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Abstract: As in several fruit crops, citrus trees with decreased size allow for a higher planting
density, which may lead to higher productivity and facilitate operations such as harvesting and
spraying. The use of dwarfing rootstocks is one of the most feasible methods for tree size control,
but few commercial varieties are available to date. In this work, the long-term performance of
Valencia sweet orange grafted onto 51 hybrid citrus rootstocks was evaluated in rainfed cultivation at
6.0 m × 2.5 m tree spacing in Northern São Paulo State, Brazil. About a third of the evaluated hybrids
were classified as dwarfing and semi-dwarfing rootstocks, that is, respectively inducing a relative
canopy volume of <40% and 40–60% compared with the standard rootstock, the Rangpur lime Santa
Cruz selection. The production efficiency and soluble solids concentration were conversely related
to the canopy volume. Three citrandarins of Sunki mandarin (TSKC) × Flying Dragon trifoliate
orange (TRFD) were grouped within the most productive dwarfing rootstocks. Other hybrids that
expressively decreased tree size were mainly sensitive to drought; therefore, the mean fruit yield was
low, indicating the need for irrigation, albeit fruit quality was high. Estimated productivity on the
selected TSKC × TRFD rootstocks would double to an average of 40 t·ha−1·year−1 if tree spacing
was adjusted to the smaller tree size. Although the HTR-208 citrandarin and the LCR × CTSW-009
citrumelimonia were as vigorous as the Santa Cruz Rangpur lime, they induced an outstanding fruit
yield due to their highest tolerance to drought and, hence, can be considered for rainfed cultivation
at wider tree spacing.

Keywords: Citrus spp.; Poncirus trifoliata; drought tolerance; fruit quality; fruit yield; graft compati-
bility; tree size control

1. Introduction

Sweet orange is one of the most cultivated fruits in the world, with a total production
of around 78.7 million tons in 2019, with Brazil, China, India, USA, and Mexico being the
major producers [1]. The consumption of frozen and concentrated orange juice (FCOJ) has
been decreasing since the 2000s while that of not from concentrate (NFC) orange juice has
increased [2]. Intensive pest and disease management programs are necessary due to the
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increasing spread of various limiting pathogens [3,4]. The use of higher tree density has
been considered to potentially contribute to augmenting productivity and diminishing
costs [5,6]. In São Paulo State, the average tree density increased almost 2-fold, from 362
to 616 trees·ha−1, in the 1990–2019 period [7] while the mean productivity increased by
50% [1,7]. In the era of huanglongbing epidemy, higher tree densities were also associated
with a lower disease incidence [8] and higher economic feasibility [9].

In high tree density, tree size control becomes necessary to keep trees within the pro-
vided space and to allow the movement of equipment aiming at operational efficiency [10].
Moreover, pesticide spraying is usually dosed according to the canopy size [11], which
also plays a critical role in harvesting [12]. Citrus dwarfing rootstocks, that is, those which
decrease the canopy volume by at least 60% compared with standard-sized rootstocks [13],
or those which present a maximum plant height of about 2.4 m [14], are the best low-input
tree size control method [15].

In spite of the increasing interest, just a few commercial rootstock varieties have been
classified as truly dwarfing ones [16,17]. Indeed, only the Flying Dragon trifoliate orange
(Poncirus trifoliata var. monstrosa (T. Itô) Swingle) has gained such a reputation to date,
being reputable as promising in tropical regions [15,18–21], but to a lesser extent under
cooler climates and iron-deficient soils [16,22]. In Brazil, the Flying Dragon trifoliate orange
has been widely used as the rootstock of the Persian lime (Citrus ×latifolia (Yu. Tanaka)
Tanaka) [23]. On the other hand, the Flying Dragon presents disadvantages such as low
tolerance to drought and graft incompatibility with some scion varieties [24]. All other
commercial rootstock varieties in Brazil induce high tree size and, thus, hamper plant
management under high tree density because of the intensive pruning to curb overgrowth,
which in turn may decrease the yield [5]. Therefore, new productive citrus dwarfing
rootstocks are dramatically needed for a wider diversification of varieties, under a scenario
of increasing pressure for more sustainable production systems. Most citrus rootstock
breeding programs have relied on controlled hybridizations to create genetic diversity for
finding suitable rootstocks [15,24], which may include dwarfing rootstocks.

In this work, we evaluated over twelve years the tree size and survival rate, the fruit
production and quality, the drought tolerance, and the graft compatibility of Valencia sweet
orange (C. ×sinensis (L.) Osbeck cv. IAC) on 51 hybrid rootstocks in rainfed cultivation in
Northern São Paulo State, Brazil. Three selected citrandarins of Sunki mandarin (C. sunki
(Hayata) hort. ex Tanaka)× Flying Dragon trifoliate orange induced a mean reduction
of 70% in the scion canopy volume compared with the standard rootstock, the Rangpur
lime (C. ×limonia Osbeck), and their potential use as alternative dwarfing rootstocks is
discussed.

2. Materials and Methods
2.1. Plant Material and Experimental Design

The Valencia sweet orange was used as the scion variety because of its wide cultivation
in Brazil and other countries [7,25]. Insect-proof, container-grown nursery trees were
grafted onto 51 hybrid citrus rootstocks that were obtained or introduced by the Citrus
Breeding Program of Embrapa Cassava and Fruits (Table 1).

The experimental design was in randomized blocks with three replications that corre-
sponded to a planting line each, and five trees in the plot, given a total of 765 trees evaluated.
Moreover, the Santa Cruz Rangpur lime and the Tropical Sunki mandarin were included as
controls because these two rootstock species are markedly vigorous, drought-tolerant, and
commercially used in Brazil [26]. The data from these control rootstocks were used from
another trial just next to the experimental area (about 15 m away from each other’s center
on very uniform soil) [27], with the same nursery tree standard and cultivation conditions,
yet being one year older; therefore, results were considered sufficiently comparable by the
authors to be added to the analyses.
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Table 1. Acronyms and corresponding parentals of 51 hybrid citrus rootstocks grafted with Valencia sweet orange (Citrus
×sinensis (L.) Osbeck) and evaluated in Northern São Paulo State, Brazil.

Acronyms 1 and Types of Citrus Hybrid Parentals

HTR-206 citrangedarin Sunki mandarin (C. sunki (Hayata) hort. ex Tanaka)× Coleman
citrange (C. × sinensis × Poncirus trifoliata (L.) Raf.)

HTR-207 citrangedarin Sunki mandarin × Troyer citrange
HTR-208 citrandarin Sunkimandarin× Benecke trifoliate orange (P. trifoliata)

LCR × CTSW-009 citrumelimonia Rangpur lime (C. × limonia Osbeck) × Swingle citrumelo (C. ×
paradisi Macfad. ×P. trifoliata)

LCR × LRF-034 lemon Rangpur lime × Florida rough lemon (C. × jambhiri Lush.)
Santa Cruz Rangpur lime Rangpur lime cv. Santa Cruz
LRF × (LCR × TR)-004 citrimoniambhiri Florida rough lemon × (Rangpur lime × trifoliate orange)

LVK × CTSW-009 citrumelemon Volkamer lemon (C. ×volkameriana (Risso) V. Ten. & Pasq.)×
Swingle citrumelo

MXWL × LHA-001 tangor Willow leaf mandarin (C. deliciosa Ten.) × Hamlin sweet orange
Sunki × Alemowa lemandarin Sunki mandarin × Alemow (C. macrophylla Wester)
TSKC × (LCR × TR)-016, 020 and 040 citrimoniandarins Common Sunki mandarin × (Rangpur lime × trifoliate orange)
TSKC × CTARG-015, 019, 020, 069 and 081 citrangedarins Common Sunki mandarin × Argentina citrange
TSKC × CTCM-008citrangedarin Common Sunki mandarin × Coleman citrange

TSKC × CTQT 1439-003 and 014 citrangequatandarins Common Sunki mandarin × Thomasville citrangequat cv. 1439
(Fortunella margarita (Lour.) Swingle ×Willits citrange)

TSKC × CTSW-017, 018, 022, 025, 031, 036, 053, 057 and 058
citrumelandarins Common Sunki mandarin × Swingle citrumelo

TSKC × CTTR-012, 028 and 029 citrangedarins Common Sunki mandarin × Troyer citrange
TSKC × LHA-007 tangor Common Sunki mandarin × Hamlin sweet orange
TSKC × TRBK-006 citrandarin Common Sunki mandarin × Benecke trifoliate orange

TSKC × TRFD-003, 006,and 007 citrandarins Common Sunki mandarin × Flying Dragon trifoliate orange (P.
trifoliata var. monstrosa (T. Itô) Swingle)

TSKFL × CTARG-023 and 029 citrangedarins Sunki mandarin cv. Florida × Argentina citrange
TSKFL × CTC13-005 and 012 citrangedarins Sunki mandarin cv. Florida × C13 citrange
TSKFL × CTSW-004 and 009 citrumelandarins Sunki mandarin cv. Florida × Swingle citrumelo
TSKFL × CTTR-004, 006, 013, 017, 021,and 022 citrangedarins Sunki mandarin cv. Florida × Troyer citrange
Tropical Sunki mandarin Sunki mandarin cv. Tropical

1 Acronyms used by the Citrus Breeding Program of Embrapa Cassava and Fruits with serial numbers identifying each hybrid obtained by
the respective cross (that is, indicating different siblings), except for Sunki×Alemow which was introduced from Colombia.

