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Abstract: Excess pesticide residues on cabbage are harmful to humans. In this study, we propose an
innovative strategy for a quick and nondestructive qualitative test of lambda-cyhalothrin residues on
Chinese cabbage. Spectral profiles of Chinese cabbage leaf samples with different concentrations of
surface residues of lambda-cyhalothrin were collected with an Agilent Cary 630 FTIR Spectrometer.
Standard normal variate (SNV), multiplicative scatter correlation (MSC), and principle component
analysis (PCA) were utilized to preprocess the spectra. Then, fuzzy Foley-Sammon transformation
(FFST), fuzzy linear discriminant analysis (FLDA), and fuzzy uncorrelated discriminant transforma-
tion (FUDT) were employed to extract features from the spectra data. Finally, k-nearest neighbor
(kNN) was applied to classify samples according to the concentration of lambda-cyhalothrin residue.
The highest identification accuracy rates of FFST, FLDA, and FUDT were 100%, 97.22%, and 100%,
respectively. FUDT performed the best considering the combination of accuracy rate and required
computing time. We believe that mid-infrared spectroscopy combined with fuzzy uncorrelated
discriminant analysis is an effective method to accurately and quickly conduct qualitative analyses
of lambda-cyhalothrin residues on Chinese cabbages. This method may have applications in other
crops and other pesticide residues.

Keywords: Chinese cabbage; lambda-cyhalothrin; mid-infrared spectroscopy; fuzzy linear discrimi-
nant analysis; fuzzy Foley-Sammon transformation; fuzzy uncorrelated discriminant analysis; kNN

1. Introduction

Chinese cabbage (Brassica rapa, Chinensis group), featuring high nutritional quality
and mild flavor, has long been popular in China [1,2]. To protect the crop from pests and to
increase the yield, farmers have long been using pesticides. In the past century, pyrethroids,
including lambda-cyhalothrin, have been common pesticides to raise cabbage and other
crops’ production [3,4]. However, excess pyrethroid residue is harmful to mammals [4].
Researchers have found that there is a higher risk for children, ages 3–11, to develop
neurological and developmental diseases if they consumed foods with excess pyrethroid
residues frequently [4,5].

Detection of pesticide residues in food has long been in demand [6]. Traditionally,
gas chromatography [7], liquid chromatography and its modified version, combined
with another extraction method [8], were used. For higher sensitivity, tandem mass
spectrometry is preferred [9]. Solid phase microextraction (SPME) was employed to
determine 10 triazole fungicides in grapes [10]. Gas chromatography–mass spectrometry
(GC-MS) was employed to quantitatively detect pesticides in propolis, and triadimefon was
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found in most samples [11]. Although these methods are relatively sensitive and accurate,
they require multistep sample preparation, and the processes are time-consuming as well
as expensive [12].

In order for foods to be widely tested for pesticide residues, it is important that the
methods used are fast and economical. At present, enzymatic inhibition methods and
spectroscopy technologies are most often used. Based on an enzyme inhibition and heat
generation method, a multilayer paper chip was proposed to detect organophosphorus
and carbamate residues on vegetables and fruits [13]. Spectroscopy technologies have great
potential in the field of food pesticide residue detection due to their low cost and ease of
quantification [14]. Each pesticide has unique spectra in the near-infrared (NIR) and mid-
infrared (MIR) wavelength ranges. The unique spectra are due to the pesticides’ molecular
structure induced vibration and rotation modes. Mid-infrared spectroscopy or Raman
spectroscopy are often used to identify specific chemical components [15]. The information
collected by the spectrometer can be used for qualitative and quantitative analyses [16].
Near infrared spectroscopy, transmission spectroscopy, polarization spectral detection tech-
nology, chlorophyll fluorescence spectra, and hyperspectral technique were demonstrated
to detect triadimefon in propolis [11], fenvalerate and triazoline on lettuce leaves [17],
five different types of organophosphorus pesticides on lettuce leaves [18], dimethoate
on lettuce [19] and fenvalerate as well as triazoline on lettuce [20], respectively. To pro-
cess the near infrared hyperspectral image information, researchers employed chemical
molecular structure coupled with wavelet transform to find the most influential wave-
length [21]. Then, these authors were able to detect five kinds of pesticides (dimethoate,
acephate, phoxim, dichlorvos, and avermectin) [21]. Mid-infrared spectroscopy has also
been applied to identify tea varieties, and the accuracy rate was 96.3% because of its high
specificity [16]. In the following, we apply MIR spectroscopy, for the first time, to the
detection of lambda-cyhalothrin residues on Chinese cabbages.

