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Abstract: Cannabis plant has long been execrated by law in different nations due to the psychoactive
properties of only a few cannabinoids. Recent scientific advances coupled with growing public
awareness of cannabinoids as a medical commodity drove legislation change and brought about a
historic transition where the demand rose over ten-fold in less than five years. On the other hand,
the technology required for cannabis processing and the extraction of the most valuable chemical
compounds from the cannabis flower remains the bottleneck of processing technology. This paper
sheds light on the downstream processing steps and principles involved in producing cannabinoids
from Cannabis sativa L. (Hemp) biomass. By categorizing the extraction technology into seed and
trichome, we examined and critiqued different pretreatment methods and technological options
available for large-scale extraction in both categories. Solvent extraction methods being the main
focus, the critical decision-making parameters in each stage, and the applicable current technologies
in the field, were discussed. We further examined the factors affecting the cannabinoid transformation
that changes the medical functionality of the final cannabinoid products. Based on the current trends,
the extraction technologies are continuously being revised and enhanced, yet they still fail to keep up
with market demands.

Keywords: cannabinoids; organic solvent extraction (OSE); supercritical fluid extraction (SFE); CBD
purification; cannabinoid transformation

1. Introduction

Hemp, or Cannabis sativa L., is an oleaginous plant known as one of the oldest
plants cultivated by humankind, specifically for medicinal properties and non-edible
fiber content [1]. The letter “L” stands for Linnaeus in recognition of the contributions
of the father of modern taxonomy, Carolus Linnaeus, who first named the species as
Cannabis sativa [2]. This plant is widely known to be the major source of cannabinoids, in-
cluding cannabidiol (CBD), tetrahydrocannabinol (THC), cannabichromene (CBC),
cannabigerol (CBG), and cannabinol (CBN). Cannabinoids have shown strong remedial
potential against inflammation, depression [3], nausea, epilepsy, and other effects of clinical
relevance [4,5]. Initial uses of cannabis date back to almost 5000 years in China [6]. Since
then, hemp consumption has been spurred on by its wide range of properties and uses
from one civilization to another through consecutive millennia. The first academic research
on the extraction of bioactive ingredients of hemp, to the best of these authors’ knowledge,
was conducted by Yamauchi et al. in 1968 [7].
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From the taxonomical point of view, hemp belongs to the family of Cannabinaceae [8]
that includes three subspecies, namely Sativa, Indica, and Ruderalis. The differences between
these three subspecies mainly lie in the overall shape of the plant, the applications, and the
most suitable climate for its growth. The division of the cannabis strains into hemp and mar-
ijuana is simply a wrong nomenclature that is wholly misconceived with a broader classifi-
cation of cannabis [9]. The two names differentiate varieties with ∆9-tetrahydrocannabinol
(∆9-THC) contents of less than 0.3 wt.% (hemp) from those having more than 0.3 wt.%
(marijuana) that induces psychoactive effects [10]. Occasionally, these terms are falsely
adapted and interchangeably applied in the literature [11,12]. The cannabis with a THC
content of over 0.3 wt.% (marijuana) is outside of the scope of this review paper.

Hemp has historically been attractive for its top-quality fiber and edible oil; however,
with the advancement of synthetic fibers, as well as mounting public anti-drug movements,
it was categorized as a controlled substance by the 1968s prohibition legislation. This
prohibition, under drug enforcement laws [13], banned the production and research on
hemp products, putting the United States far behind more than 30 other nations that
considered the plant to be an agricultural commodity [14]. In the early 1990s, commercial
hemp cultivation and its research and development were promoted in the U.S. Ever since,
a growing number of states have enacted the legislation and have expanded state-level
research and production. The status of legality, decriminalization, permission for medical
use, and the specific state laws can be found in continuously updating marijuana maps [15].

The outstanding therapeutic effects along with the economic benefits to local commu-
nities resulted in increasing public support and the eventual legalization of these products
in many countries around the world and recently in several states in the U.S. Beginning
with the 2014 Farm Bill, the growth and production of hemp experienced a partial relief in
the U.S. [13], and the first medically-oriented legal product came to the market in June 2018,
creating a huge market for CBD [16,17]. Nevertheless, due to the psychoactive properties
of the THC, the upper limit of 0.3 wt.% (dry biomass weight) still remains a key barrier
between the cannabis flower and the drug [13,18] in most U.S. states and the European
Union [19]. Based on the 2017 congressional research, the total hemp market was about
700 million USD in the U.S. [13], while in light of the recent openings, this number will
hit 20 billion USD by 2024, pushing the global spending to go beyond 40 billion USD
worldwide, according to Arcview market research [20].

Yet, developing various feasible technologies that are both legitimate and economic
are important steps that need to be taken before industrial-scale production standards can
be set. Dealing with a living plant that is controversial and inhomogeneous in growth
due to different soil fertility levels [21], as well as other local factors, poses challenges on
the determination of optimum harvesting conditions to obtain a maximum cannabinoid
content. On the other hand, establishing effective and energetically efficient large-scale
extraction protocols are keys for the successful resolution of the challenges. Despite the
routine lab-scale extraction methods, the variables affecting the choice of extraction method,
as well as the final extraction yields, are not well understood. Further, the growth and
processing of this plant are going through a transition phase that requires closing the
knowledge gap in the extraction field to set a complete processing system up. This review
article aims to fill these gaps by looking at different methods of cannabinoid extraction,
their pros and cons by reviewing the recent advances in the field. In addition, it reports
the suitability of the employed technologies by comparing them with other alternatives as
well as the pretreatment protocols that boost the extraction yield. Finally, it looks at the
post-extraction transformation that affects the final product composition.

