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Abstract: As a promising and convenient numerical calculation approach, the discrete element 

method (DEM) has been increasingly adopted in the research of agricultural machinery. DEM is 

capable of monitoring and recording the dynamic and mechanical behavior of agricultural materials 

in the operational process of agricultural machinery, from both a macro-perspective and micro-per-

spective; which has been a tremendous help for the design and optimization of agricultural ma-

chines and their components. This paper reviewed the application research status of DEM in two 

aspects: First is the DEM model establishment of common agricultural materials such as soil, crop 

seed, and straw, etc. The other is the simulation of typical operational processes of agricultural ma-

chines or their components, such as rotary tillage, subsoiling, soil compaction, furrow opening, seed 

and fertilizer metering, crop harvesting, and so on. Finally, we evaluate the development prospects 

of the application of research on the DEM in agricultural machinery, and look forward to promoting 

its application in the field of the optimization and design of agricultural machinery. 

Keywords: discrete element method (DEM); agricultural machinery; agricultural materials; model; 

interaction 

 

1. Introduction 

In order to improve the operation performance and efficiency of agricultural ma-

chines and satisfy the production requirements of modern agriculture, it is necessary to 

upgrade, update, design, and optimize agricultural machines and their components [1,2]. 

Theoretical analysis, numerical calculation, and experiment are the three most commonly 

used approaches in the design and optimization process [3]. Computer simulation, which 

shows the great advantages of a short cycle, low cost, and being free from the farming 

season compared with experiments, has been popularly used in recent years in the re-

search of agricultural machinery [4,5]. 

There are two generally adopted computer simulation methods, the finite element 

method (FEM) and the discrete element method (DEM). FEM has been mostly used in the 

research of continuous mediums but most agricultural materials are discrete, such as soil 

particles and crop seeds; therefore, FEM shows limitations in the study of soil flow and 

mixture, failure and deformation, and the motion of seed flow [6,7]. Whereas DEM, a nu-

merical calculation approach for the analysis of complex dynamic discontinuous mechan-

ical discrete systems [8,9], has shown its advantages in the research of agricultural ma-

chinery.  

In DEM, research targets are divided into the discrete elements of particles and walls. 

In the simulation of operational process of agricultural machinery, agricultural materials 

can be modeled by particles or particle agglomerates, while agricultural machinery or its 

components can be modeled by a combination of walls. The trajectory, movement, and 

mechanical behavior of the agricultural materials and the resistance of the agricultural 
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machinery and its components can be recorded in real time, so as to conduct an in-depth 

study of the interaction mechanism between agricultural materials and agricultural ma-

chinery, and offer guidance for the design and optimization of agricultural machinery.  

Recently, many kinds of DEM software have been developed, such as EDEM, PFC, 

Pasimodo, Agridem, Yade-DEM, DEMeter++, and so on [10–13]. Using this software, 

many kinds of agricultural material models with high accuracy have been established, 

and with these established models, many simulation studies of the interaction processes 

between agricultural machinery and agricultural materials with high reliability and high 

fidelity have been carried out [14,15].  

The aim of this review is to introduce the application research progress of DEM in 

agricultural machinery, including the model establishment of common agricultural mate-

rials and the typical operational process simulation of agricultural machinery and its com-

ponents. The prospects of DEM’s application in research on agricultural machinery are 

then proposed, while looking forward to promoting the application of DEM in the field 

of the optimization and design of agricultural machinery. 

2. DEM Model Establishment and Parameter Calibration of Agricultural Materials  

Accurate and reliable DEM models of agricultural materials are the foundation of the 

high fidelity simulation of agricultural machinery operation processes. Agricultural ma-

terials mainly include soil, crop seed, straw, and fertilizer, etc.  

2.1. Soil Model Establishment and Parameter Calibration  

Soil is one of the basic research objects in agricultural machinery. Affected by geo-

graphical location, climate, soil texture, and many other factors, the soil in different re-

gions shows a great variance in physical and mechanical properties. As listed in Table 1, 

various contact models have been developed in DEM to represent the contacts between 

soil particles with different physical and mechanical properties, providing the basis for 

the establishment of a soil model. To establish a soil model, a suitable contact model needs 

to be established first, then the key parameters that affect the mechanical and dynamic 

behavior of the soil need to be calibrated. 

2.1.1. Establishment of Soil Contact Model 

A DEM soil model can be classified into a cohesive model or a cohesionless model, 

based on whether the soil has cohesion [16]. In the modeling of cohesionless soil, the 

Hertz–Mindlin contact model (HMCM), in which the deformation at the contact point is 

assumed to be non-linear elastic, can simulate the movement of cohesionless soil and the 

resistance of the agricultural machinery with a certain accuracy, but only the elasticity 

behavior of the soil can be modeled [17–19]. Ucgul et al. [20] developed a hysteretic spring 

contact model (HSCM), consisting of linear elasticity and cohesion, where the contact be-

tween particles of this model showed a linear elasticity when the stress was low, once the 

stress exceeded the threshold value, particle contact behaved in a plastic way. Experiment 

results showed that compared with HMCM, HSCM improved modeling accuracy in op-

eration resistance under different travelling speeds, especially in vertical resistance [21]. 

Moreover, in order to simplify the calculation process, the contact between soil and ma-

chine mainly adopted a cohesionless contact model such as the Hertz–Mindlin (no slip) 

model [22,23]. 