2.2. Environmental Conditions and Plant Care

The experiment was initiated by planting in 2008 in a commercial farm located in the
municipality of Colômbia, Northern São Paulo, Brazil (20◦19′22′′ S, 48◦41′10′′ W, 492 m).
Local climate is classified as Aw (tropical savannah with warm rainy summer and dry
winter) according to the Köppen classification (Figure 1).

Planting was on a typical deep, dark red oxisol with clayey to medium texture. In
2018, soil attributes at 0–20 cm were pH (CaCl2) = 4.7; Cation Exchange Capacity (CEC) =
51 cmolc·dm−3; Ca = 14 cmolc·dm−3; Mg = 7 cmolc·dm−3; K = 2.1 cmolc·dm−3; H + Al =
28 cmolc·dm−3, V = 45%; P = 125 mg·dm−3; and Organic Matter (OM.) = 14 g·kg−1.

Standard cultural practices for the cultivation of sweet orange in the State of São
Paulo were followed [28]. The tree spacing was 6.0 m (between-rows) × 2.5 m (in-rows),
given 667 trees·ha−1 which is representative of the mean tree density used in commercial
orchards in the region [7]. There was no complementary irrigation in the evaluation period,
and trees were pruned (topping and hedging) in 2018 after harvesting to maintain tree
canopy size.Annual mean rates of fertilizers in the evaluation period consisted of 320 g of
N, 130 g of P2O5, and 230 g of K2O on a per tree basis, plus 2.2 t·ha−1 of limestone. Citrus
sudden death (CSD) disease is prevalent [29], while huanglongbing (HLB) is seldomly
registered in the region of the experiment [30]. Nevertheless, the Asian citrus psyllid
and other pests were rigorously controlled with contact insecticide sprays throughout the
evaluation period.
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Figure 1. Monthly average air temperature (maximum, mean, and minimum) and rainfall in the experimental area from
January 2007 to December 2018. Colômbia, São Paulo State, Brazil.

2.3. Tree Size

Tree size was assessed by the measurement of tree height (PH (m), from the ground
level to the apex) and canopy diameter (on the maximum width in both transversal and
longitudinal directions to the planting line, with the mean diameter being later calculated,
CD (m)), using a ruler. Measurements were performed from 2010 to 2015 in March/April
of each year, just after the summer season. The canopy volume (CV, m3) was estimated
according to [31], Equation (1):

CV =
2
3

π (CD/2)2 × PH (1)

Only data from 2015 are presented because trees reached full bearing age. Rootstocks
were classified according to the induced tree size as described by Castle and Phillips [13]:
dwarfing, semi-dwarfing, semi-standard, standard, and super-standard rootstocks led to a
relative canopy volume of <40%, 40–60%, 60–80%, 80–100%, and >100% compared with
the standard rootstock, in this case the Santa Cruz Rangpur lime.

2.4. Fruit Yield, Production Efficiency, Alternate Bearing, and Earliness of Production

Fruits were harvested from 2010 to 2015 in October/November of each year based on
the monitoring of the fruit maturation by the grower. Every year, fruits were weighed on a
scale, and the average fruit yield (FY, kg·tree−1) in the period is presented. In 2016 and
2017, the fruit yield was not measured due to operational limitations. In addition, data on
fruit yield and tree size were collected from 2018 to 2020, only for 14 rootstocks that were
selected as more promising based on their agronomic performance over the 2010–2015
period (production, productive efficiency, fruit quality, tree size, and drought tolerance).

The production efficiency (EfP, kg·m−3) was calculated in the 2010–2015 period [32],
Equation (2):

E f P = FY/CV (2)

where FY = fruit yield, and CV = canopy volume in every year from 2010 to 2015, and the
average is presented [32].

The alternative bearing index (ABI) was calculated by Equation (3):

ABI = 1/(n− 1) x {|(a2− a1)|/(a2 + a1) + |(a3− a2)|/(a3 + a2) + ... + |(a(n)
−a(n− 1))|/(a(n) + a(n− 1))}

(3)
where n is the number of evaluated harvests, and a1, a2, . . . , a(n− 1), a(n) are the fruit
production in the respective years [33]. The earliness of production (EA) was estimated by
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the relation between the cumulative fruit production of the initial three harvests (2010–2012)
and the total cumulative production (2010–2015), expressed in percentage.

2.5. Tolerance to Drought, Tree Survival Rate, and Graft Compatibility

The rootstock tolerance to drought (DT) was assessed through a visual scoring of
water deficiency symptoms as described by Soares Filho et al. [34]: 1—low tolerance to
drought (severe leaf wilting on the whole canopy, leaf drop, and yellowing); 2—moderate
tolerance to drought (partial leaf wilting); and 3—high tolerance to drought (absence of
leaf wilting and any other visual water deficiency symptoms). Assessment of each tree was
carried out independently by two inspectors during the driest month of each year (aiming
to find plants tolerant to drought stress) from 2011 to 2017, except in 2013 and 2015 due to
operational limitations, and the average value was calculated.

The tree survival rate (SR, %) was calculated by the relation between the cumulative
number of dead trees in 2018 and the total number of trees planted per plot of each rootstock
evaluated. The graft compatibility (GC) was assessed in November 2017 on 20 hybrid
rootstocks selected for their overall good performance to that date. Six plants of each
rootstock were assessed. A bark strip (3.0 cm × 5.0 cm) was removed from the graft union
region using a switchblade. A visual rating was adapted from Fadel et al. [35]: 1—no
symptoms of graft incompatibility; 2—the presence of a fine line between the scion and the
rootstock tissues; 3—marked line at the graft union; and 4—sunken lines between the scion
and the rootstock tissues with rootstock phloem yellowing and necrosis.

2.6. Fruit Quality

The fruit quality was assessed using ten fruits per plot randomly picked from the
medium section in the four cardinal directions of the tree canopy. The fruits were assessed
just before harvesting from 2010 to 2015, except for 2014, and the mean values are presented.
The fruit weight (FW, g) was measured on a digital scale. The juice was extracted using
a small point-of-sale extractor (Otto 1800, OIC, Limeira, São Paulo, Brazil), and the juice
content (JC, %) was calculated by the percentual ratio between the juice weight and the
fruit weight, Equation (4):

JC = (JW × 100)/FW (4)

where JW = juice weight, and FW = fruit weight, expressed as percentage basis.
The total soluble solids concentration (SS, ◦Brix) in the juice was measured with a

digital refractometer (Palette PR-101, ATAGO, Tokyo, Japan), and the values were corrected
to 20 ◦C. The total titratable acidity (TA, %) was measured by titration with NaOH (0.3125 N)
and phenolphthalein indicator.

The fruit maturity index (MI) was calculated by Equation (5):

MI = SS/TA (5)

where SS = soluble solids, and TA = titratable acidity.
The technological index (TI, kg·box−1) was calculated by Equation (6):

TI = [JC× SS× 40.8]× 10000−1 (6)

where JC = juice weight, SS = soluble solids, and 40.8 kg is the weight of the standard
industrial box of sweet orange.