2. Categories and Procedure
2.1. Discretion of Two Categories

Throughout the hemp industry, the term “extraction” is used in two different contexts
and categories: (1) the trichome category, in which the extraction of cannabinoids and
terpenes from trichomes takes place with the aim of producing medical or recreational
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grade supplements; and (2) the seed category, in which the extraction of fatty acids or
lipids from hemp seeds takes place. Triglycerides make up to over 30% of hempseed
weight [22,23], which is the suitable form of lipid for trans-esterification into fatty-acid
methyl esters (FAME) or biodiesel [24]. In addition to biodiesel production, the extracted
lipid has a wide spectrum of applications in the cosmetics [25] and food industries [26]. The
extraction of lipids from seed (seed category) is outside of the scope of this review. We will
focus mainly on the trichome category, discussing the processes involved in cannabinoid
and terpene extraction.

Assuming that a typical farm produces male and female plants in equal numbers, the
females appear shorter with many flowers, while the males are taller and exude pollens
only (Figure 1). If harvested and dried on time, the female flowers contain a significant
amount of cannabinoid, whereas the pollens from males pollinate the flower buds to
produce seeds [27]. That is why the growers of cannabinoids usually root the male plants
out prior the pollination.
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Figure 1. Hemp flower. Cannabinoid-rich female flower buds before pollination (a) and a microscopic
image of the trichomes in the buds (b). The adult seeded flower is the result of pollination (c), and
the hempseeds are produced by pollinated buds (d).

2.2. Downstream Process in Cannabinoid/Terpene Extraction

Figure 2 shows the processing steps required to produce cannabinoids and terpenes
from the hemp flowers. Depending on the final analytes of interest or the chosen extraction
method, some of these steps might be modified. Once harvested, the hemp flowers should
be trimmed manually or with the help of bucking machines. The flowers then need to
be dried (in the absence of sunlight to prevent the photochemical transformation) and
milled to reduce particle size. The shredded biomass is transferred to extraction tanks
and immersed in the solvent(s) of choice for a known period of time to let the extraction
take place.

While being exposed to the solvent, in addition to the extraction of cannabinoid
and terpene, usually volatiles, moisture, and heavy residues also leave the plant matrix
as co-extracts. The latter includes pigments, phospholipids, fatty acids, heavy metals,
etc., and resembles a highly viscous, gooey black gum that forms an inhomogeneous tar
when exposed to increased temperatures. This black mixture is called wax and needs
to be removed before further processing, as it spoils the thermodynamics of separation.
Winterization involves the separation/sedimentation of the waxy fractions by the deep
freezing of the crude for over 24 h [28,29] and subsequent filtration of the solution. The
separated wax is used in electronics, candles, machinery lubricants, as well as other
applications. Once winterized, the solvent is removed using a rotary evaporator and
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recycled back to the extraction process. The obtained material can then be distilled to
fractions that can be marketed as vapes, edibles, topicals, food supplements, or additives.

Medical or therapeutic applications require the products to be ultra-pure (beyond
99% purity), which can be attained via chromatographic methods, crystallization, or distil-
lation techniques [29,30]. One major downside of distillation is the involvement of thermal
energy. Neutral cannabinoids (THC, etc.) do not occur at significant concentrations in the
plants [31–33] and are usually produced by thermal transformations during extraction.
Therefore, some extra caution should be exercised during the process to maintain the THC
contents controlled, especially in the production of medical products. This will be further
discussed within the following sections.
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Figure 2. Process flow diagram showing the downstream processing steps needed to produce cannabinoids from
Cannabis sativa L. OSE: organic solvent extraction; SFE: supercritical fluid extraction.

3. Extraction
3.1. Basics

Of the four main processing stages in the hemp industry (variety selection, cultivation,
harvesting, and extraction), the latter plays a key role in the overall economy and demands
the highest technology scrutiny. Cannabis sativa L. possesses well over 500 natural chemical
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compounds [34,35]. Estimates show that between 30–60% of the total cannabinoid in
hemp flowers are lost somewhere during the extraction or purification process [29]. With
CBD alone possessing over half of the entire cannabis market [13,36,37], the selection of
proper extraction and processing method results in a significant impact on the overall
process economy.

Table 1 summarizes the two extraction categories. In the trichome (cannabinoid-
terpene) category, a broad spectrum of polar solvents such as methanol, ethanol, iso-
propanol, dimethyl ether, etc., can be used to extract the semi-polar cannabinoids and
terpenes from the flower trichomes. In both categories, dealing with real-time hemp
biomass incorporates a significant number of inconsistencies in the extraction process; for
instance, Deferne et al. (1996) reported an inhomogeneous feed of ripe and unripe seeds
for the procedure. This resulted in increased moisture content and lower oil yield and
modified product taste [38]. Moisture content and the overall health of the plant affect the
cannabinoid composition in the buds [39]. Cannabinoids are housed in trichomes outside
the buds, which makes the concentration gradient between the solvent media and trichome
surface the main barrier to chemical transfer. Intense and aggressive grinding or crushing
of herb is not required as it enhances the dissolution of undesirable substances [40].

With hemp seeds, the target is the fatty acids inside the seeds. Extraction is achieved
using nonpolar solvents, sometimes coupled with prior pressing by screw expellers to
squeeze these chemicals out of the plant’s fibrous structure and overcome the mass transfer
barriers. In this category, the extraction kinetics are governed by the complex and multi-
step transfer of the molecules from the seed’s interior structure all the way out to the
solvent media.