Soil shows cohesion due to the existing liquid bridge. The parallel bond contact 

model (PBCM), which takes cohesion into consideration based on HMCM, is often 

adopted in DEM software PFC (Itasca Consulting Group, Inc., Minneapolis, MN, USA) 

[24,25]. The cohesion between soil particles was represented by a cylinder material, 

through which both force and moment can be delivered. When the distance between two 

adjacent particles was smaller than the preset value, the parallel bond was created spon-

taneously; when the stress exceeded a threshold value, the parallel bond broke off, and 
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the two particles were separated, so as to mimic the soil breaking behavior. PBCM has 

mostly been adopted in sandy soil or sandy loam soil models, but only cohesions between 

soil particles can be simulated [26,27]. By adding cohesion and adhesion in a normal di-

rection in the HSCM, the adhesion between soil and machinery can be modeled [28]. Ex-

periments showed that the improved HSCM with LCM (liner cohesion model) could pre-

dict resistance more accurately under different moisture contents and pressures [29,30]. 

The Hertz–Mindlin with bonding model, one of the most used models in EDEM software 

(DEM Solutions Ltd., Edinburgh, UK), employed an “adhesive glue” to stick soil particles 

together. Shear and normal displacement could be carried with the “adhesive glue” until 

the shear stress reached the maximum value, then the “adhesive glue” breaks, in this way 

soil breaking behavior in rotary tillage, subsoiling, and separation of soil and potatoes and 

so on could be simulated [31–33]. However, this model was only appropriate for soils with 

low cohesion, because the soils with a high cohesion show more cohesive and plastic be-

havior in a macroscopic view [34]. The Hertz–Mindlin with JKR cohesion model uses JKR 

(Johnson–Kendall–Roberts) normal elasticity contact force to represent soil cohesions [35]; 

with this model, Xing et al. [36] established a model of lateritic soil in hot areas of Hainan 

Province. The soil breaking resistance error was 3.43%; Li et al. [34] simulated a clayey 

black soil in the Northeast Plain in China, and the soil aggregation phenomenon when 

moisture content exceeded 12% could be simulated. 

All the above-mentioned soil models were constituted by spherical particles with the 

same physical and mechanical properties. However, soil composition is complex in real 

fields. Soil properties show distinctions at different soil depth, and are often mixed with 

straw, stubble, and other materials. Current studies have established a compound model 

of different soil layers and a compound root–soil model. In the establishment of a com-

pound soil model of different soil layers, one method is to set different colors as different 

soil depth layers (Figure 1a) [37–39]; the other is determining the soil contact and consti-

tutive parameters according to the soil structure, such as the tillage layer, plow-pan layer, 

and subsoil layer for subsoiling (Figure 1b) [23]. These models can be used to simulate the 

movement of soil particles at different depths and the resistance produced by specific soil 

layers on the tillage device. In the study of a root–soil model, Liu et al. [40] established a 

maize root model with bonded DEM particles and fixed the root model with soil particles. 

The model could be broken off by external forces (Figure 1c); the root–soil model estab-

lished by Frank et al. [41] used sphere particles to model soil and flexible cylinders to 

model stubble, the stubble could bend and stretch, and the soil could be broken off. This 

root–soil model could be used in the study of tillage processes in a no-till field. These 

compound models offer new concepts for the modelling of complex soil. 

   

(a) (b) (c) 

Figure 1. Compound soil model. (a) Compound soil model with different layers; (x,y,z reperesents 

the axes of the 3D DEM model) (b) Soil model for subsoiling [23]; (c) Root–soil model [40]. 1. Till-

age layer 2. Plow-pan layer 3. Subsoil layer. 

2.1.2. Calibration of Physical, Contact, and Constitutive Parameters of a Soil Model 

In order to predict the movement of soil particles and resistance in the operation of 

agricultural machinery accurately, the DEM parameters of a soil model should be cali-

brated. 
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There are two kinds of DEM parameter, namely physical parameters, such as poros-

ity and density, and contact and constitutive parameters, such as the friction coefficient, 

particle strength and stiffness, and bond strength and stiffness [19]. Most research has 

modeled soil particles with sphere particles, while Tekeste et al. [42] scanned the soil pro-

file with a 3D scanner (Artec Space Spider model, Artec Studio, Luxembourg), then im-

ported the profile data into a 3D modeling software ANSYS SpaceClaim (SpaceClaim 

Corp, Concord, Mass, USA.) and combined spherical particles to create a soil particle 

model that resembled the real profile. The radius of soil particles has a vital influence on 

the modeling accuracy and time spent. Many studies found that a decreased particle ra-

dius could improve modeling accuracy, with an increase in the time spent [21,28,43]. For 

the purpose of reducing the time spent, it was common to increase particle radius, so long 

as it could still ensure modeling accuracy [44–47]. When the particle radius is changed, 

other parameters need adjustment at the same time. Ucgul et al. [20] found that when soil 

particle radius was increased from 4 to 9 mm, the collision coefficient of restitution, static 

friction coefficient, rolling friction coefficient, and time step all increased; Thakur et al. 

[48] found that in order to match the macroscopic motion behavior with real experiments, 

particle stiffness should be increased after the increase of particle radius. 

There are two common methods for calibrating the contact and constitutive parame-

ters [15,49]. The first is determining the parameters directly with test apparatus; the sec-

ond is comparing the simulated dynamic or mechanistic behaviors with the experimental 

ones through a repose angle test (Figure 2a), direct shear test (Figure 2b), triaxial pressure 

test (Figure 2c), and tillage test, by changing the parameter value until the error between 

the simulation and experimental results was controlled in a limited range, optimal param-

eter values could be obtained [17,27,29,50–52].  

   
(a) (b) (c) 

Figure 2. Typical calibration method for soil model parameters. (a) Repose angle test [29]; (b) Di-

rect shear test [20]; (c) Triaxial compression test. 

Friction coefficient is one of the most important parameters influencing soil dynamic 

behavior, including the static and rolling friction coefficient between soil particles, and 

the static and rolling friction coefficient between soil particles and the contact materials. 