Fuzzy Foley-Sammon transformation (FFST), fuzzy linear discriminant analysis (FLDA),
and fuzzy uncorrelated discriminant transformation (FUDT) are used in processing data
and resolving component information of samples. FFST combined with an E-nose system
has been employed to classify Chinese vinegar and reached an identification accuracy rate
as high as 96.92% [22]. FLDA was efficient in classifying some Romanian and German
mineral waters with an accuracy as high as 88% [23]. FUDT was applied to extract the
feature information in images of synthetic aperture radar (SAR) [24]. In this study, FLDA,
FFST, and FUDT were applied to detect lambda-cyhalothrin on Chinese cabbages and the
performance of these different algorithms was compared.

In this work, the MIR technique, combined with the pattern recognition algorithms,
was evaluated for the qualitative analysis of lambda-cyhalothrin residues on Chinese
cabbages. The specific objectives are as follows: (1) to establish the feature extraction
model FLDA, FFST, and FUDT and the supervised classification model kNN of the spectro-
scopic analysis; (2) to compare the performance of the three different pattern recognition
algorithms, FLDA, FFST, and FUDT in detecting lambda-cyhalothrin residues on Chi-
nese cabbage.

2. Materials and Methods
2.1. Sample Preparation

Fresh Chinese cabbage samples were bought from a supermarket in Zhenjiang, China.
All samples were first washed with water (45 ◦C) to remove pesticide residues left on
the sample surfaces. This was done to prevent the data from being contaminated, and to
eliminate the possible presence of pesticides other than lambda-cyhalothrin on the Chinese
cabbage. The samples were divided into four groups.

Lambda-cyhalothrin pesticide (5% EC, Shandong Shenda Crop Science Co. Ltd.,
Shouguang, China) was used. The lambda-cyhalothrin was mixed with water at ratios of
1:500, 1:100, and 1:20. Lambda-cyhalothrin pesticide mixtures at each dilution ratio were
sprayed onto the surfaces of one group of Chinese cabbage leaves. One group that did
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not have any pesticide sprayed on it served as the reference group. Samples that were
sprayed with the 1:500 mixture were called the mildly contaminated group. Similarly, the
samples sprayed with the 1:100 mixture and the 1:20 mixture were called the moderately
contaminated and the seriously contaminated groups, respectively.

Each group of samples was measured with a spectrometer.

2.2. Spectral Data Acquisition

An Agilent Cary 630 FTIR Spectrometer with data collection software (Microlab PC
and Resolutions Pro) was used in this study. The prepared samples were well ventilated and
cooled for 24 h so that the influence of water on the spectra could be minimized. Afterwards,
the samples of Chinese cabbage leaves were cut into pieces of about 2 mm × 2 mm. Each
group had about 40 pieces (total 160 pieces) for spectra collection.

The spectrometer was set to ATR (attenuated total reflection) mode and was calibrated
with the scanning times at 64. The wavenumber range was between 590–4289 cm−1 with a
resolution of 8 cm−1. The diamond crystal surface was cleaned with anhydrous alcohol.
The background spectra were collected first. The samples’ spectra were collected after sub-
tracting the background spectra. We collected 40 spectra from 40 pieces of cabbage leaves in
each group. Each spectrum had 971 points. Among the spectra collected, 22 spectra in each
group were picked to train the supervised model (total 88 spectra) and another 18 spectra
were picked to test the model’s performance of feature extraction and classification (total
72 spectra).

2.3. Spectral Processing Method

By analyzing the spectra of the Chinese cabbage samples, we can resolve the compo-
nent information. However, the original spectra can be easily influenced by the physical
properties of the samples. Because of scatter, the baseline may drift and this exerts a
negative influence on the performance of classification results [25]. In order to eliminate
physical light scatter and raise the signal to noise ratio, multiplicative scatter correction
(MSC) was used in previous work [26]. As in this prior research, we used MSC to correct
each experimental spectrum by subtracting the reference spectrum. This minimized the
influence of baseline drift.