As Table 1 displays, there are multiple techniques for the extraction of chemicals from
the hemp depending on the target chemical of interest, e.g., mechanical extraction, Soxhlet
method, hot water extraction (hydrolysis) [41], DME liquid-liquid extraction [42], super-
critical CO2 extraction (SC-CO2) [43], enzyme-assisted extraction (EAE) [44], microwave-
assisted extraction [45], etc. The following section elaborates on extraction methods widely
employed in both laboratory and industrial scales.

Table 1. Two categories where extraction takes place in the hemp industry.

Trichome Category Hempseed Category

Target chemicals Cannabinoids and terpenes Fatty acids

Occurrence in plant Female flower buds before pollination Hempseed

Solvent used Mainly polar solvents nonpolar and polar solvents

Mass transfer driving force
~(∆Ctrichome-media) = Concentration
gradient between the solvent in contact
with the trichome and that of the media

~ (C* − C) = Concentration gradient between the
saturated solution in contact with the seed
particles and that of the media. [46]

Extraction method OSE, SFE, and Soxhlet (small scale only) Cold press, screw expeller followed by OSE, SFE,
or Soxhlet (small scale only)

Co-extracts Waxes, pigments, etc. Defatted oil, oil sludges, etc.

Other application pharmaceutical, recreational
supplements, Electronics

Bioenergy production, abrasive fluids, food
supplements, and cosmetics

Typical structures of chemicals of
interest
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3.2. Solubility Parameters

Several thermodynamic models have been proposed to predict the solubility of solutes
in different extraction candidates, of which the Hansen solubility parameter (HSP) is widely
accepted [33]. The HSP works based on the solubility parameter theory (SPT) by offering
a mathematic tool that quantifies the effectiveness of the solute-solvent interaction in the
form of (Equation (1)):

Ra
2 = 4(∆δ)D

2 + (∆δ)M
2 + (∆δ)H

2 (1)

where ∆δ (= δsolvent − δsolute) is the difference between the solubility parameters, and
the subscripts D, M and H signify the bonding parameters associated with dispersion
(van der Waals), molecular dipolar and hydrogen bonding parameters, respectively.
Equation (1) can be visualized as a solubility sphere with the radius Ra (distance of the
solvent from the center of the solubility sphere), where the closer solubility parameters
of the analyte to those of the solvents (∆δ~0), the solvent lies closer to the center of
the solubility sphere and is, therefore, a suitable solvent. These values are found in the
literature [33,47] and are often functions of temperature and/or pressure, rendering varying
solubility. This method will be employed later in this paper to study the effectiveness of
each solvent system.

3.3. Chemically Assisted Extraction
3.3.1. Soxhlet Extraction Method

Soxhlet extraction is an old yet effective method for plant oil extraction [48]. It
has been used to extract organics from over a hundred types of biomass, including
Sunn hempseeds [49], marijuana cigarette [50], hashish [51], coffee [52], vanillin [53], rice
bran [54], walnut kernel [55], fungal biomass [56], algal oil [57,58], orange juice [59], etc.
It operates based on a continuous cycle of solvent and leaving the extracts in the extract
chamber and contacting the biomass in the batch process. Because this apparatus exposes
the biomass to a fresh stream of the organic solvent all along the operation, it accom-
modates the strongest extraction driving force among all extraction methods, i.e., the
reference method [40,57,60–62].

Several research experiments have been carried out to examine Soxhlet processing
of Cannabis sp. for bio-oil extraction. However, cannabis sativa L. (hemp) has rarely been
studied in the literature for the purpose of cannabinoid extraction. Matthäus et al. [63]
conducted research focusing on the fatty-acid composition of virgin hemp seed oil using
a different method and found that depending on the variety of species, climate and geo-
graphical factors, as well as the year of cultivation, hemp seeds may contain 28–35 wt.% oil.
Using the Soxhlet method, the maximum of 35 wt.% was easily met by Aladic et al. [40],
additional evidence for the outstanding capability of this method.

Table 2 provides a brief summary of the recent research on the extraction of various
compounds using the Soxhlet apparatus. Molina et al. [61] used Soxhlet in a step-wise
manner to collect the total THC content of the hemp oil under relatively low pressure in a
6-h period. Increasing the solvent’s polarity by switching from hexane to ethyl acetate and
then to ethanol extraction batches (polarity gradient), they tried to extract the entire THC
spectrum. Using solvents with different polarity indices, they removed THC molecules
bound to different cell structures and obtained total THC content as the baseline for
comparison with other methods.

Chasingω-type acids, Da Porto et al. [64] found that Cannabis sativa L. seeds contain
81% polyunsaturated fatty acids (PUFA), mainly comprised of linoleic acid (ω-6). Unlike
most other researchers, they noticed that the highest oil yield from hemp seeds was
obtained by SC-CO2, accounting for 22%, corresponding to 72% of the total recovery.
This result is slightly lower than 28–35% oil content obtained by Aladic et al. [65], using
Soxhlet extraction.