The repose angle test was the most commonly used method to calibrate friction coefficient 

between soil particles. First, a repose angle experiment was conducted to obtain the real 

repose angle; second, the friction coefficient value of the DEM model was changed until 

the simulated repose angle was approximately that of the experiment value, then the fric-

tion coefficients could be calibrated [53,54]. Friction coefficients between soil particles and 

the contact material could be obtained directly with a sliding test on a slope or flat sliding 

test [53]. The collision coefficients of the restitution between soil particles and contact ma-

terial were generally determined by collision test [55]. Soil cohesion was mostly affected 

by particle stiffness, particle strength, bond stiffness, and bond strength [56–60]. Mak et 

al. [22] found that the operation resistance of a simple soil engaging tool increased with 

the increase of particle normal and shear stiffness, the soil disturbance area increased with 

bond shear strength, and the optimal DEM parameter values varied with soil type. Chen 

et al. [53] calibrated particle stiffness for three kinds of soil by comparing the draft force, 

vertical resistance, and soil disturbance in a furrow opening test; the relative error was 
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smaller than 10%. Pue et al. [58] calibrated the soil Young’s modulus, Poisson’s ratio, and 

bond shear and normal stiffness with a triaxial compression test. 

Table 1 summarizes the commonly used soil contact models and key model parame-

ters in the published literature. 

Table 1. Common DEM models and key parameters of soil. 

Soil 

Contact 

Model 

Soil Type 

Key DEM * Parameters 

Static 

Friction 

Coefficient 

between 

Soil 

Particles  

Rolling 

Friction 

Coefficient 

between 

Soil 

Particles 

Static friction 

Coefficient 

between Soil 

Particles and 

Contact 

Material 

Rolling 

Friction 

Coefficient 

between 

Soil 

Particles 

and Contact 

Material 

Collision 

Coefficient of 

Restitution 

Mechanical 

Parameters 

HMCM * 
sea sandy soil 

[16] 
[18]   Steel [53]  

Elasticity modulus 

[18] 

Particle stiffness 

[16] 

Hertz-

Mindlin 

with 

bonding 

Norfolk sandy 

loam soil [52] 

Clay soil in 

South China [31]  

Loam clay soil 

[32] 

[53] [54] [53] 
Steel [53] 

Steel [54] 
Steel [54] 

Between soil 

particles [55] 

Between soil 

particle and 

contact material 

[55] 

Shear modulus [53] 

Poisson’s ratio [53] 

Bond normal 

stiffness [52]  

Bond shear stiffness 

[52]  

Critical stress of the 

bond [32] 

PBCM * 

Sandy loam soil 

[22,56] 

Sandy soil [56] 

Sandy soil 

[27,57] 

[56] [56]    

Normal and shear 

particle stiffness 

[22] [56] 

Cohesion strength 

[58] 

Young modulus 

[27] 

Elasticity modulus 

of particle; elasticity 

Modulus of bond; 

damping coefficient 

[59] 

HSCM * 
Sandy loam soil 

[28] 
[28] [28] Steel [28] Steel [28]   

HSCM 

with LCM 

* 

Sandy loam soil 

in North-west 

area [29]  

Grapevine 

antifreezing soil 

in 

Ningxia,China[3

0] 

[29] 

[23] 

[29] 

[23] 
Steel [23] 

Q235 steel、

rubber[30] 

Steel [23] 

Between soil 

particle and 

Q235steel/rubbe

r [30]  

Shear strength, 

yield strength [29] 

Surface energy [23] 
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Light loam in 

North China 

Plain [23] 

Hertz-

Mindlin 

with JKR * 

Cohesion  

Clayey black soil 

[34] 

Lateritic soil 

particles in hot 

areas [36]  

[34] 
[34] 

[36] 

65Mn; PTFE * 

[34]  

65Mn; PTFE 

[34] 

28Mn; B5 

board [36]  

Between soil 

particles and 

65Mn/PTFE [34] 

Between soil 

particles [36]  

Surface energy 

between soil 

particles and 

65Mn/PTFE [34]  

Surface energy 

between soil 

particles [36] 

Poisson’s ratio [34]  

* Note: Define of the abbreviations. DEM (discrete element method), HMCM (Hertz–Mindlin contact model), PBCM (par-

allel bond contact model), HSCM (hysteretic spring contact model), LCM (liner cohesion model), JKR (Johnson–Kendall–

Roberts), PTEE (polytetrafluoroethylene). 

2.2. DEM Model Establishment of Crop Seed and Parameter Calibration 

The profile of crop seeds is usually irregular, the main process of model establish-

ment is: determine the profile and establish a 3D outline model; establish a DEM seed 

model with particles; calibrate the key parameters affecting seed dynamic and mechanis-

tic behaviors and verify the results with experiments. Common crop seeds have no cohe-

sion between each other in the operation of agricultural machinery; a Hertz–Mindlin (no 

slip) model, which has no cohesion, has been widely adopted [4]. 

2.2.1. 3D Model Establishment of Crop Seeds 

There were three common approaches to determining crop seed profile: direct deter-

mining, slice modeling, and 3D-scanning. The direct determining method means deter-

mine the length, width, and thickness of crop seeds with a micrometer or vernier caliper 

directly, and calculating the equivalent diameter and degree of sphericity [61–63]. Based 

on the difference of seed profile and size, a model can be established by classification [64–

66]. The slice modeling method slices crop seeds into a certain thickness and collects an 

outline profile of each section, then imports them into 3D modeling software to establish 

a 3D model [67,68]. The 3D-scanning method uses 3D laser scanner or minitype CT scan-

ner to scan the seed profile and obtain the point cloud data, then imports the data into 3D 

modeling software. This was more accurate than the other two approaches [69,70]. By 

these methods, crop seed models of wheat, maize, rice, potato, flax, oilseed rape, soybean, 

and black pepper have been established in recent studies, as listed in Table 2 [64,65,67,71–

79]. 

