
agriculture

Article

Biofertilizer-Based Zinc Application Enhances Maize Growth,
Gas Exchange Attributes, and Yield in Zinc-Deficient Soil

Abdul Saboor 1, Muhammad Arif Ali 1,* , Niaz Ahmed 1, Milan Skalicky 2 , Subhan Danish 1 , Shah Fahad 3,4,
Fahmy Hassan 5 , Mohamed M. Hassan 5 , Marian Brestic 2,6 , Ayman EL Sabagh 7 and Rahul Datta 8,*

����������
�������

Citation: Saboor, A.; Ali, M.A.;

Ahmed, N.; Skalicky, M.; Danish, S.;

Fahad, S.; Hassan, F.; Hassan, M.M.;

Brestic, M.; EL Sabagh, A.; et al.

Biofertilizer-Based Zinc Application

Enhances Maize Growth, Gas

Exchange Attributes, and Yield in

Zinc-Deficient Soil. Agriculture 2021,

11, 310. https://doi.org/10.3390/

agriculture11040310

Academic Editors: Laura Ercoli and

Eric Blanchart

Received: 20 February 2021

Accepted: 29 March 2021

Published: 2 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University,
Multan 60800, Pakistan; abdulsabooruaf36d@gmail.com (A.S.); niaz.ahmad@bzu.edu.pk (N.A.);
sd96850@gmail.com (S.D.)

2 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources,
Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
skalicky@af.czu.cz (M.S.); marian.brestic@uniag.sk (M.B.)

3 Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops,
Hainan University, Haikou 570228, China; shah_fahad80@yahoo.com

4 Department of Agronomy, The University of Haripur, Haripur 22620, Pakistan
5 Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;

d.fahmy@tu.edu.sa (F.H.); m.khyate@tu.edu.sa (M.M.H.)
6 Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2,

949 01 Nitra, Slovakia
7 Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;

ayman.elsabagh@agr.kfs.edu.eg
8 Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno,

Zemedelska 1, 613 00 Brno, Czech Republic
* Correspondence: arif1056@bzu.edu.pk (M.A.A.); rahulmedcure@gmail.com (R.D.)

Abstract: Zinc (Zn) concentration in soil varies from deficient to toxic. Its deficiency, as well as
toxicity, through imbalanced application and cropping in industrial sites can reduce maize growth
and yield. Therefore, balanced Zn application is necessary to save resources and achieve optimum
growth and yield in maize. Arbuscular mycorrhizal fungi (AMF) can provide tolerance to the
host plant against Zn-induced stress. Inoculation with AMF helps in regulating the uptake of
Zn and enhances the growth and yield of crops. Different application rates of Zn (0, 20, 40, 60,
80, 100, and 120 mg Zn kg−1) were applied with inoculation with AMF (AM) and without AMF
(NM). Results showed that root colonization was 45% higher in AMF-inoculated plants than non-
inoculated plants. A significant increase in plant height (15%), number of leaves (35.4%), cob weight
(4.39%), 1000-grain weight (10.5%), and biological yield (42.2%) signified the efficacious functioning
of Zn20 + AM over sole inoculation with AM. We also observed that AMF inoculation with Zn20
helped to improve photosynthesis, transpiration, and stomatal conductance. Furthermore, both
Zn20 + AM and Zn20 + AM significantly increased total soluble protein compared with AM. Higher
application rates of zinc, i.e., Zn80 and Zn120, induced Zn toxicity with (AM) and without (NM)
AMF. In conclusion, Zn20 + AM is an effective treatment to achieve better growth and maize yield
without Zn deficiency or toxicity.

Keywords: arbuscular mycorrhizal fungi; maize; zinc; gas exchange attributes; morphological
attributes; yield

1. Introduction

Maize (Zea mays L.) is the third most cultivated crop and a member of the Poaceae
(Gramineae) family. In Pakistan, it is normally cultivated in spring and autumn [1]. The
Punjab and Khyber Pakhtunkhwa (KPK) provinces are major maize producers in Pakistan,
accounting for about 97% of total production [2]. Maize is considered an exhaustive
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nutrient crop as its uptakes a high amount of nutrients from the soil. Unfortunately, soils
in Pakistan cannot supply a sufficient quantity of nutrients [3–5], especially zinc (Zn), to
fulfill plant demands and improve crop yield [6–8].