2.4. Principle Component Analysis

Principle component analysis (PCA) is an unsupervised method used to decrease
the dimensions of data and obtain primary features. Although some information may be
lost in the reduction, the most important information can be retained and noise can be
eliminated. Meanwhile, the curse of dimensionality can be avoided, and the processing
speed can be increased because of the fewer dimensions. When PCA is conducted on the
data, it is common practice to select principle components that make larger contributions
to the spectra. The larger the contribution is, the more component information can be
reserved [22]. Considering the advantages of PCA, we employed it to process the spectral
data after conducting SNV and MSC.

2.5. Feature Extraction Algorithms

In this study, three feature extraction algorithms (FFST, FLDA, and FUDT) combined
with fuzzy theory were used to obtain the component information in the samples’ spectral
data. We introduce the concept of fuzzy membership value to represent the degree that
one sample belongs to a certain class. Although one sample can be related to two or more
classes because its fuzzy membership values of the related classes do not equal zero, the
class of the sample is defined by the highest fuzzy membership value it possesses. Let



Agriculture 2021, 11, 275 4 of 14

X = {xi}, i = 1, 2, . . . , n, be a set of q-dimensional samples. The fuzzy membership value
can be calculated as follows:

uik =

[
c

∑
j=1

(
||xk − vi||2∣∣∣∣xk − vj

∣∣∣∣2
)]−1

(1)

In this equation, uik is the fuzzy membership value of the k-th sample xk belonging to
the i-th class and c is the number of classes. vi here is the mean value of samples in class i.

2.5.1. Fuzzy Linear Discriminant Analysis

FLDA aims to minimize the distances between samples in the same class while
maximizing the distances between samples in different classes. Computers can achieve
this by projecting the spectra data to a lower dimension through the equations below [23].

The Fisher optimal discriminant function is:

maxJ(ψ) =
ψTS f Bψ

ψTS f Wψ
(2)

Equation (2) can be solved as an eigenvalue problem:

S−1
f WS f Bψ = λψ (3)

where S f B is the fuzzy between-class scatter matrix:

S f B =
c

∑
i=1

n

∑
k=1

um
ik(vi − x)(vi − x)T (4)

S f W is the fuzzy within-class scatter matrix:

S f W =
c

∑
i=1

n

∑
k=1

um
ik(xk − vi)(xk − vi)

T (5)

In Equations (4) and (5), n is the number of training samples and m (m > 1) is the
weight index, while x is the mean of the training samples:

x =
1
n

n

∑
j=1

xj (6)

Based on the calculations above, the discriminant values and their corresponding
discriminant vectors can be obtained. The bigger the discriminant value is, the better it
can represent the whole data. Hence, with the data projected to the selected discriminant
vectors, most information can be reserved for further processing.

Fuzzy linear discriminant analysis can be described in the following steps:
1. Fuzzify the data and determine membership values with Equation (1).
2. Obtain the discriminant values and their corresponding discriminant vectors, and

then sort them in descending order ψ1, ψ2, . . . , ψp. The following linear transformation
projects the data from Rq to Rp:

y = [ψ1ψ2 . . . ψp]
TX (7)

2.5.2. Fuzzy Foley-Sammon Transformation

In contrast to LDA, orthogonal and unitization constrains were added when max-
imizing the Fisher optimal discriminant function [27]. Using the method of Lagrange
multipliers, a recursive expression can be obtained. Discriminant vectors on which the
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data are projected can be calculated from the recursive expression. Combined with fuzzy
theory, FFST was developed based on FST [22].

In fuzzy linear discriminant analysis, the vector ψ can be obtained by solving the
following equation:

maxJ(ψ) =
ψTS f Bψ

ψTS f Tψ
(8)

Equation (8) can be solved as an eigenvalue problem:

S−1
f T S f Bψ = λψ (9)

where S f T is the fuzzy total class scatter matrix:

S f T =
c

∑
i=1

n

∑
k=1

um
ik(xk − x)(xk − x)T (10)

ψ1 is the eigenvector corresponding to maximum eigenvalue λ1. Let the unit vector ψ1
be the first vector of the set of fuzzy Foley-Sammon optimal discriminant vectors. Suppose
the first r optimal discriminant vectors of FFST ψ1, ψ2, . . . , ψr (r ≥ 1) are obtained. The
next vector ψr+1 which maximizes Equation (8), can be computed with the following
orthogonality constraint and recursive expression:

ψT
r+1ψi = 0, i = 1, 2, . . . , r (11)

ψT
r+1S f Tψr+1 = 1 (12)

QS f Bψr+1 = βS f Tψr+1, Q = I − ψT(ψS f T
−1ψT)

−1
ψS f T

−1 (13)

where ψ = [ψ1, ψ2, . . . , ψr]
T. I is a unit matrix. ψr+1 and β are the eigenvector and corre-

sponding eigenvalue, respectively.
Fuzzy Foley-Sammon transformation can be described in the following steps:
1. Fuzzify the data and determine membership values with Equation (1).
2. Obtain the FLDA vector ψ1 corresponding to the maximum discriminant value

λ1 of Equation (9). This is the first vector in the set of fuzzy Foley-Sammon optimal
discriminant vectors.