A crop seed model is usually established by a particle agglomeration method, and 

most studies found that the simulation accuracy increases with the increase of particle 

quantity of the model, but the time spent increased simultaneously [69,80]; however, some 

researchers found that specific crop seed models were more accurate when the particle 

number was less [71,81]. 

2.2.2. The Contact and Constitutive Parameters of a Crop Seed Model 

Apart from outline profile, the DEM parameters of a crop seed model also include 

contact parameters such as friction coefficient, elasticity modulus, and so on. The repose 

angle test was widely used to determine the static and rolling friction coefficient between 

crop seeds, and its calibration process was similar with the soil parameters. As listed in 

Table 1, the static and rolling friction coefficients of many kinds of crop seed have been 

calibrated [78,82–92]. The static and rolling friction coefficients between crop seeds and 

contact materials were usually determined with a slope sliding method or self-made co-

efficient determining apparatus [64]; collision coefficients of restitution were calibrated 
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with seed dropping tests and collision tests [74,75]. Using a static compression test, stiff-

ness coefficient, elasticity modulus, Poisson’s ratio, and shear modulus were calibrated 

[62,72,93]. Some other studies calibrated the damping coefficient with a uniaxial loading 

test [94–96]. Common crop seed models and the key DEM parameters are listed in Table 

2. 

In real operation processes, air resistance and magnetic forces may also exist. Binelo 

et al. [77] established an aerodynamic engine, through which the seed suspending veloc-

ity, drag coefficient, orientation, and projection area were added in the model. In this way, 

the air friction of the total seed could be calculated. In order to model the magnetic force 

of seeds coated with magnetic powder, Wang [97] and Hu et al. [98] created a force plug-

in with C programming language using numerical fitting, then loaded the magnetic 

power through an API interface of EDEM software (DEM Solutions Ltd., Edinburgh, UK) 

to model the magnetic attraction behavior. Yu et al. [99–101] established a maize-ear 

model with Agridem software, which they developed. A corncob was modeled by parti-

cles with connections, and special balls were set between the niblet and corncob particle 

to connect them together, the connections could be broken off, so that the breakage of the 

corncob and maize threshing process could be simulated. 

Table 2. DEM model and key parameters of common crop seeds. 

Seed 

Type 
3D Model 

Key DEM Parameters 

Coefficient between Soil 

Particles 

Coefficient between Soil Particles 

and Contact Material 

Elasticity 

Modulus 

Damping 

Coefficient Static 

Friction  

Rolling 

Friction  

Collisio

n 

Restituti

on 

Static 

Friction  
Rolling Friction  

Collisio

n 

Restituti

on 

Wheat 
  

[71–72]  

[82]  

[71] 
[71] [82] 

Steel [82] 

Low-carbon 

steel [71] 

Low-carbon steel 

[71] 
[82]  

Between 

wheat 

seed; 

wheat seed 

and steel 

[82] 

Maize     
[64–67] 

[64] [83] 
[64] [83] 

[71] 
 

Crylic acid 

[83] 

Low-carbon 

steel [71] 

Crylic acid [83] 

Aluminium; 

Organic glass 

[90] 

Low-carbon steel 

[71] 

   

Rice 

  
[73] 

 
[74] 

[74] [74]    [74]   

Potato 

seed 

 
Sphere; big ellipsoid 

particle; small 

ellipsoid [65] 

[84]  [65] 
Steel; plastic 

[65] 
Steel; plastic [84] 

Steel 

[65] 
  

Flax  
[75] 

[75] [75] [75] 

Organic 

glass; 

Aluminum 

cylinder [75] 

Organic glass; 

Aluminum 

cylinder [75] 

Organic 

glass; 

steel [75] 

[75]  
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Rapesee

d  
[76] 

[85] [86] [85] [86] [85] 

Abs; 

aluminium 

alloy [85] 

Organic 

glass [87] 

Abs; aluminium 

alloy [85] 

Organic glass 

[76] [87] 

Abs; 

alumini

um alloy 

[85] 

[95] [95] 

Soybea

n 
 

[77]   [78]  
[78] [78]    [78]   

Black 

pepper    
[79] 

[79] [79]  steel [79] steel [79] [79]   

2.3. Other Agricultural Materials 

The establishment of a straw model has been the latest development in DEM re-

search. Straws physical structure is complicated; in the preliminary stage, a rigid straw 

model was mostly studied, which could be used to analyze the straw movement, burying, 

and distribution in the operation of soil tillage [102–106]. By adding contact points or a 

stick key between two rigid straw models, moment and force could be transferred, and a 

flexible straw model with elasticity was established [107–109]. Furthermore, Schramm et 

al. [110], Wang et al. [111], and Liu et al. [112] calibrated the Young’s modulus, cohesion 

damping coefficient, elasticity modulus, and cohesion parameters through a cantilever 

beam test and three point bending test. For the straw cutting behavior, Guo [113] and 

Zhang [114] modeled the cutting process of rattan straw and maize straw scarfskin, re-

spectively. Liao et al. [115,116] established fodder rape straw models in the bolting stage 

and early pod stage, respectively, and calibrated the friction coefficient and cohesion pa-

rameters through a repose angle test and straw cutting test. Using a straw compression 

test and cutting test, Zhang et al. [117] calibrated the key mechanic parameters of Young’s 

modulus, bending strength, and elasticity modulus of a BPM (bonded particle model) 

straw model,; the model could simulate the four straw forms of short, standard, long, and 

unbroken straw after being crushed [118–120]. Table 3 summarizes the established straw 

models and their key DEM parameters in the literature. 