2.7. Statistical Analyses

Data were submitted to variance analyses after statistical assumptions were observed.
The means were grouped by the Scott–Knott test (p < 0.01, and p < 0.10 for ABI variable).
Linear regression analyses were performed to correlate selected variables. Statistical pro-
cedures were carried out using the SAS software [36]. Moreover, multivariate analyses
were performed to group the rootstocks based on variables that were classified as the
most important for the selection of dwarfing rootstocks by the authors: FY, EfP, SS, JC, DT,
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and PH. The genetic distance based on the algorithm of Gower [37] was calculated on the
dataset. Principal Component Analysis (PCA) was performed using standardized data,
with the auto-values (variance associated with each principal component) being estimated
by the characteristic roots of the covariance, and the auto-vectors (set of weighting coeffi-
cients of the principal components) being estimated by the elements of the corresponding
characteristic vectors [38]. The hierarchic grouping of the individual and simultaneous
analyses was obtained from the genetic distance matrices using the Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) method [39]. The grouping validation
was determined through the Cophenetic Correlation Coefficient (CCC) [40]. The CCC
significance was calculated by the Mantels t-test using 1000 permutations [41]. The genetic
distance matrices by individual analyses and the CCC were calculated using the Genes
software [42]. The genetic distance matrix based on Gower’s algorithm was calculated
using the R software [43]. The dissimilarity dendrogram was obtained using the Statistica
7.1 software [44]. The criterion used to determine the ideal number of groups was the
pseudo-t2 [45] using the “NbClust” package of the R computational software [46].

3. Results
3.1. Tree Size

The evaluated rootstocks were grouped within five classes of canopy diameter and
four classes of plant height, comprising a range from 2.19 m to 4.14 m and from 2.05 m to
3.86 m, respectively, in 2015. As a result, four groups of decreasing canopy volume were
formed, with averages of 26.8, 19.5, 13.1, and 7.8 m3 (Table 2). Within each hybrid rootstock,
evaluated trees presented very uniform tree size across all replications.

Table 2. Tree canopy diameter (CD) and height (PH), and canopy volume (CV) in 2015, and mean fruit yield (FY) and
production efficiency (EfP) in the 2010–2015 period of Valencia sweet orange (Citrus×sinensis (L.) Osbeck) grafted onto 51
rootstocks in Northern São Paulo State, Brazil.

Rootstock
CD PH CV FY EfP

————- (m) ————- (m3) (kg·tree−1) (kg·m−3)

HTR-206 citrangedarin 3.90 a 3.57 a 28.81 a 45.10 b 3.02 d
HTR-207 citrangedarin 2.73 d 2.74 c 10.71 c 25.38 d 4.78 c
HTR-208 citrandarin 4.02 a 3.35 b 28.47 a 68.22 a 4.09 c
LCR × CTSW-009 citrumelimonia 3.57 b 3.36 b 22.63 b 42.72 b 4.33 c
LCR × LRF-034 lemon 3.63 b 3.22 b 22.31 b 39.20 b 3.57 c
Santa Cruz Rangpur lime 3.78 a 3.59 a 26.94 a 39.46 b 3.41 c
LRF × (LCR × TR)-004 citrimoniambhiri 3.48 b 2.83 c 18.31 b 41.82 b 3.69 c
LVK × CTSW-009 citrumelemon 3.46 b 3.25 b 20.37 b 36.07 b 2.76 d
MXWL × LHA-001 tangor 4.01 a 3.47 a 29.46 a 45.12 b 2.88 d
Sunki × Alemow alemandarin 2.86 c 2.60 c 11.16 c 29.92 c 4.62 c
TSKC × (LCR × TR)-016 citrimoniandarin 2.61 d 2.26 d 8.19 d 20.34 d 4.36 c
TSKC × (LCR × TR)-020 citrimoniandarin 3.77 a 3.17 b 23.52 a 38.55 b 2.98 d
TSKC × (LCR × TR)-040 citrimoniandarin 3.57 b 3.18 b 21.24 b 42.20 b 3.64 c
TSKC × CTARG-015 citrangedarin 3.27 b 3.48 a 19.49 b 33.29 c 2.94 d
TSKC × CTARG-019 citrangedarin 3.80 a 3.45 a 26.25 a 35.10 b 2.67 d
TSKC × CTARG-020 citrangedarin 4.14 a 3.86 a 34.63 a 41.82 b 2.30 d
TSKC × CTARG-069 citrangedarin 3.24 b 3.12 b 17.31 b 39.38 b 3.71 c
TSKC × CTARG-081 citrangedarin 3.89 a 3.48 a 27.54 a 34.79 b 2.43 d
TSKC × CTCM-008 citrangedarin 2.63 d 2.30 d 9.18 d 19.92 d 5.65 b
TSKC × CTQT 1439-003
citrangequatandarin 3.41 b 3.15 b 19.29 b 38.32 b 3.89 c

TSKC × CTQT 1439-014
citrangequatandarin 3.35 b 3.03 b 18.11 b 50.18 b 4.51 c

TSKC × CTSW-017 citrumelandarin 3.87 a 3.62 a 28.55 a 28.55 c 1.79 d
TSKC × CTSW-018 citrumelandarin 3.61 b 3.47 a 24.67 a 30.66 c 2.55 d
TSKC × CTSW-022 citrumelandarin 2.94 c 2.82 c 12.72 c 24.87 d 3.49 c
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Table 2. Cont.

Rootstock
CD PH CV FY EfP

————- (m) ————- (m3) (kg·tree−1) (kg·m−3)

TSKC × CTSW-025 citrumelandarin 3.36 b 2.93 c 17.30 b 40.31 b 4.50 c
TSKC × CTSW-031 citrumelandarin 2.86 b 2.90 c 12.85 c 26.17 d 3.46 c
TSKC × CTSW-036 citrumelandarin 3.35 b 3.18 b 18.79 b 34.08 c 3.08 d
TSKC × CTSW-053 citrumelandarin 3.51 b 3.10 b 20.04 b 38.45 b 3.05 d
TSKC × CTSW-057 citrumelandarin 3.55 b 3.25 b 21.43 b 37.51 b 2.42 d
TSKC × CTSW-058 citrumelandarin 2.19 e 2.08 d 5.31 d 23.25 d 8.11 a
TSKC × CTTR-012 citrangedarin 3.63 b 3.43 a 23.80 a 35.02 c 3.21 d
TSKC × CTTR-028 citrangedarin 3.35 b 3.12 b 18.36 b 19.65 d 2.37 d
TSKC × CTTR-029 citrangedarin 3.17 c 2.96 c 15.49 c 30.79 c 4.33 c
TSKC × LHA-007 tangor 3.58 b 3.52 a 23.68 a 36.73 b 2.71 d
TSKC × TRBK-006 citrandarin 2.64 d 2.32 d 8.51 d 32.52 c 5.27 b
TSKC × TRFD-003 citrandarin 2.87 c 2.67 c 11.57 c 39.32 b 6.41 b
TSKC × TRFD-006 citrandarin 2.43 e 2.05 d 6.34 d 32.16 c 7.68 a
TSKC × TRFD-007 citrandarin 2.58 d 2.27 d 8.01 d 27.92 c 6.70 a
TSKFL × CTARG-023 citrangedarin 3.36 b 3.13 b 18.63 b 38.49 b 3.73 c
TSKFL × CTARG-029 citrangedarin 3.44 b 3.00 b 18.63 b 40.15 b 3.72 c
TSKFL ×CTC13-005 citrangedarin 3.09 c 2.82 c 14.25 c 29.80 c 4.02 c
TSKFL × CTC13-012 citrangedarin 3.37 b 3.29 b 19.55 b 36.19 b 2.86 d
TSKFL × CTSW-004 citrumelandarin 3.80 a 3.16 b 23.81 a 47.64 b 4.23 c
TSKFL × CTSW-009 citrumelandarin 3.77 a 3.63 a 27.05 a 33.54 c 2.46 d
TSKFL × CTTR-004 citrangedarin 3.28 b 3.34 b 18.93 b 29.90 c 2.76 d
TSKFL × CTTR-006 citrangedarin 2.94 c 2.88 c 12.96 c 20.22 d 3.20 d
TSKFL × CTTR-013 citrangedarin 3.45 b 3.14 b 19.99 b 37.75 b 3.24 d
TSKFL × CTTR-017 citrangedarin 2.77 d 2.39 d 9.56 d 21.15 d 5.08 b
TSKFL × CTTR-021 citrangedarin 3.06 c 2.94 c 14.49 c 27.68 c 3.23 d
TSKFL × CTTR-022 citrangedarin 3.18 c 2.82 c 14.94 c 26.25 d 3.59 c
Tropical Sunki mandarin 3.64 b 3.73 a 25.97 a 41.60 b 2.72 d

F * * * * *
CV (%) 6.80 7.62 18.42 16.53 21.86
Mean 3.33 3.07 18.83 34.81 3.77

Means followed by the same letters in the column belong to the same group by the Scott–Knott test. (ns) not significant, (*) significant at
p<0.01. Hybrid rootstock acronyms are described in Table 1.