The extraction of other cannabinoids has also been investigated. Wianowska et al. [66]
conducted a thorough study on extracting ∆9-THC, THCA, and cannabinol (CBN) from
Cannabis sativa L., using Soxhlet and pressurized liquid extraction (PLE) method and proved
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that during different time intervals from 1 to 3 h, THCA quantity dropped by nearly half
while the amount of THC content increased significantly, confirming the transformation of
THC from one form to another during the extraction process. A similar result was observed
by Crescente et al. [67] in which higher yields of ∆9-THC were obtained while comparing
Soxhlet extraction (with n-hexane) with ultrasonication, microwave irradiation, and super-
critical fluid extraction (SFE). They attributed the THC increase to heating involved during
the prolonged solvent cycling in Soxhlet. Unlike most other earlier studies, Crescente
et al. claimed that there is no significant difference in the total extractable oil obtained by
various methods [67].

To maintain Soxhlet’s efficiency relatively high, prior treatment of the feed might be
required, such as milling operation depending on particle size and other properties of the
feed [68]. Despite all the advantages, Soxhlet’s apparatus demands a significant amount
of energy to keep the distillation-evaporation cycles running [69,70], which poses severe
problems for upscaling (Table 1). Therefore, Soxhlet’s apparatus fails to be the ideal method
of choice due to its wastefulness of energy, tedious reloading, fire risks, and inevitable side
reactions such as the transformation of THCA to less desirable THC.

Table 2. Recent research on the extraction of various compounds from Cannabis sativa L. using the Soxhlet method.

Biomass sp. Dry Weight Pretreatment Solvent (s) Extract Target Analytes Ref

Industrial-
grade hemp
(cannabis)

0.5 g Ground and sifted
368 µm

Consecutive
batches of ethyl
acetate 2 × 300 mL

batch 1, 1.5 h at
78 ◦C
batch 2, 1 h at
78 ◦C

Cannabinoids [68]

Seized
Cannabis sativa
L. plants

2 g Ground n-hexane or
methanol 75 mL 1–3 h ∆9-THC, THCA,

CBN
[66]

Hemp
(Cannabis sativa)
seed oil

10 g Desiccated seeds n-hexane 100 mL 24 h at 70 ◦C ω-6 andω-3 fatty
acids [60]

Cannabis sativa
L. seeds 30 g Ground hempseed n-hexane 240 mL 8 h at 70 ◦C Fatty acids, e.g.,ω-3

fatty acids [64,71]

Hemp seed 15 g Extraction Methanol 300 mL 8 h at 90 ◦C Cannabinoids [72]

Industrial hemp
dust residue 11 g Finely powdered

hemp Heptane 200 mL 4 h

Waxes and
cannabidiol (CBD)
C16 was
predominating

[73]

Hemp raw
material and
hemp cellulose
pulps

- - Acetone 8 h Lipophilic extractives [74]

Hemp seed oil 5 g Ground hemp
seeds n-hexane 120 mL 2 h, 45 min at

180 ◦C
Tocopherols, fatty
acids, and pigments [65]

Cannabis sativa
L. plant 4 g NA

Solvent polarity
gradient:hexanes,
ethyl acetate, and
ethanol

Reduced
pressure, 6 h Total THC content [61]

3.3.2. Maceration (Immersion) Method

As the name indicates, this method involves immersion of the biomass in the solvent
media to provide effective mass transfer for a given period. This generic term essentially
involves all methods conventionally used today for extraction purposes, which includes the
use of different machines in batch, semi-batch or continuous form to provide the required
contact between solvent and solute in any scale. In practice, however, organic solvent
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extraction (OSE) methods other than Soxhlet are termed immersion/dipping extraction
methods. More often, the extraction method is named based on the employed solvent, e.g.,
ethanol extraction, in which the biomass is immersed in ethanol. The latter method is partic-
ularly the choice of interest for large-scale cannabinoid extraction due to its polar properties
even though nonpolar solvents such as hexane have also been used for extraction [66].
Depending on the target analyte of the interest (fatty-acid, cannabinoid, or terpenoid), the
involved solvent might differ; however, considering their solvent capabilities, relative price,
and more importantly, their boiling point (for recovery purposes), ethanol and methanol
have been found to be interesting choices compared to propanol, butanol, and isopropanol.
For medical or dietary applications, ethanol is preferred owing to its lower toxicity. Al-
though alcohols have been an attractive choice for maceration, Tagen et al. (2020) disclosed
the details of successful hexane maceration. With 24 h maceration at room temperature and
solvent recovery, they obtained an extract of 40 wt.% CBD after decarboxylation [75]. This
technique is still the basis for several new inventions; for instance, several recent patents
used modified maceration for the extraction of cannabinoids from hemp [75–77].

3.3.3. Extraction by Supercritical Fluids

There has always been extensive criticism against the traditional organic solvents for
extraction due to environmental concerns and safety hazards as well as the high production
costs [78]. The emerging “green” technology, supercritical fluid extraction (SFE), uses
safe and capable solvents in their critical state to efficiently extract chemicals. As the
temperature and pressure rise to the critical state (Tc and Pc), where the fluid can no
longer be liquified by a further increase in the pressure, the solvent density increases
drastically. This is the most important parameter associated with the solvent power [78].
Since the manipulation of pressure and temperature tunes density and solvent power,
SFE conveniently enables selective extractions [79]. Additionally, because of their unique
properties (transitional between gas and liquid), supercritical fluids exhibit superior mass
transfer diffusion rates. These unique physical properties are summarized in Table 3.

Table 3. Typical physical properties of the gas, liquid, and supercritical fluids. Adapted
from Hong G.T. [80], reprint permission had been obtained from the American Chemical
Society (Copyright 1996).