Table 3. DEM models and key parameters of straw. 

Straw 

Type 
Straw Model Specialty  Contact Parameters Constitutive Parameters 

Oat straw 
  

[104] 

Rigid 

[104] 

Friction coefficient between 

straw and blade  

[104] Straw stiffness 

Maize 

straw  
[117] 

Cuttable 

Normal and shear contact 

stiffness, in normal and shear 

critical stress [117] 

 

Fodder 

rape straw 

in bolting 

stage  

 
Simulation   Experiment    

[115]  

Collision coefficient of 

restitution between straw and 

between straw and steel; static 

and rolling coefficient between 

straw and between straw and 

steel [115] 

Normal and shear stiffness; 

normal and shear critical 

stress; bond radius [115] 

Fodder 

rape straw  
[116] 

Collision coefficient of 

restitution between straw and 

between straw and steel; static 

Elasticity modulus, shearing 

modulus and Poisson’s ratio 

[116] 
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in early 

pod stage 

and rolling coefficient between 

straw and between straw and 

steel [116] 

Wheat 

straw 

 
[110] 

Flexible 

Viscous damping coefficient 

[110] 
Young’s modulus [110] 

 
Experiment Simulation   

[109] 

Friction coefficient between 

straw, 

Friction coefficient between 

straw and steel 

[118] 

Young’s modulus [118] [120] 

Bending strength [108] 

Tension modulus [120] 

 
[112] 

 

Static friction coefficient 

between straw and steel, 

restitution coefficient [112] 

Shearing modulus; elasticity 

modulus 

Bond radius, shear and 

normal cohesion stiffness  

[112] 

Fertilizer models were mostly represented by single spherical particles: the static and 

rolling friction coefficient between urea particles and the static and rolling friction coeffi-

cient between urea particles and ABS (acrylonitrile-butadiene-styrene) and PVC (polyvi-

nyl chloride) material were calibrated through repose angle test and slope sliding test 

[121,122]; and the terminal velocity of large particle urea, DAP (diammonium phosphate), 

and potassium sulfate was determined through CFD-DEM coupling simulation [123]. 

Based on the mix uniformity of three fertilizers after fertilizing, Yuan et al. [124] calibrated 

the rolling friction coefficient between nitrogen fertilizer, phosphate fertilizer, and potas-

sic fertilizer, and calibrated the static and rolling friction coefficient between the fertilizer 

and a conveyor. 

There have also been studies that established a DEM model of fodder, vermicom-

posting nursery substrate, and pig manure organic fertilizer treated with Hermetia illu-

cen, and calibrated the contact and constitutive DEM parameters [125–127]. Coetzee and 

Lombard [128] established a grape model to predict the removal of berries from the stems 

(Figure 3); grape berries were modeled by single DEM particles, and the stem was mod-

eled by a branch of particles that stick together and which could be broken off, and the 

model could simulate the grape picking and stem breaking process. 

 

Figure 3. Grape picking process modeling [128]. 

3. DEM Simulation of Agricultural Machinery Operation Processes 

The interaction relationship between agricultural material and agricultural machin-

ery during its operational process has been the focus of DEM modeling research [14]. The 

DEM simulations of typical agricultural machinery operation processes are as follows: 
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3.1. Simulation of Tillage and Soil Preparation 

3.1.1. Simulation of Rotary Tillage 

DEM could record the resistance and torque of a rotary blade in a small time interval, 

the variation trends of the simulated working resistance curve in all directions were 

drawn, and they were found to be similar to the theoretical resistance curve and the soil 

bin experimental results [129–131]. For torque requirements, the change of key stages can 

be obtained and typical variation curves can be illustrated with DEM (Figure 4) [130,132-

134]. The experiment curve had a second peak value, while the simulation one did not, 

indicating the simulation remains to be improved [135]. 

 

Figure 4. Typical torque variation curve during rotary tillage soil cutting process [132]. 

For the aspect of soil and straw disturbance, DEM software can monitor the path, 

contact force, displacement, velocity, and accelerated velocity of single particles, and an-

alyze their dynamic characteristics under different working depths and rotating speeds 

microscopically [31,102] (Figure 5a). It can also record the soil and straw disturbance pro-

duced by a rotary tillage device quantitatively in a macroscopic view [60,103], as shown 

in Figure 5c and Figure 5d; Zheng et al. [136] marked soil blocks in different colors in a 

DEM model and found that a rotary blade could shear, tear, overturn, and throw the soil 

block so as to make the tillage layer flat, comminute, and loosen. Zhao [137] compared 

velocity vector maps of different types of rotary blade (Figure 5d) and found that when 

the blade was tilted with the travel direction, straw could be thrown aside so that the 

seedbed could be cleaned up. 
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(a) (b) 

  

(c) (d) 

Figure 5. Monitoring soil and straw disturbance in the rotary tillage process (x,y,z reperesents the 

axes of the 3D DEM model). (a) Soil particles [60]; (b) Straw [60]; (c) Soil disturbance in DEM [60]; 

(d) Straw velocity vector map in DEM [137]. 

3.1.2. Simulation of Subsoiling 

The purpose of subsoiling is to break up the plow-pan and loosen the soil. Zeng et al. 

[3] used a built-in measuring sphere in DEM to monitor the internal stress and porosity, 

with which the break up performance of a plow-pan was evaluated; while Ding et al. [32] 

evaluated the soil breakage performance by calculating the number of broken bonding 

keys of a DEM cohesive soil model (Figure 6a). Huang et al. [138] analyzed the microcos-

mic movement and macroscopic disturbance of soil particles in different positions, and 

clarified the soil dynamic principles during a subsoiling process (Figure 6b). By combining 

a DEM simulation with an orthogonal test method, the effect of the structural parameters 

of the subsoiler, such as if it has a wing, the install height of the wing, the distance between 

two subsoilers, and the operational parameters (subsoiling depth, travel speed on work-

ing resistance, and soil disturbance) have been studied [139–142]. Based on the above-

mentioned results, various subsoilers, such as a polyline soil-breaking blade subsoiler and 

convex blade subsoiler (Figure 6c), have been developed [23,143–146]. 