According to the tree size classification proposed by Castle and Phillips [13], the
rootstocks were classified as super-standard (13.7%), standard (19.7%), semi-standard
(33.3%), semi-dwarfing (17.6%), and dwarfing (15.7%) compared with the Santa Cruz
Rangpur lime. Only HTR-207, TSKFL × CTTR-017 and TSKC × CTCM-008 citrangedarins,
TSKC × TRBK-006, TSKC × TRFD-006 and TSKC × TRFD-007 citrandarins, the TSKC ×
(LCR × TR)-016 citrimoniandarin, and the TSKC × CTSW-058 citrumelandarin could be
highlighted as true dwarfing ones due to inducing tree height from 2.05 m to 2.74 m and a
decrease in the canopy volume from 64% to 80% until eight years after planting.

3.2. Fruit Yield, Production Efficiency, Alternate Bearing, and Earliness of Production

In 2010–2015, the HTR-208 citrandarin induced the highest mean fruit yield in the
Valencia sweet orange, 1.73 times higher than those of trees grafted onto the Santa Cruz
Rangpur lime. About half of the evaluated rootstocks induced similar mean fruit yield to
the standard rootstock, with most of them being vigorous, except for the TSKC× TRFD-003
citrandarin. Although a lower fruit yield was directly related to a lower tree size, three
dwarfing citrandarins (TSKC × TRBK-006 and TSKC × TRFD-006 and -007) were within a
group of slightly higher production, with a mean of 30.8 kg·tree−1.

The production efficiency (EfP) is a key variable to select citrus rootstocks because
it is related to the more efficient use of resources. Four groups were formed presenting a
mean EfP of, respectively, 7.49, 5.60, 3.98, and 2.76 kg·m−3. Only three rootstocks led to the
highest EfP, TSKC × TRFD-006 and 007, and TSKC × CTSW-058, which were markedly
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dwarfing. The Santa Cruz Rangpur lime was within the third group, which comprised 40%
of the evaluated rootstocks. This group can be highlighted because it comprised mainly the
vigorous rootstocks that conjugated higher fruit yields, whereas about 45% of the evaluated
rootstocks presented an even lower EfP and, therefore, are of less interest regardless of the
tree size classification (Table 2).

Regarding the earliness of production, half of the evaluated rootstocks resulted later
bearing in comparison to that of Santa Cruz Rangpur lime. There was no relation between
the earliness and other traits, such as tree size, fruit yield, or tolerance to drought. Similar
behavior was observed for the alternate bearing, which was generally low. The Santa Cruz
Rangpur lime was included among those with a lower ABI, from 0.26 to 0.37 (Table 3).

Table 3. Tolerance to drought (DT) in the 2011–2017 period except for 2013 and 2015, tree survival rate (SR) in 2018, alternate
bearing index (ABI) and earliness of production (EA) in the 2010–2015 period, and graft compatibility (GC) in 2017 of
Valencia sweet orange (Citrus ×sinensis (L.) Osbeck) grafted onto 51 rootstocks in Northern São Paulo State, Brazil.

Rootstock
DT 1 SR ABI2 EA 3 GC 4 (%)

(%) (%) 1 2 3 4

HTR-206 citrangedarin 1.77 b 93.33 a 0.38 a 34.15 b 0 100 0 0
HTR-207 citrangedarin 1.42 c 80.00 a 0.34 b 30.32 b - - - -
HTR-208 citrandarin 2.21 a 93.33 a 0.38 a 28.00 b 0 100 0 0
LCR × CTSW-009 citrumelimonia 2.44 a 100.00 a 0.39 a 40.48 a 0 100 0 0
LCR × LRF-034 lemon 2.09 a 100.00 a 0.34 b 41.66 a - - - -
Santa Cruz Rangpur lime 2.04 a 46.67 b 0.31 b 47.53 a 0 100 0 0
LRF × (LCR × TR)-004
citrimoniambhiri 1.56 c 86.67 a 0.37 b 28.08 b 0 83 17 0

LVK × CTSW-009 citrumelemon 1.55 c 46.67 b 0.40 a 23.26 b - - - -
MXWL × LHA-001 tangor 2.06 a 100.00 a 0.36 b 44.32 a 0 100 0 0
Sunki × Alemow alemandarin 1.32 c 80.00 a 0.30 b 37.60 a - - - -
TSKC × (LCR × TR)-016
citrimoniandarin 1.82 b 100.00 a 0.40 a 21.27 b - - - -

TSKC × (LCR × TR)-020
citrimoniandarin 1.57 c 86.67 a 0.32 b 41.58 a 33 67 0 0

TSKC × (LCR × TR)-040
citrimoniandarin 2.15 a 100.00 a 0.31 b 47.36 a 0 100 0 0

TSKC × CTARG-015 citrangedarin 1.69 c 93.33 a 0.39 a 43.74 a - - - -
TSKC × CTARG-019 citrangedarin 1.83 b 86.67 a 0.37 b 41.39 a 0 100 0 0
TSKC × CTARG-020 citrangedarin 1.58 c 100.00 a 0.33 b 37.56 a 0 100 0 0
TSKC × CTARG-069 citrangedarin 1.19 c 86.67 a 0.44 a 31.98 b - - - -
TSKC × CTARG-081 citrangedarin 1.64 c 86.67 a 0.29 b 40.99 a - - - -
TSKC × CTCM-008 citrangedarin 1.54 c 93.33 a 0.41 a 48.09 a - - - -
TSKC × CTQT 1439-003
citrangequatandarin 2.00 a 93.33 a 0.39 a 43.09 a 0 100 0 0

TSKC × CTQT 1439-014
citrangequatandarin 2.09 a 100.00 a 0.43 a 31.50 b 0 100 0 0

TSKC × CTSW-017 citrumelandarin 1.36 c 20.00 b 0.45 a 30.87 b - - - -
TSKC × CTSW-018 citrumelandarin 1.31 c 86.67 a 0.46 a 38.76 a - - - -
TSKC × CTSW-022 citrumelandarin 1.43 c 100.00 a 0.35 b 35.63 b - - - -
TSKC × CTSW-025 citrumelandarin 1.91 b 73.33 a 0.41 a 42.21 a 0 100 0 0
TSKC × CTSW-031 citrumelandarin 2.13 a 73.33 a 0.42 a 33.05 b - - - -
TSKC × CTSW-036 citrumelandarin 1.87 b 80.00 a 0.38 a 24.57 b - - - -
TSKC × CTSW-053 citrumelandarin 1.49 c 93.33 a 0.45 a 28.99 b - - - -
TSKC × CTSW-057 citrumelandarin 1.40 c 80.00 a 0.36 b 30.29 b - - - -
TSKC × CTSW-058 citrumelandarin 1.81 b 40.00 b 0.37 b 38.85 a - - - -
TSKC × CTTR-012 citrangedarin 1.53 c 80.00 a 0.26 b 43.63 a - - - -
TSKC × CTTR-028 citrangedarin 1.30 c 100.00 a 0.34 b 39.90 a - - - -
TSKC × CTTR-029 citrangedarin 1.48 c 100.00 a 0.35 b 33.72 b - - - -
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Table 3. Cont.