3. Suppose the first r optimal discriminant vectors of FFST ψ1, ψ2, . . . , ψr (r ≥ 1) are
obtained. The next step is to calculate the following vector ψr+1 according to Equation (13).

4. Based on the above calculations, the optimal discriminant vectors ψ1, ψ2, . . . , ψp can
be obtained. The following linear transformation projects the data from Rq to Rp:

y = [ψ1ψ2 . . . ψp]
TX (14)

2.5.3. Fuzzy Uncorrelated Discriminant Analysis

After the data are projected onto the directions of the discriminant vector set using
FST, it is proven that any two features are statistically correlated [28]. In order to ob-
tain uncorrelated features after projection (better classification results can be obtained
using uncorrelated features), extra constrains were proposed in uncorrelated discriminant
transformation (UDT) [28]. It was found that UDT was more effective than FST during
classification [29]. In light of the previous work, FUDT was used to extract the fuzzy
features of synthetic aperture radar images [24].

Fuzzy discriminant analysis is also used to find the vector ψ by solving Equation (8)
as an eigenvalue problem. ψ1 is the eigenvector corresponding to maximum eigenvalue λ1.
Let the unit vector ψ1 be the first vector of the set of fuzzy uncorrelated optimal discriminant
vectors. Suppose the first r optimal discriminant vectors of FUDT ψ1, ψ2, . . . , ψr (r ≥ 1) are
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obtained. The next vector ψr+1,which maximizes Equation (8), can be computed with the
following constraints and the recursive expression:

ψT
r+1S f Tψi = 0, i = 1, 2, . . . , r (15)

ψT
r+1S f Tψr+1 = 1 (16)

QS f Bψr+1 = βS f Tψr+1, Q = I − S f TψT(ψS f TψT)
−1

ψ (17)

where ψ = [ψ1, ψ2, . . . , ψr]
T. I is a unit matrix. ψr+1 and β are the eigenvector and corre-

sponding eigenvalues, respectively.
Fuzzy uncorrelated discriminant transformation (FUDT) can be described in the

following steps:
1. Fuzzify the data and determine membership values and centroids with Equation (1).
2. Obtain the FLDA vector ψ1 corresponding to the maximum eigenvalue λ1 of

Equation (9). This is the first vector in the set of fuzzy uncorrelated optimal discrimi-
nant vectors.

3. Suppose the first r optimal discriminant vectors of FUDT ψ1, ψ2, . . . , ψr (r ≥ 1) are
obtained. The next vector ψr+1 can be calculated in light of Equation (17).

4. Based on the above calculations, the optimal discriminant vectors ψ1, ψ2, . . . , ψp can
be obtained. The following linear transformation projects the data from Rq to Rp:

y = [ψ1ψ2 . . . ψp]
TX (18)

2.6. Classification Algorithm

In this study, k-nearest neighbor (kNN) was employed as the classifier because of
its simplicity and good performance. Given a data space in which all the data points
are labeled, the class of an unknown sample is determined by the classes of its k nearest
neighbors. The Euclidian distance is used to define the distances between the unknown
sample and the labeled data points. The class of the unknown sample depends on the
majority class of its nearest neighbors, while k is always set to odd to avoid the same votes
from different classes [30].

3. Results
3.1. Spectral Data Processing

In this study, the wavenumber range of collected spectra was 590–4289 cm−1 and
the whole spectra data were used. In Figure 1, the first group of samples was the control,
which were not sprayed with lambda-cyhalothrin. The other three groups of samples
were sprayed with lambda-cyhalothrin/water ratios of 1:500, 1:100, and 1:20. Figure 1a
shows the average spectra of these four groups of samples. They show the most differences
among themselves in the range of wavelengths from 1000 cm−1 to 1700 cm−1, and from
3000 cm−1 to 3500 cm−1. To improve visualization, we enlarged the average spectra in
the range of wavelengths from 1000 cm−1 to 1700 cm−1 in Figure 1b. The differences
in the spectral data made it possible to classify samples with different concentrations of
lambda-cyhalothrin residues.
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Figure 2. (a) Raw spectra of samples with no pesticide; (b) MSC processed spectra of samples with no pesticide.