   
(a) (b) (c) 

Figure 6. Simulation of a typical subsoiling process [32]. (a) Simulation of bonding breakage. (b) Soil disturbance in vertical 

direction [138]. (c) Simulation of soil particle velocity [144]. 
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3.1.3. Simulation of Plowing 

The aim of plowing is to bury the surface soil and straw into the deeper soil layer. 

With the established compound soil model with different layers, Ucgul et al. [45,47] rec-

orded soil particle movement at different depths. It was found that when the plowing 

depth was 300mm, only 10% of the surface soil remained at a 100 mm depth, 53% soil 

particles were buried at 200–300mm depth, and the simulation results were verified with 

field experiments. Saunders et al. [147] studied the relationship between the soil burying 

performance of a moldboard skimmer and the drag force, and found that DEM could pre-

dict working resistance more accurately than the other existing theoretical models. 

3.1.4. Simulation of Interrow Tillage 

In the simulation research of interrow tillage, by monitoring soil particle movement 

and the breakage of bonding keys, Cheng [148] analyzed the influence of rotary speed, 

travel speed, bending angle of the hiller blade, number of hiller blades, angle of the shell 

and soil breakage, number of soil particles being thrown upward, and distribution of the 

thrown soil. Liu [149] studied the influence of tillage depth, working speed, and angle of 

sweep wing on soil breakage rate, hilling height, and hilling width. This research was 

helpful for understanding the interrow tillage mechanism and provided reference for the 

design and optimization of structures and operation parameters of its key components. 

3.1.5. Simulation of Soil Compaction and Traction 

Soil is compacted during the operation of agricultural machinery. DEM could model 

the compaction of tires on soil, the sinkage of the tire, and the resistance and torque re-

quirement of the tire [150,151]. Difficulties lie in the modeling of the pressure delivered 

from the tire to the soil surface, and three approaches are commonly adopted at present. 

The first was to model the pressure delivery with a built-in Sohne model (Figure 7a), with 

which the stress distribution could be simulated [152–154]. The second established a tire 

model with a particle agglomeration method, so that the tire has gravity and its sinkage 

could be simulated (Figure 7b) [155]. The third was with the help of a CFD (computational 

fluid dynamics)–DEM coupling method, where a tire was modeled with CFD and the soil 

was modeled with DEM (Figure 7c), and the dynamic characteristics of the tire on a sandy 

soil road could be simulated [156,157]. 

   

(a) (b) (c) 

Figure 7. Three typical soil compression modeling methods. (a) Preinstall stress in the model [154]; (b) Particle agglomerate 

method [155]; (c) CFD–DEM coupling method [156]. 

Traction performance can be simulated and evaluated by DEM. Nakanishi et al. [158] 

investigated the effect of lug height, lug thickness, number of lugs, and wheel diameter 

on the net traction of a wheel. Zeng et al. [159] predicted the tire rutting, vertical force, 

tractive force, and sinkage of a tire–sand interaction with DEM–FEM, and it was in good 

agreement with soil bin experiment. Nishiyama et al. [157] proposed a FEM–DEM cou-

pling method for tire traction analysis, in which the soil model was transferred from a 

FEM to DEM model only when the tire was approaching, once the tire left, the model 
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became a FEM model again. With this approach, the simulation time could be reduced 

significantly. 

3.2. Simulation of Seeding 

3.2.1. Simulation of Furrow Opening 

With the help of DEM, recent studies have conducted single parameter tests to ana-

lyze the effect of working depth, rake angle, and travel speed on furrow opening perfor-

mance and resistance [160–162]. By establishing opener models with different structures: 

Tamas et al. [53] compared the operation performance of different furrow openers; 

Tekeste et al. [40] studied the effect of worn openers with different surface profiles on 

working resistance; and Ucgul et al. [28,163] studied the effect of soil characteristics on 

furrow opening performance by changing the moisture content and compaction level of 

the soil model. Combined with an orthogonal test, Zhang et al. [164] and Liu et al. [165] 

optimized the key structure parameters of an opener and the moldboard shape of a furrow 

opening device, respectively. 

3.2.2. Simulation of Seed Metering 

In DEM simulation, the motion state of seed flow can be monitored in real time, and 

the effect of structure parameters and operation parameters of metering device on the 

metering performance can be evaluated [166] (Figure 8); for example, the effect of struc-

ture and operation parameters of a metering wheel on the beginning angle and ending 

angle of seed cleaning performance [167], and the motion states of maize seed groups be-

ing affected by vibration in field operations [168]. The force transfer of seed flow can also 

be monitored. Tian [169] studied the variation of the maximum force of rice seed in the 

seed taking stage of an ejection ear spoon device, which was difficult to obtain through an 

experiment method, and analyzed the reason for seed miss-filling and re-filling. Taking 

the metering percentage of a pass as the response target, a lot of structure and operation 

parameters have been designed and optimized with the help of DEM, such as depth, 

length, and section size of the model-holes of a hill-seeding centralized metering device 

[170]; and the arc radius, center angle, and lateral spacing of the middle plate of the seed 

taking claw of a garlic seed-picking device [171]. 