Rootstock
DT 1 SR ABI2 EA 3 GC 4 (%)

(%) (%) 1 2 3 4

TSKC × LHA-007 tangor 1.81 b 80.00 a 0.42 a 31.22 b - - - -
TSKC × TRBK-006 citrandarin 1.61 c 100.00 a 0.48 a 27.95 b 0 83 0 17
TSKC × TRFD-003 citrandarin 2.03 a 100.00 a 0.38 a 45.13 a 0 100 0 0
TSKC × TRFD-006 citrandarin 1.51 c 73.33 a 0.29 b 43.01 a 0 100 0 0
TSKC × TRFD-007 citrandarin 1.80 b 93.33 a 0.39 a 31.68 b 66 17 17 0
TSKFL × CTARG-023 citrangedarin 1.53 c 86.67 a 0.28 b 30.83 b - - - -
TSKFL × CTARG-029 citrangedarin 2.01 a 100.00 a 0.40 a 35.62 b 33 67 0 0
TSKFL × CTC13-005 citrangedarin 1.60 c 93.33 a 0.42 a 35.77 b - - - -
TSKFL × CTC13-012 citrangedarin 1.28 c 53.33 b 0.46 a 30.41 b - - - -
TSKFL × CTSW-004
citrumelandarin 1.78 b 100.00 a 0.31 b 33.50 b 0 100 0 0

TSKFL × CTSW-009
citrumelandarin 1.55 c 100.00 a 0.46 a 34.18 b - - - -

TSKFL × CTTR-004 citrangedarin 1.21 c 53.33 b 0.35 b 40.66 a - - - -
TSKFL × CTTR-006 citrangedarin 1.29 c 60.00 b 0.36 b 56.55 a - - - -
TSKFL × CTTR-013 citrangedarin 1.66 c 73.33 a 0.28 b 28.80 b - - - -
TSKFL × CTTR-017 citrangedarin 1.77 b 100.00 a 0.33 b 49.70 a - - - -
TSKFL × CTTR-021 citrangedarin 1.41 c 80.00 a 0.31 b 45.98 a - - - -
TSKFL × CTTR-022 citrangedarin 1.49 c 100.00 a 0.28 b 39.90 a - - - -
Tropical Sunki mandarin 1.97 a 86.67 a 0.56 a 44.39 a 17 83 0 0

F * * ** *
CV (%) 11.90 21.96 18.26 24.71
Mean 1.68 84.58 0.37 37.05

Means followed by the same letters in the column belong to the same group by the Scott–Knott test. (ns) not significant, (*) significant at
p<0.01, and (**) significant at p < 0.10. Hybrid rootstock acronyms are described in Table 1. 1 DT was evaluated as described by Soares Filho
et al. [34]. 2 ABI was calculated according to Pearce and Dobersek [33]. 3 Cumulative fruit yield in 2010–2012 by the cumulative fruit yield
in 2019–2015. 4 GC was adapted from Fadel et al. [35]: 1—no symptoms of graft incompatibility; 2—the presence of a fine line between the
scion and the rootstock tissues; 3—marked line at the graft union; and 4—sunken lines between the scion and the rootstock tissues with
rootstock phloem yellowing and necrosis. (-) not evaluated.

The canopy volume was directly related to the mean fruit yield per tree in the
2010–2015 period (Figure 2A), that is, larger trees induced by vigorous rootstocks pro-
duced more fruits. On the other hand, the production efficiency (kg of fruits per cubic
meter of canopy) was conversely related to the canopy volume (Figure 2B). Because there
was no significant relation between efficiency and total fruit load (Figure 2C), it is clear
that the highest fruit set per cubic meter of the scion canopy could be given only by the
most dwarfing rootstocks. Interestingly, the mean concentration of soluble solids in fruits
of Valencia sweet orange was also conversely related to the canopy volume (Figure 2D).
Juice content and soluble solids concentration are directly subjected to variation due to
the osmotic adjustment induced by the rootstock in citrus crops [47]. However, in this
work, there was no significant relationship between the rootstock tolerance to drought
and the canopy volume (Figure 2E), suggesting that the improvement of juice quality was
regulated by other mechanisms rather than only drought-response in dwarfing rootstocks.
Since the higher the mean fruit yield, the lower the soluble solids concentration in the juice
(Figure 2F), both fruit quality and fruit set might also have benefited from the dwarfed tree
growth habit, which allows a more uniform interception of the solar radiation within the
small canopy, and also a lower number of fruits and other sinks competing for the available
photoassimilates [48–50].

3.3. Tolerance to Drought, Tree Survival Rate, and Graft Compatibility

Ten hybrids were the most drought-tolerant rootstocks, being equivalent to the com-
mercial standards, Tropical Sunki mandarin and Santa Cruz Rangpur lime. Another ten
hybrids induced intermediate tolerance to drought, and the rest, 57% of the evaluated
hybrids, were very sensitive to drought. Although tolerance to drought was not related to
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the tree size, most semi-dwarfing and dwarfing rootstocks were intolerant regardless of
their fruit yield, yet the TSKC × TRFD-003 citrandarin was as drought-tolerant as the Santa
Cruz Rangpur lime. Among the more vigorous rootstocks, only high-bearing hybrids were
also drought-tolerant ones (Table 3).

Figure 2. Relations between the canopy volume and the mean fruit yield (A), the mean production efficiency (B), the mean
soluble solids concentration (D), and the drought tolerance (E), and between the mean fruit yield and the mean production
efficiency (C) and the mean soluble solids concentration (F) of Valencia sweet orange (Citrus×sinensis (L.) Osbeck) grafted
onto 51 rootstocks in the 2010–2015 period in Northern São Paulo State, Brazil.

Almost 50% of the evaluated rootstocks had a mean tree survival rate equal to or
higher than 90% ten years after planting, with no tree death for 17 hybrids (about 30% of the
total hybrids). On the other hand, Santa Cruz Rangpur lime and six hybrid rootstocks led
to an average tree loss of 45%. The graft incompatibility was probably not a cause, because
most of the selected rootstocks did not present any symptoms on the graft union (Table 3).
Despite not presenting necrosis nor sunken line at the graft union, the TSKC × CTSW-058
citrumelandarin presented other incompatibility symptoms, such as overgrowth of the
scion trunk over the rootstock, general tree yellowing, and stunting. This probably explains
its low tree survival rate and even the high production efficiency due to a progressive
girdling-like effect and decreased tree size.

In respect to other putative causes of tree loss, until twelve years after planting it could
be highlighted that: (1) typical visual symptoms of CSD (tree fast decline, rootstock phloem
yellowing) were observed only in trees on the Santa Cruz Rangpur lime; (2) a few trees
grafted onto Santa Cruz Rangpur lime, Tropical Sunki mandarin, HTR-206 citrangedarin,
and MXWL × LHA-001 tangor presented visual symptoms of Phytophthora spp. crown rot;
(3) a decreasing incidence of visual blight symptoms was observed in some trees of HTR-
208 citrandarin > Santa Cruz Rangpur lime > HTR-207 citrangedarin > TSKC × CTSW-025
citrumelandarin; (4) no citrus tristeza virus (CTV)-induced quick decline symptoms were
observed in the experimental area; (5) dwarfing hybrids TSKC× TRFD-006 citrandarin and
TSKC × CTCM-008 citrangedarin were impaired by severe drought conditions, presenting
heavy leaf drop, stem dieback, and some tree death. Notwithstanding, trees grafted onto
the former hybrid normally recovered after rainfall, resulting in high flowering and fruit set,
whilst trees grafted onto the latter presented lower bearing and some yellowing year-round.
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3.4. Fruit Quality

Larger fruits were produced by trees on 55% of the evaluated rootstocks including
both commercial standards. Most rootstocks also induced the highest juice content (JC),
from 45% to 49%, which is within the usual range for sweet orange fruits using a small
point-of-sale extractor. Conversely, the TSKFL × CTC13-012 citrangedarin induced the
lowest JC, of only 39%. About half of the dwarfing and semi-dwarfing hybrids led to
similar JC to the Santa Cruz Rangpur lime (Table 4).

Table 4. Fruit weight (FW), juice content (JC), total soluble solids concentration (SS), titratable acidity (TA), maturity
index (MI), and technological index (TI) in the 2010–2015 period, except for 2014, of fruits of Valencia sweet orange (Citrus
×sinensis (L.) Osbeck) grafted onto 51 rootstocks in Northern São Paulo State, Brazil.