Zinc is considered the most important micronutrient for normal and healthy plant
growth [3,4,6,9]. It is a structural component or cofactor of various enzymes involved
in many biochemical processes. In plants, it is involved in photosynthesis, carbohydrate
metabolism, protein metabolism, pollen formation, auxin metabolism, maintenance of
membrane integrity, and induction of tolerance against various stresses [10]. The total
concentration of Zn in soil ranges from 10 to 300 mg Zn kg−1 soil, and the average is
55 mg Zn kg−1 soil. However, most Zn forms complexes with soil colloids and organic
matter (OM), reducing Zn bioavailability for plants. Therefore, a very small amount of Zn
is normally available for plant uptake.

Zinc deficiency in soil is a global problem. Arid and semi-arid soils are usually defi-
cient in Zn due to the high immobilization of Zn. Furthermore, high soil pH (8.0 to more
than 8.5) drastically reduces soil Zn bioavailability. Soils in Pakistan mostly exhibit high
soil pH, high CaCO3, and low OM content; therefore, Zn deficiency is a major issue in
most regions [11]. High input of phosphatic fertilizers also reduces Zn bioavailability
due to the formation of insoluble Zn phosphates in soil. The soil microbial application
technique is considered the best among the various available methods to achieve optimum
plant growth and yield [6,8,12–21]. Commonly used organic amendments [22–24] and soil
microbial techniques include the application of plant growth-promoting bacteria [25–28],
Zn-solubilizing bacteria, and arbuscular mycorrhizal fungi. Arbuscular mycorrhizal fungi
colonize the plant roots and form a symbiotic relationship with plants by providing nutri-
ents, water, and protection from pathogens [29]. More than 90% of terrestrial plants benefit
from this symbiosis [30]. Their contribution in increasing the uptake of nutrients (P, Zn,
Fe, Cu, and K) from the soil system to plants is well known [14]. Arbuscular mycorrhizal
fungi (AMF) also mediates the toxic effects of metals (Zn) and exerts a protective effect
to promote plant growth under metal-polluted conditions [31]. It has been observed that
AMF-inoculated plants produced more biomass as compared to non-inoculated plants.
Increased biomass is directly related to improved plant nutrition due to increased root
colonization rate [32].

AMF contribution to Zn uptake was quantified by Jansa et al. [33]. After that, Watts-
Williams et al. [34] quantified the total Zn uptake and mycorrhizal contribution and plant
dependency on Rhizophagus irregularis. In wheat and barley, R. irregularis contributed to
up to 24.3% and 12.7% of Zn uptake, respectively [14]. Therefore, the current study was
conducted to explore the potential benefits of AMF on maize growth and yield attributes
under different Zn application rates. The study aimed to assess the performance of AMF
under Zn deficiency and toxicity conditions. It was hypothesized that AMF can help
in decreasing the application rate of Zn. AMF can also play an important role in the
improvement of growth, gas exchange attributes, and yield of maize

2. Materials and Methods
2.1. Experimental Soil and Location

A completely randomized design (CRD) pot experiment was conducted at the research
area of the Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
Extractable zinc was deficient (0.52 mg Zn kg−1) in soil collected from the Chak 5 Faiz
location (latitude 29.9◦ N and longitude 71.5◦ E).