The CFD–DEM coupling method, which models airflow with CFD and models crop 

seeds with DEM, could monitor not only the airflow velocity and distribution in the me-

tering device and metering tube, but also the movement of seeds in the airflow, so as to 

analyze: the effect of the structure of a pressurized tube on seed motion, and airflow in 

the tube of an air-assisted centralized metering device for rapeseed and wheat (Figure 9) 

[72,172]; the effect of the structure of three different metering discs of inside-filling air-

blowing seed metering device on the drag force of the seed in a large circular shape [173]; 

the effect of the diameter and length of metering tube on airflow and motion of seed flow 

[174]; the seed filling performance in the adsorption, removing, and separation stages of 

a pneumatic seed metering service, with guided assistant filling [175], providing refer-

ences for the design and optimization of air-assisted metering devices. 
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(a) (b) 

Figure 8. Typical seed metering process simulation. (a) Seeding filling process of a maize seed 

metering device [166]; (b) Seed taking process of a garlic metering device [171]. 1.Upper shell. 2. 

Seed cleaning device. 3. Lower shell. 4. Metering disc. 5. Seed pushing board. 6. Seed delivery 

tube.Ⅰ. Seed filling zone.Ⅱ. Seed cleaning zone. Ⅲ. Seed guidance zone. Ⅳ. Seed pushing zone. 

  

(a) (b) 

Figure 9. The coupling simulation of the metering process of a metering device for wheat and 

rapeseed [72] (a) CFD–DEM coupling simulation of airflow; (b) CFD–DEM coupling simulation of 

seed flow. 

3.2.3. Simulation of Fertilizer Metering 

In DEM, it is convenient to record the trajectory of fertilizer particles in the metering 

process, determine the spatial distribution position, distribution evenness index, etc. With 

the obtained data, a set of factor influencing the movement of fertilizer particles and fer-

tilizer metering performance can be analyzed, such as the feeding rate, feeding angle and 

feeding position angle’s effect on the distribution in lateral distance of a fertilizer spreader 

with centrifugal swing disk [176] (Figure 10a); the effect of the inner diameter of the screw 

blade, screw pitch, outlet distance, number of screw heads, and the blocking wheel open-

ing width on the coefficient of variation of fertilization stability [177]. 

With CFD–DEM coupling simulation, Gao [178] studied the effect of the rotary speed 

of a metering shaft on the metering quantity of a metering device, and analyzed the effect 

of position of the maximum airflow velocity and airflow velocity in the entrance on the 

movement of fertilizer in the tube; Liu et al. [179] analyzed airflow distribution and move-

ment of a fertilizer group under different inlet velocities by monitoring the fertilizer accu-

mulation performance through DEM, and evaluated the injection performance (Figure 

10b). 
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(a) (b) 

Figure 10. Simulation of fertilizer metering processes. (a) Simulation of fertilizing evenness [176]; 

(b) Simulation of fertilizer particle movement in the airflow [179]. 1. Feeding angle 2. Feeding zone 

3. Feeding position angle. 

Zeng et al. [5] monitored the dynamic characteristics between cotyledon and soil par-

ticles in soybean seedling emergence in DEM. Zhou et al. [180] analyzed the contact be-

tween seed and soil in a quantitative way, by monitoring their contact numbers, and 

providing new ideas for the understanding of seedbed preparation. 

3.3. Simulation of Crop Harvesting 

3.3.1. Simulation of Material Transfer 

DEM modeling of the crop harvesting process includes material transfer, threshing, 

and cleaning. In order to analyze the wheat harvesting process, Wang et al. [181] adopted 

a coupling simulation method with EDEM–Recurdyn (EDEM, DEM Solutions Ltd., Edin-

burgh, UK; Recurdyn, FunctionBay Inc., Seoul, Korea), in which the wheat was simulated 

by DEM and the harvest combine was simulated by FEM, and the translate characters, 

velocity in an axial direction, and regional flow rate of material quantity in the continuous 

delivery process of the wheat were analyzed (Figure 11). Wang et al. [182] modeled rice 

plants with connected balls and simulated the transfer process from the conveyer to the 

threshing units of a combine harvester. 

   

(a) (b) (c) 

Figure 11. Simulation of wheat movement in a conveyor system [181]. (a) Wheat in the spiral con-

veyor; (b) wheat in the incline conveyor; (c) wheat in the feeding head of a spiral roller. 

3.3.2. Simulation of Threshing 

With the established corncob DEM model, Yu [100] modeled the maize threshing 

process of a drum-type corn threshing device (Figure 12), and analyzed the effect of rotat-

ing speed and feeding rate on the threshed rate and force of the corncob. Mou et al. [183] 

modeled the breaking process of maize kernels in a silage harvesting process, and ob-

tained the optimal parameter combination of teeth number, blade depth and crushing 

gap, and the rotary speed of the knife roll of the threshing device. With the threshing 

simulation of rice, the large deformation and fragmentation of the rice plants was modeled 

by Wang et al. [182]. 
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(a) (b) (c) (d) 

Figure 12. Simulation of a maize threshing process [100]. (a) Generation of corncob; (b) start of 

threshing; (c) during threshing; (d) end of threshing. 

3.3.3. Simulation of Cleaning 

To study the separation of straw and grain in the screening process, Lenaerts et al. 

[107] analyzed the properties of straw and grains on screening speed (Figure 13a). Li et al. 

[184] and Wang et al. [185] effectively analyzed the influence of the operation parameters 

of vibrational amplitude, frequency, and direction angle on screening time and efficiency. 

Han [186] and Ma et al. [187] optimized the structure of separation sieves (Figure 13b). 

Using a CFD–DEM coupling method, the movement of particles in the air-screen 

cleaning was monitored, and the effect of inlet airflow velocity on the longitudinal veloc-

ity and vertical height of grains and short straws was investigated [188]. Xu et al. [189] 

studied the centroid velocities of grains, stems, and light impurities in the air-and-screen 

cleaning process, and monitored their degree of dispersion. With these data, the cleaning 

performance was analyzed. 