State of the Material Density (kg m–3) Diffusion (mm2 s–1) Viscosity (µPa s)

Liquid phase ~1000 ~0.001 ~(500–1000)
Supercritical state ~100 to 1000 ~0.01 to 0.1 ~(50–100)

Gas state ~1 ~(1–10) ~10

Various fluids have been employed in the SFE process, including ethene, water,
methanol, carbon dioxide, nitrous oxide, sulfur hexafluoride, n-butene, and n-pentane [81].
Among these candidates, supercritical carbon dioxide (SC-CO2) stands out and has been
widely used since it is abundant, inexpensive, non-toxic, non-flammable, relatively chemi-
cally inert, and forms at almost room temperature Tc (31 ◦C) that is proper for thermolabile
bioactive compounds [74,78,82]. Additionally, unlike the organic solvents, SC-CO2 leaves
the biomass completely and effortlessly, with zero energy consumption at the end of cycles
with a facile tune of temperature and/or pressure [64,65]. Figure 3 schematically shows a
typical SC-CO2 extraction process along with the required pieces of equipment. Since the
recovered CO2 remains pure, it is fully recycled back into the chamber for reuse.

The addition of modifiers (cosolvents) was shown to assist the solubility of the target
compound by providing a specific chemical interaction with the desired solute. This can be
justified by the relative solubility parameters (δ) of the additives that fall in between the
co-solvent and that of the target analytes. A number of cosolvents have been reported for
SC-CO2 extraction, including acids, water [83], low molecular-weight alcohols, aldehydes,
esters, and ketones [84]. Of these, ethanol has been mostly used [83]. The co-solvent medi-
ates between the solute and solvent, paving the way for increased extraction; however, it
may also enhance the co-extraction of unwanted constituents and lower the product purity.
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To design an SFE processor, several parameters need to be determined, including the
operating pressure and temperature, solvent flow (scale), solvent-to-feed ratio, recovery
conditions (precipitation), pretreatment of the solid matrix, initial moisture content, and
other mass transfer parameters [85,86]. Because there are multiple parameters affecting the
process efficiency and that different researchers have different interests and perceptions,
there is an obvious lack of quality research for formulating the SC-CO2 extraction parame-
ters. However, a number of trends have been found experimentally through trial-and-error
processes, including the optimal temperature for each set of extraction parameters. Due to
high capital costs, safety issues, and other technical considerations, different companies
offer diverse SC-CO2 extraction technologies [87–90]. Table 4 summarizes a number of
widely used, large-scale SC-CO2 extraction systems, along with their technical details.

As Table 4 shows, the supercritical extraction machines are usually automated, allow-
ing savings on labor costs and fewer safety concerns. Yet, the equipment is still expensive
enough to deter startups lacking sufficient funding, which serves as another reason for
the choice of OSE over the SC-CO2 extraction method. The processing capacity, and thus
yield, depends on the density of the inlet materials. The operation parameters can be
adjusted based on the inlet material properties as well as the desired product compositions
of interest.

Despite its high capital costs, myriads of biomass species have been processed with
SFE for extraction of different chemicals [79,94]. Working on anti-inflammatory com-
pounds, Arranz et al. employed supercritical carbon dioxide extracting terpenolic camphor
accounting for more than 33% of the overall extract, showing the selective capability of
SC-CO2s toward terpenes [95].

Table 5 summarizes a number of recently published studies on SC-CO2 processing of
medical cannabinoids. SC-CO2 also exhibits great potential in fatty-acid extraction (Table 6).
In an effort to correlate the parameters with the results, Perrotin-Brunel et al. (2010) pro-
posed thermodynamic models to exhibit the mutual behavior of cannabinoid blends [96].
However, from what appears in literature and industry, it is evident that SC-CO2 is an
established method for extraction of higher-value chemicals, with insufficient formulation
and protocols for scaling purposes, so much so that trial-and-error procedures are still con-
sidered the sole way of process optimization. In addition to the application of supercritical
CO2, subcritical CO2 has also shown to be a suitable choice for cannabinoid extraction. For
instance, B. A. Whittle et al. (2020) disclosed the details of an invention employing CO2 at
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10 ± 5 ◦C under the pressure of 60 ± 10 bar (subcritical CO2), indicating efficient extraction
of the main cannabinoids [28,97].

Table 4. Different SC-CO2 extraction pieces of equipment used in cannabinoid extraction and their technical details.
Adapted from Terasvalli H. [91], reprint permission had been obtained from the LUT university (Copyright 2020).

Product Name The Force® The Bambino® E-180 Hi-FloTM FX2

Manufacturer Apeks Supercritical
(Columbus, OH, USA)

Apeks Supercritical
(Columbus, OH, USA)

ExtraktLAB
(St Croix Falls, WI,
USA)

Eden Labs
(Seattle, WA, USA)

Production scale Large-scale commercial,
industrial

Small scale commercial,
R&D

Large-scale commercial,
industrial Commercial

Extraction vessel
volume 80 L 5 L 80 L 20 L

Per run dry biomass
capacity 18 kg 1.4 kg 10–16 kg 4.5 kg

Max vessel pressure 344 bars 137 bars 344 bars 344 bars

Extraction temperature Max 71 ◦C Max 71 ◦C 25–100 ◦C −60 ◦C–60 ◦C

Flow rate of CO2 3.5–4.2 kg.min–1 0.4–0.8 kg.min–1 Not disclosed 2.2 L.min–1

CO2 recovery 95% 95% Not disclosed Up to 95%

Run time Not disclosed Not disclosed Not disclosed 3–7 h

Remarks
Fully automated,
subcritical extraction
possible

Fully automated,
subcritical extraction
possible

Automated process
control, possible
subcritical extraction

Extensive automation

Ref. [88] [92] [93] [89,90]

Table 5. Published studies about cannabinoid extraction using SC-CO2.