Rootstock
FW JC SS TA MI TI

(g) (%) (◦Brix) (%) (SS/TA) (kg SS
box−1)

HTR-206 citrangedarin 165.36 b 46.10 a 11.34 b 0.66 b 17.36 a 2.12 a
HTR-207 citrangedarin 185.13 a 42.92 b 12.33 a 0.82 a 16.36 b 2.16 a
HTR-208 citrandarin 205.94 a 46.59 a 10.81 b 0.73 a 14.94 b 2.06 b
LCR × CTSW-009 citrumelimonia 193.91 a 47.04 a 10.51 b 0.65 b 16.65 b 2.02 b
LCR × LRF-034 lemon 177.53 b 48.58 a 10.85 b 0.66 b 16.95 a 2.18 a
Santa Cruz Rangpur lime 202.85 a 49.07 a 10.85 b 0.63 b 16.70 b 2.09 b
LRF × (LCR × TR)-004 citrimoniambhiri 162.85 b 45.85 a 12.08 a 0.65 b 19.20 a 2.24 a
LVK × CTSW-009 citrumelemon 179.46 b 46.05 a 11.14 b 0.71 a 16.11 b 2.09 b
MXWL × LHA-001 tangor 191.83 a 45.78 a 11.03 b 0.69 b 15.85 b 2.03 b
Sunki × Alemow alemandarin 176.01 b 43.71 b 11.12 b 0.65 b 17.50 a 1.99 b
TSKC × (LCR × TR)-016 citrimoniandarin 205.97 a 44.42 b 11.01 b 0.65 b 17.25 a 2.02 b
TSKC × (LCR × TR)-020 citrimoniandarin 175.07 b 44.03 b 10.99 b 0.67 b 17.18 a 1.99 b
TSKC × (LCR × TR)-040 citrimoniandarin 197.89 a 45.47 a 10.91 b 0.68 b 16.60 b 2.05 b
TSKC × CTARG-015 citrangedarin 177.73 b 47.88 a 11.31 b 0.72 a 16.26 b 2.22 a
TSKC × CTARG-019 citrangedarin 192.23 a 43.94 b 11.22 b 0.68 b 17.27 a 2.02 b
TSKC × CTARG-020 citrangedarin 174.74 b 46.47 a 11.12 b 0.74 a 15.47 b 2.09 b
TSKC × CTARG-069 citrangedarin 180.72 b 44.27 b 11.33 b 0.75 a 15.65 b 2.07 b
TSKC × CTARG-081 citrangedarin 187.63 a 45.45 a 11.53 a 0.69 b 17.25 a 2.13 a
TSKC × CTCM-008 citrangedarin 173.79 b 44.39 b 12.04 a 0.72 a 17.21 a 2.18 a
TSKC × CTQT 1439-003
citrangequatandarin 190.14 a 46.70 a 11.73 a 0.73 a 16.23 b 2.24 a

TSKC × CTQT 1439-014
citrangequatandarin 192.23 a 44.33 b 10.56 b 0.58 b 18.49 a 1.93 b

TSKC × CTSW-017 citrumelandarin 173.80 b 42.90 b 11.38 a 0.68 b 17.16 a 2.00 b
TSKC × CTSW-018 citrumelandarin 188.18 a 42.60 b 11.08 b 0.74 a 15.09 b 1.92 b
TSKC × CTSW-022 citrumelandarin 178.44 b 46.76 a 11.38 a 0.59 b 20.01 a 2.16 a
TSKC × CTSW-025 citrumelandarin 187.60 a 46.95 a 11.90 a 0.76 a 16.43 b 2.29 a
TSKC × CTSW-031 citrumelandarin 184.88 a 44.52 b 11.81 a 0.71 a 17.07 a 2.09 b
TSKC × CTSW-036 citrumelandarin 181.77 b 45.37 a 11.05 b 0.67 b 16.74 b 2.06 b
TSKC × CTSW-053 citrumelandarin 187.13 a 43.34 b 10.95 b 0.62 b 17.95 a 1.94 b
TSKC × CTSW-057 citrumelandarin 163.33 b 46.81 a 11.63 a 0.75 a 15.95 b 2.21 a
TSKC × CTSW-058 citrumelandarin 172.72 b 44.87 a 11.39 a 0.70 a 16.63 b 2.08 b
TSKC × CTTR-012 citrangedarin 181.63 b 44.91 a 11.24 b 0.66 b 17.81 a 2.08 b
TSKC × CTTR-028 citrangedarin 192.04 a 42.36 b 11.26 b 0.68 b 17.19 a 1.96 b
TSKC × CTTR-029 citrangedarin 198.93 a 42.61 b 11.16 b 0.67 b 17.55 a 1.96 b
TSKC × LHA-007 tangor 186.45 a 46.01 a 11.36 a 0.79 a 14.73 b 2.15 a
TSKC × TRBK-006 citrandarin 192.90 a 45.92 a 11.57 a 0.67 b 17.64 a 2.16 a
TSKC × TRFD-003 citrandarin 196.02 a 45.79 a 11.21 b 0.65 b 17.37 a 2.10 b
TSKC × TRFD-006 citrandarin 174.60 b 47.77 a 11.67 a 0.72 a 17.18 a 2.32 a
TSKC × TRFD-007 citrandarin 191.48 a 42.49 b 11.71 a 0.70 a 17.27 a 2.04 b
TSKFL × CTARG-023 citrangedarin 196.27 a 44.45 b 11.05 b 0.70 a 16.10 b 2.01 b
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Table 4. Cont.

Rootstock
FW JC SS TA MI TI

(g) (%) (◦Brix) (%) (SS/TA) (kg SS
box−1)

TSKFL × CTARG-029 citrangedarin 176.90 b 47.77 a 11.22 b 0.64 b 17.88 a 2.19 a
TSKFL × CTC13-005 citrangedarin 176.53 b 44.79 a 11.21 b 0.71 a 16.15 b 2.06 b
TSKFL × CTC13-012 citrangedarin 186.13 a 39.15 c 11.38 a 0.65 b 18.00 a 1.83 b
TSKFL × CTSW-004 citrumelandarin 197.96 a 44.30 b 11.55 a 0.68 b 17.38 a 2.08 b
TSKFL × CTSW-009 citrumelandarin 180.87 b 44.54 b 11.47 a 0.72 a 16.63 b 2.08 b
TSKFL × CTTR-004 citrangedarin 171.18 b 43.51 b 11.42 a 0.70 a 16.58 b 2.04 b
TSKFL × CTTR-006 citrangedarin 153.81 b 43.69 b 11.39 a 0.69 b 17.54 a 2.10 b
TSKFL × CTTR-013 citrangedarin 186.36 a 46.73 a 11.20 b 0.69 b 16.65 b 2.13 a
TSKFL × CTTR-017 citrangedarin 185.62 a 46.60 a 11.55 a 0.67 b 18.18 a 2.21 a
TSKFL × CTTR-021 citrangedarin 172.51 b 46.20 a 11.42 a 0.72 a 16.16 b 2.14 a
TSKFL × CTTR-022 citrangedarin 197.04 a 46.68 a 11.23 b 0.66 b 17.51 a 2.15 a
Tropical Sunki mandarin 211.47 a 48.09 a 11.52 a 0.69 b 16.44 b 2.18 a

F * * * * * *
CV (%) 5.27 3.87 3.38 6.46 5.54 4.99
Mean 184.58 45.25 11.35 0.69 16.93 2.09

Means followed by the same letters in the column belong to the same group by the Scott–Knott test. (ns) not significant, (*) significant at
p<0.01. Hybrid rootstock acronyms are described in Table 1.

For juice quality variables, two groups were always formed. Overall, in the 2010–2015
period, soluble solids concentration (SS), titratable acidity (TA), and the maturity index
(SS/TA) were within the standard range of fruit harvested for processing not from con-
centrate (NFC) juice [51,52]. However, the technological index (TI) was slightly lower
due to the juice extraction method. Ranging from 11.36 to 12.33 ◦Brix, 45% of rootstocks,
mainly less vigorous ones, clearly induced higher SS than the Santa Cruz Rangpur lime
and other vigorous rootstocks, except for the Tropical Sunki mandarin. The Santa Cruz
Rangpur lime, in turn, led to lower mean TA (0.63% in October/November) alongside
60% of the evaluated rootstocks. TSKC × TRFD-006 and 007 citrandarins, TSKC × CTCM-
008 citrangedarin, and TSKC × CTSW-031 citrumelandarin can be underlined as having
outstanding potential for NFC due to their well-balanced SS/TA juice ratio. Finally, the
Santa Cruz Rangpur lime was grouped within the lowest TI range (1.83 to 2.10 kg SS
box−1), whereas Sunki Tropical mandarin and 19 hybrid rootstocks induced higher TI (2.12
to 2.32 kg SS box−1). Moreover, the dwarfing TSKC × TRFD-006 citrandarin stood out for
the fruit quality among its full siblings because it was the only one that outperformed Santa
Cruz Rangpur lime by inducing higher means of TI, SS, TA, and MI in the Valencia fruits.