 
 

(a) (b) 

Figure 13. Simulation of grain screening process. (a) Simulation of grain–straw separation [107]; 

(b) simulation of sieving process of maize grain [187]. 

Wei et al. [33] modeled the separation of soil and potatoes during the potato harvest-

ing process and clarified the effect of structure and operation parameters of a wavy sepa-

rating sieve on the collision between potatoes and soil clod breakage. 

3.4. Simulation of Post-Harvest Processes 

3.4.1. Simulation of Grain Conveying 

With a DEM simulation, it was observed that the rotation angles of paddy grains 

increased with the increase of feeding direction. Adjusting the grain vertical direction into 

the hulling region by controlling the feeding angle could increase the one-time hulling 

ratio and reduce the breakage ratio (Figure 14) [190]. Chen et al. [191] also found that 

paddy rice, not only has a translational motion, but also rotates due to the shear of grain 

flow, which leads to a change in the orientation angle, which was determined by the depth 

of the grain layer. This study could provide guidance for the design and optimization of 

feeding systems. 
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Figure 14. Simulation of rice grain conveying and hulling [190] (x,y,z reperesents the axes of the 

3D DEM model). 

Wang et al. [192] studied the effect of the inclination angle of returning plate and belt 

travel speed on particle return rate of wheat granules in a returning device for a fully 

enclosed belt conveyor; the returning mechanism was clarified and the optimal combina-

tion parameters of the two factors was obtained. 

3.4.2. Simulation of Storage and Discharge of Seed in Silos 

With DEM, the discharge process of a hopper was studied, it was found that the 

shape of the particle had a significant influence on discharge rate [193]. Using the sum of 

vertical forces exerted by rapeseed particles on the walls and floor of a receiving container, 

a difference in the mass flow rates was observed [87]. By recording the position, velocity, 

and force of wheat particles in a silo with DEM, the location of the front of the rarefaction 

wave was inferred [194]. Then the formation and propagation of the wave in the discharg-

ing process was analyzed. Zaki et al. [195] studied the influence of orifice shape on the 

discharging process of a flat-bottomed cylindrical silo. Horabik et al. [196] studied the 

effect of particle shape and filling method on the radial profile of the normal pressure on 

the bottom of a shallow silo. 

3.4.3. Simulation of Grain Separation 

Separators were used to separate grains from stones or other impurities. Kannan et 

al. [197] simulated the separation process of the discarding of a heavy product (stones) 

and accumulation of a light product (grains) on the deck of a destoner. Then, the effect of 

deck inclination vibration speed and fluidizing air velocities at the surface on the segre-

gation performance was investigated and their optimal combination value was obtained 

[198]. 

Meng et al. [199] conducted simulation research on the separation of whole and bro-

ken rice in an indented cylinder separator; the motion trajectory of whole and broken rice 

with different rotational speed ratios was recorded, and the effect of indent number on 

the escape angles was investigated. Then the optimal angle of the trough was decided. 

4. Research Prospects 

DEM could conveniently establish simulation models of agricultural machines and 

their components, and it was possible to quickly adjust structure and operation parame-

ters within DEM to conduct simulations and collect movement and dynamic data of agri-

cultural materials. Therefore, DEM has become an important approach to help with the 

design and optimization of the structure and working parameters of agricultural ma-

chines and their components. However, the application of research on DEM still remains 

in its infancy, its application breadth and depth should be developed further. 

The DEM modeling accuracy of agricultural materials should be promoted to a 

higher degree. Most of the existing DEM models of agricultural materials show isotropy 

and were constituted by spherical particles with the same mechanical properties. How-

ever, the construction of agricultural material is usually complicated, and differences exist 



Agriculture 2021, 11, 425 18 of 25 
 

 

between different parts of the seed, maize straw cortex and flesh, grape fruit and stem, 

etc. These differences make agricultural materials isotropic, due to which the physical and 

mechanical characters remain to be studied further and the models need to be improved 

accordingly to promote accuracy and reliability, such as the establishment of compound 

root–soil models. The studies of deformation, failure, and breakage of crop grains and 

straws are still in a primary stage, and the contact model and model parameters need to 

be studied further with simulation research of movement and dynamic behaviors, and 

considering the bending, twisting, cutting, smashing, and damaging behaviors of agricul-

tural materials. 

There are also challenges in improving the basic theories of DEM. The contact models 

in DEM are hypothetical models which approximate the real materials. Certain differ-

ences of mechanical relationships exist from the real situation, for example, the adherence 

between soil particles and tillage equipment still lacks a reliable contact model. To this 

end, the DEM needs to be improved in its fundamental theories, to make the nonlinear 

mechanical and dynamic behavior produced by simulations better match the real states. 

One of the main advantages of DEM is that it is less time consuming, but in the data ob-

taining process, the mechanical and dynamic information of each DEM particle needs to 

be calculated. When the DEM particle number is increased, the time spent may increase 

in a many-fold manner; therefore, how to carry out the calculations more effectively, and 

improve simulation efficiency is one of the most important research issues. 

There is also a need to conduct coupling research along with other methods. DEM is 

mainly suitable for the research of discrete materials, however, in the interaction process 

between agricultural materials and agricultural machinery, both discrete materials and 

continuous mediums should be used. By solid–fluid coupling, complex field situations 

could be modeled with the consideration of moisture content, air resistance, magnetic 

force, and so on, with the help of FEM and many-body dynamics. Through solid–solid 

coupling, the monitoring of the specific resistance of different positions of agricultural 

machinery components may be realized, and the complex motion of agricultural machin-

ery parts could be modeled; and thus, the agricultural machinery structures could be bet-

ter designed and optimized. 
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