Figure 2a,b show the spectra of samples in the first group (samples without pesticide)
without and with MSC processing method. Compared to the raw spectra, the within-class
variance was decreased, especially at the locations of the absorption peaks (1437 cm−1,
1655 cm−1, 3344 cm−1, etc.). This improves the recognition rate of the spectra.

After MSC processing, standard normal variate (SNV) was used. The data were
first subtracted by the mean value of the whole data, and then divided by their standard
deviations, which makes the mean value zero and moves the central point of the data to
the original point. This process was used in preparation for PCA, in order to avoid the
disparity between magnitudes and ensure the significance of principle components.

3.2. Principle Component Analysis

To carry out the analysis, eigenvalues and corresponding eigenvectors of the covari-
ance matrix were calculated. After that, eigenvalues were sorted in descending order.
According to the input number of eigenvalues, the eigenvectors corresponding to the
selected eigenvalues became the direction in which the training and test data were pro-
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jected. In this study, the number of eigenvalues was 27 and the data dimensions were
compressed from 971 to 27. The total contribution of the 27 principle components is 99.67%.
This indicates that almost all of the spectra information is included in the compressed
data. Meanwhile, this compression increases the computing speed. In Figure 3, the first
principle component (PC1), the second principle component (PC2), and the third principle
component (PC3) explained 57.55%, 22.81%, and 10.98% of the total variance. These three
accounted for 91.34% of the total variance.

Agriculture 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

3.2. Principle Component Analysis 
To carry out the analysis, eigenvalues and corresponding eigenvectors of the covari-

ance matrix were calculated. After that, eigenvalues were sorted in descending order. Ac-
cording to the input number of eigenvalues, the eigenvectors corresponding to the se-
lected eigenvalues became the direction in which the training and test data were projected. 
In this study, the number of eigenvalues was 27 and the data dimensions were com-
pressed from 971 to 27. The total contribution of the 27 principle components is 99.67%. 
This indicates that almost all of the spectra information is included in the compressed 
data. Meanwhile, this compression increases the computing speed. In Figure 3, the first 
principle component (PC1), the second principle component (PC2), and the third principle 
component (PC3) explained 57.55%, 22.81%, and 10.98% of the total variance. These three 
accounted for 91.34% of the total variance. 

 
Figure 3. Top three principle components (PCs) for training set samples with no pesticide contami-
nation, mild contamination (pesticide water ratio 1:500), moderate contamination (pesticide water 
ratio 1:100), and severe contamination (pesticide water ratio 1:20). 

3.3. Calculation of Fuzzy Membership 
Before applying FFST, FLDA, and FUDT, the fuzzy membership values were calcu-

lated according to Equation (1) and plotted in Figure 4. 

 
Figure 4. The fuzzy membership values of samples. 

Figure 3. Top three principle components (PCs) for training set samples with no pesticide contamina-
tion, mild contamination (pesticide water ratio 1:500), moderate contamination (pesticide water ratio
1:100), and severe contamination (pesticide water ratio 1:20).

3.3. Calculation of Fuzzy Membership

Before applying FFST, FLDA, and FUDT, the fuzzy membership values were calculated
according to Equation (1) and plotted in Figure 4.
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From top to bottom, the four subplots represent the samples’ membership values
belonging to the four classes. The top (control group) does not have any pesticide residues
on the cabbage leaf sample. The ratio of lambda-cyhalothrin and water is 1:500, 1:100, and
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1:20, respectively, from the second to the fourth rows. The abscissa is the k-th sample in
the training set and the ordinate is the fuzzy membership value of samples. The class of a
sample depends on its maximum membership value. If the maximum membership value
of a sample belongs to the i-th class, this sample belongs to the i-th class. Thus, the most
important differences among the plots is in which interval on the abscissa they have the
highest value compared to the other three. This is important for the accurate classification
of each sample. In Figure 4, it is shown that most samples’ fuzzy membership values
match with the class they belong to correctly. This can be helpful when conducting the
classification algorithms FFST, FLDA, and FUDT.