3.5. Multivariate Analyses

There was genetic variation among the evaluated rootstocks, with the two principal
components responsible for 69% of the total variation. PC1 was mainly explained by the
plant height, fruit yield (kg of fruits per tree), and SS, whereas PC2 was explained by the
tolerance to drought and production efficiency (kg of fruits per cubic meter of canopy)
(Figure 3A). Production efficiency was positively related to the fruit yield and drought
tolerance, but conversely related to the tree height, while SS was opposed to the tree
height and production, juice content, and drought tolerance (Figure 3B). The cophenetic
correlation was significant (r = 0.72**), and six groups of rootstocks were formed according
to the similarity patterns (Figure 3B,C).
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Figure 3. Weighting coefficients of variables (A), scores of the Principal Component Analysis (B), and dendogram (C),
obtained by the Unweighted Pair Group Method using Arithmetic averages (UPGMA) method using the dissimilarity
measurements of the following variables: fruit yield (FY), production efficiency (EfP), juice content (JC), tolerance to drought
based on visual assessment (DT), plant height (PH) and soluble solids concentration in the juice (SS) of Valencia sweet
orange (Citrus ×sinensis (L.) Osbeck) grafted onto 51 hybrid rootstocks from 2010 to 2015 in the Northern of São Paulo State,
Brazil. Cophenetic correlation coefficient (CCC) = 0.72**. G1: TSKC × TRFD-003 (149), TSKC × TRFD-006 (141), TSKC
× CTSW-058 (127), and TSKC × TRFD-007 (137); G2: Santa Cruz Rangpur lime (51) and Tropical Sunki mandarin (71);
G3: HTR-208 (104); G4: LCR × LRF-034 (120), TSKFL × CTARG-029 (135), MXWL × LHA-001 (112), TSKC × (LCR ×
TR)-040 (131), TSKC × CTQT 1439-014 (114), and LCR × CTSW-009 (148); G5A: TSKFL × CTSW-004 (138), LRF × (LCR ×
TR)-004 (124), TSKC × CTSW-025 (125), and TSKC × CTQT 1439-003 (129); G5B: HTR-206 (108), TSKC × CTARG-020 (111),
TSKFL × CTARG-023 (115), TSKC × CTSW-053 (119), TSKC × (LCR × TR)-020 (132), TSKC × CTSW-036 (101), TSKC ×
CTARG-019 (139), TSKC × CTTR-012 (151), LVK × CTSW-009 (130), TSKFL × CTTR-013 (150), TSKC × CTARG-015 (143)
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, TSKC × CTSW-057 (128), TSKFL × CTSW-009 (136), TSKC × LHA-007 (122), TSKC × CTARG-081 (146), TSKC × CTARG-
069 (134), TSKFL × CTTR-021 (117), TSKC × CTSW-022 (105), TSKFL × CTTR-022 (140), TSKFL × CTC13-005 (113), TSKC
× CTTR-029 (142), Sunki × Alemow (155), TSKFL × CTC13-012 (118), TSKC × CTTR-028 (110), TSKFL × CTTR-004 (133),
TSKC × CTSW-017 (106), and TSKC × CTSW-018 (107); G6: TSKFL × CTTR-006 (123), HTR-207 (102), TSKC × CTCM-008
(145), TSKFL × CTTR-017 (144), TSKC × TRBK-006 (147), TSKC × (LCR × TR)-016 (103), and TSKC × CTSW-031 (126).
Hybrid rootstock acronyms are described in Table 1.

G1 (efficient dwarfing rootstocks) comprised all Sunki x Flying Dragon citrandarins
plus TSKC × CTSW-058. Rootstocks within this group induced relatively high fruit yield,
very high production efficiency, small tree size, and high fruit quality. The TSKC ×
TRFD-003 citrandarin was the only one with tolerance to drought similar to the Santa
Cruz Rangpur lime, which was in the G2 (standard rootstocks) group with Tropical Sunki
mandarin, being vigorous, drought-tolerant, and productive yet less efficient rootstocks.
G3 (heavy-bearing rootstock) included only the HTR-208 citrandarin, which was by far
the most productive rootstock in the 2010–2015 period, inducing large tree size and high
tolerance to drought, but a lower concentration of SS. G4 (vigorous drought-tolerant
rootstocks), with six hybrids, led to usually large trees, high fruit yield, and high tolerance
to drought, but low to medium fruit quality. G5 was subdivided to facilitate interpretation,
as follows: G5A (high fruit quality-inducing rootstocks), grouping four hybrids that
induced high production of high-quality fruits, albeit tree size was large, resulting in low
production efficiency, and the tolerance to drought was mainly low; and G5B (drought-
sensitive rootstocks), comprising 27 hybrids that were sensitive to drought and induced
medium to high tree size, low production efficiency, medium to low fruit yield, and good
fruit quality. Finally, G6 (low-bearing dwarfing rootstocks) was characterized by decreased
tree size, but the production efficiency was lower. Seven hybrids were within this group,
which also induced high quality, but they were mainly more sensitive to drought and
yielded less fruit.

The fruit yield and tree size were evaluated in 2018–2020 to confirm the performance of
14 selected rootstocks in the longer term (Table 5). Most vigorous and semi/dwarfing root-
stocks that were previously classified as more promising confirmed their good production
and similar tree size class at 12 years old, indicating that the multivariate analyses on data
from initial six harvest crops allowed a consistent selection of superior rootstocks. TSKC
× TRFD-006 and HTR-208 citrandarins and the Santa Cruz Rangpur lime corroborated to
some tree decline, even though tree mortality was very close to that in 2018 (Table 2).

Table 5. Tree canopy diameter (PD), height (PH), and volume (CV) in 2020, and fruit yield (FY) in 2018, 2019, and 2020 of
Valencia sweet orange (Citrus×sinensis (L.) Osbeck) on selected rootstocks in Northern São Paulo State, Brazil.

Rootstock
PD PH CV FY 2018 FY 2019 1 FY 2020
- - - - - (m) - - - - - (m3) - - - - - - - - - - - - (kg·tree−1)- - - - - - - - - - -

HTR-206 citrangedarin 5.03 a 4.27 a 57.21 a 96.00 a - 40.87 a
HTR-208 citrandarin 4.43 a 2.60 b 26.53 c 103.50 a 13.90 41.22 a
LCR × CTSW-009 citrumelimonia 4.60 a 3.93 a 43.53 b 104.00 a - 64.86 a
LCR × LRF-034 lemon 4.33 a 3.63 a 35.91 b 93.33 a - 54.80 a
Santa Cruz Rangpur lime 4.03 b 3.60 a 30.88 c 48.67 b - 38.05 a
TSKC × (LCR × TR)-040 citrimoniandarin 3.90 b 3.30 a 26.26 c 49.67 b - 58.13 a
TSKC × CTQT 1439-003 citrangequatandarin 4.10 b 3.20 a 28.14 c 71.58 a 18.00 56.15 a
TSKC × CTQT 1439-014 citrangequatandarin 4.10 b 3.00 b 27.06 c 64.00 b - 69.86 a
TSKC × CTSW- 025 citrumelandarin 3.10 d 2.53 b 12.91 d 81.00 a - 27.20 b
TSKC × TRBK-006 citrandarin 3.63 c 2.60 b 18.00 d 53.67 b 7.80 23.00 b
TSKC × TRFD-003 citrandarin 3.70 c 3.06 b 22.94 c 40.00 b 22.70 47.53 a
TSKC × TRFD-006 citrandarin 2.53 d 1.80 c 6.08 d 15.67 b 9.40 8.80 b
TSKC × TRFD-007 citrandarin 3.10 d 2.20 c 11.08 d 52.83 b 42.80 44.86 a
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Table 5. Cont.

Rootstock
PD PH CV FY 2018 FY 2019 1 FY 2020
- - - - - (m) - - - - - (m3) - - - - - - - - - - - - (kg·tree−1)- - - - - - - - - - -

TSKFL × CTARG-029 citrangedarin 3.87 b 3.63 a 28.31 c 97.67 a - 46.33 a
TSKFL × CTSW-004 citrumelandarin 4.83 a 3.63 a 44.53 b 73.00 a - 62.55 a
Tropical Sunki mandarin 4.40 a 4.03 a 40.88 b 50.67 b 15.30 26.75 b

F * * * * - *
CV (%) 9.20 13.19 25.36 29.40 - 44.78
Mean 3.98 3.18 28.76 66.12 - 44.43

Means followed by the same letters in the column belong to the same group by the Scott–Knott test. (ns) not significant, (*) significant at
p < 0.01. Hybrid rootstock acronyms are described in Table 1.1 In 2019, fruit yield was very low due to severe drought conditions, and
therefore data were not statistically analyzed. (-) not evaluated due to insignificant fruit load on the tree.

4. Discussion

Tree architecture plays a determinant role for productivity because it regulates several
components of the production, from photosynthesis (e.g., light intercepting, harvest index)
to crop management (e.g., plant arrangement, cultural practices) [53]. The density of
trees per unit area has grown over the years, which implies the use of smaller trees
(smaller height, diameter, and canopy volume) to facilitate cultural practices (pruning, pest
and disease control, fertilization, fruit harvesting, etc.) [54]. Therefore, manipulation of
how trees grow has been a major goal of breeding and cropping systems [55–57]. This
is particularly critical for fruit crops, which are, in general, perennial woody species,
and hence challenges the sustainability of both fresh fruit and processing in modern
horticulture [58].