2.2. Experimental Soil Characterization

Air-dried samples of soil of 2-mm mesh size were mixed with sand in an 8:2 ratio,
termed soil. After mixing, soil was analyzed for various physicochemical properties. It
contained 39% saturation, 54% water-holding capacity, 0.14 dSm−1 ECe [35], 8.82 pH [36],
6.5 mg kg−1 available P [37], 126 mg kg−1 extractable K [38], 0.43% organic matter [39],
and 0.0215% total N [40].
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2.3. Pot Preparation by Addition of Zn and AMF

Non-draining pots were filled with 20 kg soil inoculated with 5 g mycorrhizal in-
oculum Clonex® (Root Maximizer; 5711 Enterprise Drive, Lansing, MI, USA) having
158 propagule gram−1. Glomus species were the major constituents of the inoculum. In
AMF-controlled pots (M−), Topsin M (Thiophanate Methyl 70% wettable powder (WP))
was applied at 50 mg kg−1 soil for reducing AMF root colonization. Six Zn doses (20, 40,
60, 80, 100, and 120 mg Zn kg−1 soil in ZnSO4 form) were applied along with a control
treatment without Zn addition. The treatments are referred to as Zn0, Zn20, Zn60, Zn80,
Zn100, and Zn120.

2.4. Moisture Maintenance and Fertilizer Addition

The moisture content in each pot was maintained at 60% of the total WHC on a weight
basis [41], and the recommended doses of N and K with half P fertilizers were applied at
the rate of 227.24:71.63:91.39 kg ha−1.

2.5. Seeds Sowing and Thinning

Maize variety YH 1898 was used in this study. Two weeks after germination, plants
were thinned to two plants per pot and were irrigated until maturity.

2.6. Morphological Attributes

At the time of maturity (R6 = milk line no longer evident, black layer formed; end
of mass gain; maximum dry weight is attained), plants were harvested. Plant agronomic
parameters such as the number of leaves were counted, and plant height (cm) and stem
girth (cm) were measured using a measuring tape before harvesting in three replications.

2.7. Yield Parameters

At maturity (115 days after sowing), the aboveground biomass of plants in all pots
was destructively sampled and the weights of grains and residues were determined. The
number of leaves was counted manually and cob length was noted by using a standard
measuring tape.

2.8. Gas Exchange Attributes

Stomatal conductance, photosynthetic rate, and transpiration rate were measured
at the tasseling stage (V12–V14; 45 days after germination when leaves’ growth was
active) with constant light intensity of a photosynthesis device (1500 µmol m−2 s−1), CO2
concentration (400 µmol), and airflow (500 µmol s−1). When photosynthesis reached a
steady state, the measurement was recorded by an LCi- SD Ultra Compact Photosynthesis
System® between 10:30 and 11:30 a.m. at a saturating intensity of light [16,42,43].

2.9. Total Soluble Protein (TSP)

Composite leaf samples (V12-V14; 45 days after germination when leaves’ growth was
active) were stored at −80 ◦C in a freezer (Panasonic Japan; MDF-U55V-PE). For enzyme
extraction, samples were vortexed and then centrifuged in potassium phosphate buffer
(pH 4). Bradford reagent was added, and absorbance was measured using an ELISA plate
at a wavelength of 595 nm [44].

2.10. AMF Colonization Determination/Measurement

Roots were harvested for AMF root colonization assessment by the gridline intersect
method [45]. Briefly, roots were washed in 10% KOH solution, and trypan blue staining
was used to observe arbuscular mycorrhizal colonization in root tissues by following the
method developed by Phillips and Hayman [46].



Agriculture 2021, 11, 310 4 of 20

2.11. Statistical Analysis

Data were statistically analyzed by using a two-way analysis of variance (ANOVA) [47].
The difference of treatment means was examined by the least significance difference (LSD)
test using a 5% level of significance using Statistical Package Statistix 8.1 (Analytical Soft-
ware, 2105 Miller Landing Rd Tallahassee, FL, USA) and Origin 2021. Pearson correlation
and a principal component analysis were conducted using Origin 2021 (OriginPro, Version
2021. OriginLab Corporation, Northampton, MA, USA).

