E3/E4 showed delayed flowering and
maturity compared with e1-as/e2-ns/E3/E4 [18].

With early-maturing “Harosoy” near-isogenic lines, Cober et al. [28] found that
E1 allele delayed both flowering and maturity by 16 days under the natural day length com-
pared with early-maturing alleles. The flowering and maturity of lines with the E1 allele
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did not show much difference under long-day conditions compared with that under natural
day length. Under the 12 h short-day condition, there are no differences in flowering and
maturity between different near-isogenic lines, indicating that E genes inhibit flowering in
the natural and long-day conditions. Compared with wild-type alleles, mutation alleles
reduce the photoperiod sensitivity and shorten the growth period. However, in the current
study, the effect of E genes cannot be identified in the cultivars with different and unknown
genetic backgrounds, rather than near-isogenic lines with consistent genetic background
besides the target loci in Cober’s study; therefore, genetic effect and gene by environment
interaction were not studied in the current study.

Phenotypic plasticity determines the adaptability of plants to environmental stimuli,
particularly in the context of climate change. For instance, in the current study, the e1-as/E2-
in/E3-Ha/E4 genotype in the genetic background of Ji1708 and Lu0126 showed different
rankings with different traits across different sub-regions, demonstrating that genetic
background besides E loci also affects the phenotypic variation and contributes to genetic
and environmental interaction (GEI). This study provides knowledge for germplasm
evaluation as well as lays the foundation for selecting and designing elite cultivars of E
combinations in the Huang-Huai-Hai River Valley and Northwest China.

5. Conclusions

Nine E allelic combinations were identified in the Huang-Huai-Hai River Valley and
Northwest China, one photoperiodic insensitive mutation in E1 or E2 loci were the most
frequent genotypes, while two photoperiodic insensitive mutations in both E1 and E2 loci
were the least frequent genotypes, which flowered earliest on average. This study provided
an opportunity to detect the adaptable E allelic combinations in the Huang-Huai-Hai River
Valley and the Northwest China, which would facilitate the improvement of soybean
adaptation in the future.
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