The use of dwarfing rootstocks has proven to be one of the most efficient methods
to control tree size and enhance the productivity and has been developed to some extent
for several fruit crops including citrus [10,59,60]. Herein, we report 17 citrus hybrid
rootstocks that induced tree size reduction in the Valencia sweet orange from 40% to
75% compared with standard rootstocks in Brazil. Although other hybrid rootstocks that
moderately decrease the scion canopy volume are available [17,22,61], only the Flying
Dragon trifoliate orange can be considered truly dwarfing in citriculture so far, alongside a
few canopy varieties such as Satsuma mandarin (C. unshiu Marcow.) and Fuya Meñuda
sweet orange [18,62]. The selected hybrids presented in this work may potentially allow a
wider genetic diversification in orchards that require smaller trees to better adjust to high
tree density, disease management, and mechanical harvesting [12,63].

The genetic control of tree size by citrus dwarfing varieties has not been fully un-
derstood, and different physiological mechanisms have been reported such as hormonal
balance with a higher relation of abscisic acid (ABA) to auxins and gibberellins [64,65],
carbohydrate partitioning and sink–source relations [61,66], tissue affinity at the graft
union [24,67], smaller vessel elements in the xylem [68], and lower hydraulic conduc-
tance [69,70]. The rolABC and a GA20-oxidase genes have been related to the expression of
the dwarfism phenotype in citrus [71,72]. In this work, all, but not only, Sunki mandarin
× Flying Dragon trifoliate orange citrandarins were semi or dwarfing, with ten different
parental crosses generating less vigorous rootstocks. Although a genetic background with
Poncirus trifoliata as a male genitor is usually a rule [73], dwarfing progenies have been
previously reported for crosses using different species, even for intraspecific hybrids of
vigorous lemon types [74]. The dwarfism character of the heterozygous Flying Dragon
genotype seems to derive from a mutation, and despite being inheritable as a single dom-
inant gene, a 5:1 segregation pattern for tree size control was observed for progenies
from its self-cross [75]. As a consequence of the horticultural importance of this trait,
it is expected that major efforts to broaden the knowledge on the genetic regulation of
citrus dwarfism may be dispended in the short-term, aiming at a faster and more precise
advancement in obtaining improved varieties, notably rootstock, as it was observed for
other fruit crops [76].
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The evaluated semi-dwarfing and dwarfing rootstocks were grouped according to
their fruit yield and production efficiency. Among them, only the Sunki × Flying Dragon
citrandarins led to higher production without presenting unequivocal symptoms of graft
incompatibility. Although some trees on TSKC×TRFD-007 presented a marked line at the
grafted union, tree stand was healthy and uniform, and trees were very productive. These
same hybrids had previously demonstrated additional advantages in propagation due to
high polyembryony rates and high vigor in the greenhouse [77], which are issues with the
Flying Dragon trifoliate orange [73]. The majority of dwarfing rootstocks were sensitive
to drought, which may explain the lower yields yet high concentrations of soluble solids,
considering that the crop was rainfed under cyclic drought seasons. The performance
of the Flying Dragon trifoliate orange, that is, the final tree size and fruit production, is
largely influenced by the cropping system, environmental conditions, use of irrigation,
and different scion varieties [19,78,79]. All these factors should be taken into account
for the commercial use of any dwarfing rootstock. Therefore, all selected hybrids in this
work are worthy of further evaluation to identify other potential graft combinations. Even
unexpected loss of the dwarfing character and other limitations regarding resistance to
biotic and tolerance to abiotic stresses may be clarified after long-term studies, since tree size
decrease may result from environmental constraints rather than only genetic control [80].
In this work, in-rows tree spacing used (2.5 m) was smaller than the canopy width induced
by most rootstocks at bearing age, which may have limited tree growth to some extent and
affected fruit yield and quality. However, the differences among the evaluated rootstocks
were clearly related to the genotypes over the assessment period, and the horticultural
evaluation was carried out under uniform conditions that are representative of commercial
management, therefore being practical for citrus growers.

Tree architecture in addition to carbohydrate competition and hormonal control may
also explain the better performance of some dwarfing hybrids because production efficiency
and fruit quality but not drought tolerance were related to the canopy volume. The
production of lots of high-quality fruit per cubic meter of the canopy is a frequent trait
of the Flying Dragon as well [20]. A suitable tree spacing for ultra-high-density citrus
orchards in Brazil could be recommended as a function of the canopy equatorial diameter
(D) at adult age, with D+ 2.0 and D x 0.65, in meters, for the between and in-rows spacing,
respectively, adapted from De Negri [81]. Considering this calculation and the tree size at
eight years old induced by one dwarfing (TSKC × TRFD-006), one semi-dwarfing (TSKC
× TRFD-003), one standard (Santa Cruz Rangpur lime), and one vigorous (HTR-208)
rootstock, the estimated tree density would be of 1429, 1100, 704, and 635 trees·ha−1,
respectively. The estimated fruit productivity, considering the mean fruit yield in the
2010–2015 period and ignoring any significant reduction in this variable due to the closer
spacing [15], would result in 45.9, 43.3, 27.8, and 43.3 t·ha−1, respectively. In 2019, the
highest mean fruit productivity in the historical series of São Paulo State was registered, at
42.6 t·ha−1 [7]. It is clear that using closer tree spacings, that is, adequately arranging the
highly efficient canopy in the provided space, is mandatory for semi-dwarfing or dwarfing
rootstocks, because a 2-fold higher yield would be expected in relation to the productivity
obtained at the current tree density, 666 trees·ha−1. This suggests that semi-dwarfing or
dwarfing rootstocks may present potential high yield in ultra-high-density orchards in
order to compete with vigorous heavy-bearing rootstocks at wider tree spacing. Moreover,
only the less vigorous rootstocks would allow functionalities other than yield, for instance,
reduced need for pruning, easy plant care, and most significant of all, the feasibility of
mechanical harvesting. Furthermore, fruit quality on dwarfing hybrids was usually higher,
reinforcing that this class of rootstock will likely be more suitable for a sustainable citrus
industry provided that high productivity is addressed.

Although the objective in this work was to select dwarfing rootstocks, some vigorous
ones should be underlined. The HTR-208 citrandarin induced an outstanding higher
fruit yield, and the six hybrids in the G4 group (LCR × LRF-034, TSKFL × CTARG-029,
MXWL × LHA-001, TSKC × (LCR × TR)-040, TSKC × CTQT 1439-014, and LCR × CTSW-
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009) produced similar yields to the commercial rootstocks, Tropical Sunki mandarin and
Santa Cruz Rangpur lime. Their tolerance to drought was very high, which may justify
their cultivation without irrigation even though fruit internal quality was not the best
for pasteurized juice processing. Additionally, the tree size of selected rootstocks was
measured again in 2020, and although there was some variation in the canopy volume,
notably for the more vigorous rootstocks, trees started to be managed by pruning after
ten years of planting to limit tree growth to the tree spacing. On the other hand, HTR-206
citrangedarin resulted in excessive tree size.

Based on the results of this experiment and results from other validation areas in
different regions of Brazil, some hybrid rootstocks were selected and have been registered
at the Brazilian Ministry of Agriculture, Livestock and Food Supply for release to growers
(Supplementary Materials ).

5. Conclusions

Seventeen citrus hybrids were selected as semi-dwarfing and dwarfing rootstocks in
relation to the standards, Santa Cruz Rangpur lime and Sunki Tropical mandarin, with
TSKC × TRFD-003, 006, and 007 citrandarins standing out for inducing higher fruit yield
and quality in the Valencia sweet orange scion variety. The first hybrid is highlighted
due to a higher tolerance to drought compared with its siblings, and particularly TSKC×
TRFD-006 should be considered for irrigated crop. These citrandarins present potential for
cultivation under tropical and subtropical climates, and preferably in irrigated high-density
orchards, in addition to the vigorous HTR-208 and LCR × CTSW-009 hybrids, because of
their superlative fruit yield.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agriculture11040354/s1, Supplementary Material 1: Rootstocks obtained by the Citrus
Breeding Program of Embrapa Cassava & Fruits registered or under registration in the Ministry of
Agriculture, Livestock and Food Supply, Brazil.
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