3. Results
3.1. Root Colonization

Inoculation of AMF significantly (p ≤ 0.05) increased the colonization percentage
irrespective of soil Zn level up to 60 mg Zn kg−1 application; however, higher applica-
tion resulted in decreased colonization percentage. Non-inoculated (NM) maize roots
showed a maximum of 45% root AMF colonization, as shown in Figure 1. Conversely,
AMF-inoculated (AM) maize plant roots showed higher AMF colonization (Figure 1).
Colonization percentage was significantly (p ≤ 0.05) high, with an average of 45% in AMF-
inoculated plants irrespective of AMF inoculation, and Zn application reduced the AMF
colonization rate after 20 mg Zn kg−1 application. A more drastic effect of Zn application
was observed in Z0 + NM plants.
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Figure 1. Effect of different application rates of Zn on arbuscular mycorrhizal fungi (AMF) coloniza-
tion with and without AMF. Means are average of 3 replicates. Different values on graph (A) bars
show a significant difference at α ≤ 0.05. Values on graph (B) bars are p-values computed using
Fisher’s least significance difference (LSD) test; α ≤ 0.05.
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3.2. Plant Height

Application of different levels of Zn with (AM) and without AMF (NM) significantly
affected the maize plant height. The treatments Zn20 + AM and Zn40 + AM differed
significantly compared to Z0 + AM and Z0 + NM in terms of plant height (Table 1; Figure 2).
No significant change was observed among Zn20 + NM and Z0 + AM, but Zn20 + NM was
significantly different to Z0 + NM. However, Zn40 + NM remained significantly better than
Z0 + AM. The treatments Zn80 + AM, Zn100 + AM, and Zn120 + AM significantly affected
plant height compared to Z0 + AM. The same trend was also noted among Zn80 + NM,
Zn100 + NM, and Zn120+NM compared to Z0 + NM. The maximum increase of 15% and
25% in plant height was observed in Zn20 + AM compared to Z0 + AM and Z0 + NM,
respectively.

Table 1. Effect of different application rates of Zn with (AM) and without AMF (NM) on maize
growth attributes. Values are means of three replicates. Different letters show significant difference
at p ≤ 0.05; LSD test.

Treatment
Plant Height (cm) Stem Girth (cm) No. of Leaves

AM NM AM NM AM NM

Control
(Zn0) 160c 147d 2.7ab 2.6bc 9.3c 8.3de

Zn20 184a 158c 2.8a 2.7cd 12.6a 9.3c
Zn40 182ab 176b 2.6b 2.5b 12.0a 11.0b
Zn60 149d 136e 2.5d 2.4e 9.1cd 8.5cde
Zn80 138ef 118gh 2.4e 2.3f 9.0cd 8.0ef

Zn100 132ef 113h 2.3f 2.1g 8.3de 7.3fg
Zn120 124g 111fh 2.2g 1.9h 7.3fg 7.0f

AM *** *** ***
Zinc *** *** ***

AM*Zn * *** **
* (p ≤ 0.005), ** (p ≤ 0.01), *** (p ≤ 0.001).
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3.3. Stem Girth

Zinc application with (AM) and without AMF (NM) significantly affected maize stem
girth. The treatment Zn20 + AM was significantly different compared to Z0 + NM for
increased stem girth (Table 1; Figure 3). No significant change was observed among
Zn20 + AM, Zn40 + AM, and Z0 + AM for stem girth. The treatments Zn80 + AM,
Zn100 + AM, and Zn120 + AM significantly affected stem girth compared to Z0 + AM. The
same trend was also noted among Zn80 + NM, Zn100 + NM, and Zn120 + NM compared
to Z0 + NM. The maximum increase of 7.69% in stem girth was observed in Zn20 + AM
over Z0 + NM.
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3.4. Number of Leaves

The interaction of Zn application and AMF inoculation significantly affected the
number of maize leaves. Application of Zn20 + AM and Zn40 + AM increased the leaf
number compared to Z0 + AM and Z0 + NM (Table 1; Figure 4). A significant change in
the number of leaves was also observed among Zn20 + AM and Zn40 + AM compared
to Z0 + AM. Treatments Zn100 + AM and Zn120 + AM significantly affected the number
of leaves compared to Z0 + AM. The same trend was also observed among Zn100 + NM
and Zn120 + NM compared to Z0 + NM. The maximum increase of 35.4% and 51.8% in the
number of leaves was recorded in Zn20 + AM over Z0 + AM and Z0 + NM, respectively.
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3.5. Cob Weight