Biomass Form Pretreatment Operating Temperature and
Pressure Objective of Study Ref

Hemp flower NA 42, 54, 61, and 72 ◦C;
13.2–25.1 MPa Solubility of cannabinoids using analytical methods [98]

Hemp flower NA 42, 53, and 61 ◦C; 11.3–20.6
MPa

Comparing the solubility of psychoactive and
non-psychoactive compounds [96]

Hemp N.A 110–140 bar, 40–60 ◦C Comparison of the molar solubility of the different
cannabinoids in SC-CO2

[99]

Hemp inflorescence Ground 10 and 14 MPa, 40 ◦C
Recovery volatile compounds from the
inflorescences and comparison with the
hydro-distillation performance

[25]

Hemp Ground 60 MPa, 35 ◦C Method of preparing an herbal drug extract from
medicinal cannabis [28]

Leaves and buds Ground 17, 24, and 34 MPa at 55 ◦C
CO2 flow rate of 200 g min–1

Exploring the effects of pressure, initial
cannabinoid plant composition, time, and the use
of ethanol as a co-solvent

[83]

Hemp inflorescence Ground 25 MPa, 60 ◦C Proposing a method for extraction of CBD-rich and
THC-rich product from cannabis plant materials [87]
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Table 6. Published studies on fatty-acids extraction using SC-CO2.

Biomass Pretreatment Parameters Objective of study Ref.

Hempseed
Desiccated ground
hempseed sieved
(24-mesh tray)

40–80 ◦C pressures of 20–40 MPa
CO2 flow rate 3 mL min–1

Determine fatty acids, tocopherols, and
pigment content (chlorophyll a and b and
total carotene)

[100]

Hempseed Ground for 10, 30, and
60 s

Temperature (40, 50, and 60 ◦C),
pressure (250, 300, and 350 bar)
and particle diameter (0.59, 0.71,
and 0.83 mm)

Total extraction and oxidation stability [71]

Hempseed Finely ground Temperatures of 40, 60, and 80 ◦C
and pressures of 300 and 40 MPa

Extraction yields, fatty-acid composition
of the oil, and oxidation stability [64]

51 different
genotypes
of hemp

Finely ground

Optimized extraction temperature,
40 ◦C restricted heating, and a
total volume of parameters were:
51.7 MPa, 100 ◦C extraction temp
120 mL carbon dioxide for each
extraction

Fatty-acid composition and tocopherol
content [101]

Hempseed Pressed
Pressure of 20 MPa and
temperature of 40 ◦C with a CO2
mass flow rate of 4.9 kg h–1

Evaluate the influence of extraction
conditions on concentration of
tocopherols, fatty acids, and pigments

[65]

Hemp stem
fiber Fine powder

35 MPa and 50 ◦C
(40 MPa and 65 ◦C, highest yield
of crude wax extraction)

Extraction of fatty acids, policosanols
(fatty alcohols), fatty aldehydes,
triterpenoids, hydrocarbons, sterols, and
cannabinoids

[73]

3.3.4. Comparison between Organic Solvent and SC-CO2 Extraction Methods

The SPT theory shows a medium to low extraction potential of SC-CO2 in the solubility
of the cannabinoids and terpenes. On the other hand, ethanol possesses a larger solubility
sphere (Equation (1)), hence a greater solubility range. On the downside, ethanol extraction
is followed by winterization, in which the solubility of cannabinoids and terpenes subsides
with the decrease in temperature, resulting in partial sedimentation of cannabinoids and
terpenes along with the extraneous compounds. Figure 4 shows the approximate solubility
parameter values of cannabinoids, terpenes, the co-extracted waxes, as well as those for
ethanol and SC-CO2 [33]. It needs to be mentioned that the solubility parameter (δ-values)
is a known constant value for a given pure substance in a given physical state. For
instance, the liquid CO2 has a δ-value of about 17.5 at −10 ◦C, but this number varies in
the form of f (temperature, pressure) for SC-CO2 and f (temperature) for organic solvents.
During winterization, the δ-value of ethanol swings toward 29, thereby the resulting ∆δ
puts the solubility status outside the solubility sphere, meaning that the wax no longer
becomes dissolved in the media. Conversely, the addition of alcohols to SC-CO2 (co-solvent)
increases the cannabinoid solubility capacity, reducing the SC-CO2 flow required to conduct
the extraction [33,83]. King J.W. (2019) has conducted a thorough study on the solubility
parameters in cannabinoid extraction [33].
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The predictions by SPT theory are also backed by experiment results [87].
Whittle B. et al. (2008) proposed a method for the precipitation of a significant portion
of undesirable waxy materials from cannabis extracts dissolved in C1–C5 alcohols kept
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in chilled environments for prolonged periods [28]. A similar study by Rosenthal (2014)
describes the details of the dewaxing process by programming the temperature change [29].

In their comparison of heptane’s Soxhlet and SC-CO2, Attard et al. [73] reported that
SC-CO2 was superior in the extractions of hemp dust; samples yielded significant quantities
of high-value lipophilic molecules including fatty acids, policosanols (fatty alcohols), fatty
aldehydes, hydrocarbons, sterols, triterpenoids, and cannabinoids (CBD: 5832 µg/g of
dust). They found that 35 MPa and 50 ◦C was the optimum condition to reach the highest
extraction yield for the majority of compounds.