The effect of the interaction of Zn dose with AMF inoculation significantly affected
cob weight of maize. Cob weight differed between Zn20 + AM and Z0 + NM (Table 2;
Figure 5). Cob weight was significantly higher with Zn20 + NM and Zn40 + NM compared
with Z0 + NM. A significant change in cob weight was also observed among Zn20 + AM,
Zn40 + AM, and Zn60 + AM treatments. Zn80 + AM, Zn100+ AM, and Zn120 + AM
significantly affected cob weight compared to Z0 + AM. The same trend was also observed
among Zn80 + NM, Zn100 + NM, and Zn120 + NM compared to Z0 + NM. The maximum
increase of 4.39% and 12.8% in cob weight was recorded in Zn20 + AM over Z0 + AM and
Z0 + NM, respectively.

Table 2. Effect of different application rates of Zn with and without AMF on growth attributes of maize.
Values are means of three replicates. Different letters show significant difference at p ≤ 0.05; LSD.

Treatment
Cob Weight (g) Cob Length (cm) 1000-Grain Weight (g) Biological Yield (t/ha)

AM NM AM NM AM NM AM NM

Control
(Zn0) 227.6bc 210.6d 16.5a 15.2ef 152d 138g 4.17c 3.79d

Zn20 232.6ab 222.6c 20.8a 16.4d 168a 143f 5.93a 4.30c
Zn40 237.6a 227.6bc 17.7c 19.5b 163b 158c 5.21ab 5.06b
Zn60 224.6c 214.6d 15.5e 14.5f 158c 158c 5.00c 4.88e
Zn80 211.6d 201.6e 15.5e 14.5f 138g 146e 4.76ef 4.03gh

Zn100 203.3e 176g 15.5e 14.5f 132h 122i 3.78ef 16.13h
Zn120 190f 139h 14.5f 13.4g 128hi 117j 3.72fg 3.82h

AM *** *** *** ***
Zinc *** *** *** ***

AM*Zn *** *** *** *
* (p ≤ 0.005), *** (p ≤ 0.001).
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3.6. Cob Length

The interaction of Zn application with AMF inoculation significantly affected cob
length of maize. The treatment Zn20 + AM significantly increased cob length over Z0 + NM
(Table 2; Figure 6). The addition of Zn20 + NM and Zn40 + NM differed significantly for
cob length from Zn0 + NM. A significant decrease was also noted among Zn40 + AM,
Zn60 + AM, Zn80 + AM, and Zn100 + AM over Z0 + AM for cob length. Treatments
Zn60 + NM, Zn80 + NM, Zn100 + NM, and Zn120 + NM also showed a significant decline
in cob length compared to Z0 + NM. The maximum increase of 36.8% in cob length was
observed in Zn20 + AM over Z0 + NM.

3.7. 1000-Grain Weight

Zn application and AMF inoculation significantly affected the 1000-grain weight of
maize. The addition of Zn20 + NM, Zn40 + NM, Zn60 + NM, and Zn80 + NM significantly
enhanced the 1000-grain weight of maize compared with Zn0 + NM (Table 2; Figure 7).
A significant decrease was observed among Zn80 + AM, Zn100 + AM, and Zn120 + AM
over Zn0 + AM for 1000-grain weight. The treatments Zn100 + NM and Zn120 + NM also
showed a significant decline in 1000-grain weight over Z0 + NM. The maximum increase
of 10.5% and 21.7% in 1000-grain weight was observed in Zn20 + AM over Z0 + AM and
Z0 + NM, respectively.
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3.8. Grain Yield

Zinc application and AMF inoculation significantly affected maize grain yield. The
treatments Zn20 + NM and Zn40 + NM significantly enhanced the grain yield compared
with Z0 + NM (Table 2; Figure 8). A significant decline in grain yield was observed when
Zn80 + AM, Zn100 + AM, and Zn120 + AM were applied compared to Z0 + AM. The
treatments Zn60 + NM, Zn80 + NM, Zn100 + NM, and Zn120 + NM also led to a significant
decline in biological yield compared to Z0 + NM. The maximum increase of 42.2% and
56.5% in maize biological yield was observed in Zn20 + AM over Z0 + AM and Z0 + NM,
respectively.
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3.9. Photosynthetic Rate

Zinc application and AMF inoculation significantly affected the photosynthetic rate at
the 45th day after germination. All the application rates of Zn significantly increased the
photosynthetic rate in maize compared to Z0 + AM (Figure 9). The treatments Zn20 + NM,
Zn40 + NM, Zn60 + NM, and Zn80 + NM also significantly enhanced the photosynthetic
rate of maize compared to Z0 + NM. The treatment Zn120+NM caused a significant decline
in photosynthetic rate compared to Z0 + NM.
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3.10. Transpiration Rate

Application of variable Zn rates with (AM) and without AMF (NM) led to significantly
different results for maize transpiration rate at the 45th day after germination. All the
application rates of Zn20 + AM, Zn40 + AM, Zn60 + AM, Zn80 + AM, Zn100 + AM,
and Zn120 + AM significantly increased transpiration rate in maize over the Z0 + AM
treatment (Figure 10). The treatments Zn20 + NM, Zn40 + NM, Zn60 + NM, and Zn80 + NM
also enhanced the transpiration rate significantly in maize over Z0 + NM. The treatment
Zn120 + NM caused a significant decrease in transpiration rate compared to Z0 + NM.
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3.11. Stomatal Conductance

Application of variable Zn rates with (AM) and without AMF (NM) led to significantly
different results for maize’s stomatal conductance at the 45th day after germination. The
addition of Zn20 + AM significantly enhanced stomatal conductance in maize compared
to Z0 + AM (Figure 11). It was noted that stomatal conductance was affected in the
Zn60 + AM, Zn80 + AM, Zn100 + AM, and Zn120 + AM treatments compared to Z0 + AM.
The treatment Zn20 + NM also enhanced stomatal conductance significantly in maize
compared to NM. Application of Zn80 + NM, Zn100 + NM, and Zn120 + NM caused a
significant decrease in stomatal conductance compared to Z0 + NM.
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3.12. Total Soluble Protein Concentration in Leaves

Zinc application and AMF inoculation significantly affected the total soluble protein
concentration in maize leaves. The addition of Zn20 + AM and Zn40 + AM significantly
improved the total soluble protein content in maize compared to Zn0 + AM (Figure 12). It
was observed that the total soluble protein content was affected in the Zn100 + AM and
Zn120 + AM treatments compared to Z0 + AM. The treatments Zn20 + NM and Zn40 +
NM also enhanced total soluble protein significantly in maize more than Z0 + NM did.
The addition of Zn80 + NM, Zn100 + NM, and Zn120 + NM caused a significant decline in
maize total soluble protein compared to Z0 + NM.
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3.13. Pearson Correlation and Principal Component Analysis

Pearson correlation showed that maize growth attributes were positively and signifi-
cantly correlated with gas exchange attributes and yield components were affected by Zn
application rate irrespective of AMF application (Figure 13). Principal component analyses
showed that stomatal conductance, transpiration rate, total soluble protein, and biological
yield were more closely associated with Zn20 (Figure 14B). Photosynthetic rate and AMF
colonization were more closely associated with Zn60. All growth, yield, and gas exchange
attributes were more closely associated with AMF (Figure 14B).
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4. Discussion