3.4. Effect of Pretreatment on Oil Extraction

Pretreatment methods are classified based on the manner in which they contribute
to effective mass transfer. These methods include high-pressure homogenization, press,
ultrasonication, microwave, acids lysing, enzymes, and osmotic shocks. We will briefly
look at two of the main methods that have been studied for hemp processing.

3.4.1. Mechanical (Press) Extraction

Mechanical extraction mainly serves as a preliminary step for oil extraction from the
hempseed. To prevent sprouting, hempseeds undergo a drying process that reduces their
moisture content to 10% or less. Dry seeds are then fed into the screw expellers or pressing
instruments to remove the physically extractable fatty acids. Afterward, the solvent is
introduced to the pressed biomass to dissolve and remove the remaining oil.

Pressing with a screw extruder or pressurized liquid extractor (PLE) has been found
to be low-cost methods for the extraction of hempseed oil, proteins, and other nutritional
byproducts [24,102]. This process can take place at room temperature (cold press) or
elevated temperatures. Cold pressing is slow and low-cost and protects the quality of
chemical compounds that are heat sensitive. Screw expellers (Figure 5) are generally faster
and cheaper because they do not require prior preparation [40,71,103]. However, this
method leaves a significant quantity of waste: peels, seeds, defatted oilseed meals, and oil
sludge [104], requiring further processing [105].
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Because the majority of cannabinoids accumulate at the surface of flower trichomes,
the screw-expelling or pressing method does not serve as the proper way to extract cannabi-
noids and terpenes. An extreme grind of the biomass down to powder, in fact, contributes
to the extraction of undesirable constituents of the inner tissue matrix, leading to complex
downstream purification [106]. Nevertheless, mild shredding or crushing of the flowers
prior to extraction helps reduce solvent consumption [40,64,66,71].
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3.4.2. Microwave-Assisted Extraction

Microwave-assisted extraction (MAE) can be described as a mechanical pretreatment
at the molecular level in which the waves penetrate the plant tissue, are absorbed, gen-
erate heat, expand it and disintegrate the biomass matrix, thereby facilitating the mass
transfer [107]. This method is faster and has been found to be a powerful alternative for
traditional OSE or SC-CO2 methods [45] and skips the necessity of drying the biomass [108].
The key parameters to be adjusted are solvent polarity, extraction time, irradiation power,
temperature, and contact surface area [109], and most of the lab-scale research has focused
on optimization of parameters. For example, Rezvankhah A. et al. (2019) conducted an
optimization study on the extraction of fatty acids from hemp seed oil and were able
to reach nearly 34 wt.% at the optimum point of 450 W and 7 min. Comparing their
results with Soxhlet performance, the authors noticed a relatively higher oil extraction
yield (37.93% w/w) by Soxhlet but lower oil oxidation stability [110].

Table 7 briefly shows the classification of different pretreatment methods used in the
extraction of cannabinoids, terpenes, and fatty acids. Essentially all mechanical pretreat-
ment methods, either in macro-scale (grinding) or micro-scale (ultrasonic), improve the
extraction yield and reduce the operation time by facilitating the mass transfer rate [111].
However, the mechanical energy exerted to the system eventually ends up converting into
thermal energy that might lead to transformation; therefore, care must be taken in the
extraction of cannabinoids from hemp seeds, [72] as the generated heat can decarboxylate
the natural cannabinoids.

Table 7. Classification of pretreatment methods.

Pretreatment
Method

Flower vs. Seed
(Cannabinoids
vs. Lipids)

Proper Scale Remark Selected
Publications

Press and screw
expeller Fatty-acid Small and large Slow, cheap [40,55,65,82,112]

Grind Both Small and large Fast, cheap [40,64,66,71,106]

Microwave Fatty-acid Small and large Fast, cheap [45,110,113,114]

High-pressure
homogenization Both Small Fast [65]

Ultrasonication Both Small Fast, expensive [65,72,115]

3.5. Supercritical Hot Water Extraction

In addition to the conventional OSE and SFE methods, newer “green” approaches have
also been developed and employed to extract different products from hemp. Pressurized
hot water in its supercritical form as a solvent has been tried on different biomass samples
and was found to have similar solvability properties as methanol and ethanol [116]. In
a recent optimization study, Nuapia Y. et al. (2020) applied the pressurized hot water
extraction (PHWE) technique to extract THC, CBN, CBD, CBG, and CBC components from
hempseed [117]. Comparing their extraction results with those of traditional methods, they
claimed that this method is faster and more selective toward less-psychoactive component
extraction. On the downside, comparing the critical temperature and pressure of CO2
(31 ◦C, 73 bars) with that of the water (374 ◦C, 217 bars) clearly shows that taking water to
its supercritical condition is costly and might pose safety concerns. Further, as it exerts a
significant energy load on the system, the method is not a proper choice for thermolabile
component extraction [118], as was mentioned before.
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4. Transformation of Constituents

The THC content has always been an issue of controversy due to the negative psy-
choactive effects in the U.S. and different parts of the world. This quantity undergoes
changes while processing the plant or extracts [14]. As was mentioned above, the neutral
cannabinoids (THC, etc.) do not occur at significant concentrations in the plants; rather,
they are present in the form of their carboxylic acidic precursor [31]. This transformation
takes place during the decomposition of THC-acid (THCA) into neutral THC and release
of CO2 in a reaction called decarboxylation (reaction scheme 1) in which it loses 12% of
the mass. Several studies confirmed that the decarboxylation obeys a first-order kinetic
model [119,120] where the rate constant depends on the dominant driving force.
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Various factors affecting THC quantity have been investigated including the desiccation
conditions [121], including the temperature [119,121], electron-beam irradiation [41,122,123],
length of processing [66,124,125], storage conditions [121,125], extraction procedure [66],
and other applications involving the chemical evolution [18]. The decarboxylation reaction
(reaction scheme 1) proceeds with the decrease in pressure and increase in temperature due
to the well-known Le Chatelier’s principle. Therefore, the THC quantity rises significantly
during extraction and low-pressure distillation (purification).