Colonization of roots by AMF varies with Zn application and increases with the
increase in the rate in Zn-deficient soil [48,49]. Conversely, high Zn (80–120 mg Zn kg−1)
supply reduced the AMF root colonization percentage of maize, and these results are in
agreement with those of Watts-William et al. [50], Wang et al. [31], and Coccina et al. [14].
Lingua et al. [51] observed that at high soil Zn concentration, AMF colonization was
suppressed owing to reduced hyphal growth and prevention of spore production and
germination. High Zn concentration in roots mediates two kinds of responses, i.e., fungal
and plant responses. Alteration in fungal response includes reduced spore germination,
spore life length, and density of spores, growth of hyphae, and appressoria formation [52].
In plant responses, high Zn upregulates the plant defense system, alters the hormonal
balance, and, most importantly, it alters the root exudates’ composition [53,54]. Irrespective
of AMF inoculation, high Zn supply negatively affects the plant growth parameters and
yield [31,50]. Inoculated plants showed improved maize growth. AMF have a nutrient
threshold level below which they upregulate nutrient transporter genes, and above this
threshold, they impart a protective effect on plants and increase plant growth [55]. A
detailed study by Paneque et al. [56] showed that AMF inoculation increased plant yield
by 20%. A similar result was also documented by Zhang et al. [57], whereby inoculation
of R. irregularis increased yield by 17%, and in another study of wheat, a 24% increase
in grain yield was observed with high Zn application [14]. Another study also showed
high yield in R. irregularis-inoculated plants at 100 and 500 mg Zn kg−1 application [58].
AMF colonization rate was positively correlated with plant height, stem width, and cob
weight and length. According to Monnet et al. [59], Zn deficiency adversely affects plant
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growth by minimizing photosynthesis and damaging chloroplast thylakoids and light-
harvesting complex (LHC) proteins, leading to disorganization and disintegration of the
chloroplast membrane. In our study, reduced plant height, stem girth, number of leaves,
and other growth attributes were due to poor Zn uptake. Coccina et al. [14] described
that improved growth due to Zn application is associated with increased Zn uptake by
the plant. Application of Zn in deficient soil increased photosynthesis, transpiration, and
stomatal conductance rate [60]. It might be due to an increase in total soluble protein (TSP)
contents, which was also observed in the current study.

Our results are also supported by those of Liu et al. [61]. They documented an
increased photosynthetic efficiency by increasing chlorophyll a and b concentrations due to
Zn application in Zn-deficient soil [61]. Zinzala et al. [60] showed that many physiological
parameters were negatively affected above 80 mg Zn kg−1 soil application due to Zn
toxicity [60]. We observed a reduction in the net photosynthetic rate (A) and transpiration
rate (E) due to reduced stomatal conductance. However, no visual symptoms of Zn toxicity
were observed in our study [62]. Sagardoy et al. [63] argued that Zn toxicity reduced the
stomatal conductance (gs) severely (76%), which limits other related physiological and
chemical processes [63]. They also found that excess Zn led to alteration of the physical
structure of mesophyll cells and stomata. Reduced photosynthesis was also due to the
restricted activity of carbonic anhydrase enzyme [63]. According to Tobin [64], Zn is a
crucial part of carbonic anhydrase (CA) in chloroplasts and cytoplasm [65]. CA activity
becomes restricted under limited Zn uptake [65,66]. CA activity also controls CO2 diffusion
in cell lipid phase to chloroplasts during photosynthesis [67,68]. According to Sharma
et al. [69], CA activity restriction under Zn deficiency decreased stomatal conductance and
transpiration rate.

Vassilev et al. [62] studied excess Zn in plant tissues, which reduced Mg2+ uptake,
replaced Mg atoms, and disrupted chlorophyll structure and decreased photosynthetic
rate [62]. Inoculation with AMF improved the total soluble protein content in maize [70,71].
The results of our study are in accordance with those of Nguyen et al. [71]. In soil with low
Zn, AMF increases carbonic anhydrase enzyme activity and enhances photosynthesis. In
contrast, in soil with high Zn, AMF imparted a protective effect on plants by mitigating
the Zn toxicity effect [71]. In this study, the results showed that AMF-inoculated plants
improved the plant physiological response with high soil Zn compared to non-inoculated
plants, and the results are in line with those of Wang et al. [31].

5. Conclusions

The application of Zn20 + AM proved to be the most effective one for improving
maize growth attributes cultivated in Zn-deficient conditions. A significant increase in
the yield attributes of maize through the addition of Zn20 + AM validated the efficacious
functioning of the combined used of Zn and AM in terms of photosynthetic rate, gas
exchange attributes, and stomatal conductance. Higher application rates of Zn, i.e., 80, 100,
and 120, induced adverse effects on maize growth, yield, and gas exchange attributes with
AM and NM. It is recommended to apply Zn20 + AM to achieve better growth and yield of
maize in Zn-deficient soils.
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