Most producers in the food and drug industry use a conservative formula:
“Total THC = THCA + THC” to calculate total THC content. However, this kinetic model is
not realistic [50] and is another controversial gauge among legislators in the U.S. In a simu-
lation study, Dussy F.E. et al. (2004) investigated the increase in THC content while smoking
and found that only 30% of THCA transforms into psychoactive THC during smoking [18].
According to Iffland et al. (2016), the conversion of THCA to THC is often overestimated
by as much as 50% above the actual THC amount because the decarboxylation reaction
hardly proceeds to completion. They concluded that the amount is miscalculated and does
not reflect the real amount of the psychoactive portion [119].

Effect of Light on Transformation

The effects of light on the photobiology of cannabis have been the focus of many
researchers [126]; however, there are only a few published papers looking at the post-
harvest cannabis profile change induced by light. Cannabinoids carry various func-
tional groups, including carbon-carbon double bonds and aromatic moieties, namely
chromophores, that interact with light. This interaction involves the absorption of light,
which photo-excites the molecules. The absorption of light by the molecules elevates
their overall energy level placing them in their photoexcited state, having greater vibra-
tional and rotational motions that facilitate photophysical and chemical changes. Al-
though the absorption of light can trigger reversible photophysical transformations such as
photoisomerization [127,128], here, we mainly discuss the irreversible chemical changes
that occur in the presence of light, such as decarboxylation. In a four-year-long study,
Zamengo et al. (2019) remarkably noticed that the CBD content remained constant over
time at different storage conditions, even though CBDA dropped significantly [129]. They
realized that the presence of light has a significant positive effect on the kinetic and sto-
ichiometry of the decomposition. Another four-year-long study by Trofin et al. [130]
compared darkness with natural light exposure at 4 and 22 ◦C and proved that light caused
significant THC degradation. Both studies demonstrated that the CBN and THC values
follow an exponential trend in opposite directions, plateauing between 800 and 1200 days,
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where CBN forms as THC degrades. Ramirez et al. (2018) conducted a thorough review
and proposed the potential routes for natural, thermal, and photochemical transformation
of carboxylic cannabinoids during inflorescence (Figure 6) [106]. As evidenced Figure 6,
higher temperatures neutralize all acid cannabinoids to decarboxylated products, which
can be further decomposed into degradation products, as was proved by earlier researchers.
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Fairbrain et al., on the other hand, did not observe any CBN transformation accom-
panied by light-induced THC degradation, even though they found lighting induces
the most significant effect on the THC contents comparing to air-oxidation and changes
of the temperature [131]. Working on direct UV photolysis or UV/H2O2 photobleach-
ing processes on the photodegradation/oxidation of THCA, Park et al. (2018) used a
medium-pressure polychromatic UV lamp (200–300 nm) and found out that both the direct
UV photolysis, as well as the UV/H2O2 (increased acidity) followed pseudo-first-order
kinetics [132]. In this research, even though lowering pH solely did not contribute to
THCA degradation, the incorporation of acidic agents under UV light showed a noticeable
effect [132]. This can be attributed to the radical-scavenging properties of hydroxyl groups
by the absorption of UV during a process called advanced oxidation processes (AOP) [133].

Nevertheless, the fact that the low-temperature operations prevent THC production
and UV light degrades it raises the possibility of THCA removal by irradiation of the hemp
crude extracts. A critical issue about which the authors did not address. If proved to
be feasible, based on the cannabinoid evolution cycle (Figure 6) [106,134], new research
directions could be opened for the most efficient extraction of cannabis products in low-cost
and low-risk.

5. Conclusions

Fueled by the recent opportunities provided by changing legislation, as well as the
recent scientific advances, hemp’s product market capacity shows a historic jump off
as high as 10 times in less than a decade. The tried extraction protocols are borrowed
from those used traditionally for other biomasses, and the obtained results are, in some
cases, contradictive for hemp, indicating that this step remains the bottleneck of hemp
downstream processing technology.

Among hemp products, CBD now has the greatest market potential and is highly
attractive for its recreational and medical potentials. During CBD purification, the co-
extraction of its psychoactive cousin, THC, poses a significant challenge. Therefore, ideal
extraction technology is expected to be not only cannabinoid-specific but also selective
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toward the extraction of CBD. Additionally, the chosen method needs to be safe, efficient
(both in terms of economy and time), and capable of maximizing the yield (minimum
CBD loss). Recent studies have demonstrated the successful application of supercrit-
ical fluids and organic solvents in the extraction of cannabinoids, terpenes, and fatty
acids. Despite the effectiveness of organic solvents in extraction, the SC-CO2 seems to be
superior in terms of operation economy, environmental concerns as well as large-scale
purification technicalities.
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