3.4. Feature Extraction and Data Classification

FFST, FLDA, and FUDT were used to extract the features in the fuzzified training
data. The basic idea of these algorithms is to maximize the between-class distances and to
minimize the within-class distances. Through mathematical transformation, the training
data were projected to a new space. In this space, the distances between samples with the
same amount of pesticide were smaller, while the space between samples with different
amounts of pesticide were larger. Then, the data in the test set were projected to the same
space. Finally, kNN was applied to determine the amount of pesticide on samples in the
test set. For an unknown sample, its amount of pesticide residue depends on that of its
k nearest known training set samples. The performance of FLDA-kNN, FFST-kNN, and
FUDT-kNN models were evaluated by calculating the proportion of samples in the test set
(72 spectra) that were correctly classified. To establish the FLDA, FFST, and FUDT models
and the kNN model, several parameters have to be determined. These parameters are the
number of eigenvectors, the weight exponent m when computing the center of clustering,
the number of discriminant vectors, and the value of k. The number of eigenvectors when
applying PCA influences the amount of information retained and the same is true with
the number of discriminant vectors in FFST and FUDT. The weight exponent m affects the
center of clustering. Usually, the number of discriminant vectors is set to c-1, while c is the
number of sample classes. Since the calculation was not complex, the enumeration method
was employed. Fixing two parameters, m and k, we changed the number of eigenvectors to
learn how the classification accuracy rate changes. Then the same method was used with m
and k. To reduce the computational load, we created a plot to explore how the classification
accuracy rates change when the parameters are changed.

Figure 5 illustrates the performance of FFST, FUDT, and FLDA combined with kNN
on the test set. Although the lines fluctuate, the graph shows that the accuracy rates keep
rising rapidly before reaching a plateau. This can be explained by the principle of PCA.
Since several eigenvectors associated with bigger eigenvalues make a higher contribution,
and usually the space formed by such eigenvectors can represent the data very well, those
computed from smaller eigenvalues are meaningless and have low influence on the results
of classification. Thus, the figure implies that only the first 30 eigenvectors are meaningful
in the enumeration process.

When it comes to the influence of m and k on the results, the accuracy rates decrease
when m and k increase. Figure 6 demonstrates how the classification accuracy rates change
with the rise of the value of m. All three feature extraction algorithms perform the best
when the value of m nears 1. The accuracy rates using FUDT and FLDA decline relatively
slowly as m increases. However, the accuracy rates of FFST fall sharply after the value of
m reaches 3. Figure 7 illustrates the changing trend of classification accuracy rates when
k differs. Different from the results shown in Figure 6, the accuracy rates of the three
algorithms change similarly, and their accuracy drops quickly after k reaches 9.
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In light of the three above figures, the search range for optimizing the algorithms’
use for pesticide residue detection can be narrowed. The search range for the number of
eigenvectors was set from 3 to 65, and that of m was set from 1 to 3, with the step size set
at 0.1, while the range of odd number k was set from 1 to 9. We used 22 spectra data in
each group (88 total spectra from samples in the training set) to build the training set and
18 spectra in each group to test the performance of the feature extraction and classification
model. Using these parameters, the final highest classification accuracy rates of FFST,
FUDT, and FLDA are 100%, 100%, and 97.22%, respectively. The parameter settings and
computer running times at the accuracy rate peaks are shown in Table 1.

Table 1. The accuracy rates, parameters, and running time using FFST, FUDT, and FLDA.

Method Accuracy Rate
Parameters

Running Time (s)
Number of Eigenvectors M k

FFST
91.67% 27 1.2 7 0.015029
97.22% 51 1 1 0.013869
100% 49 1.1 1 0.014187

FUDT
100% 27 1.2 7 0.0040336

95.83% 51 1 1 0.0033832
95.83% 49 1.1 1 0.0035083

FLDA
83.33% 27 1.2 7 0.0019712
97.22% 51 1 1 0.0012611
94.44% 49 1.1 1 0.0016125

According to the results, using these three pattern recognition algorithms to extract
the component information and kNN as the classifier is effective when processing the
mid-infrared spectra data of Chinese cabbage leaf sample. Among these feature extraction
methods, the time cost of FFST is about four times that of FUDT and about ten times that
of FLDA. Compared to FLDA, FUDT performs better in terms of classification accuracy,
even though FUDT requires twice the amount of computer time as that used by FLDA to
complete the calculation. To conclude, FUDT performs the best on the test set of Chinese
cabbage samples, considering both the classification accuracy rate and the computational
time required.

4. Discussion

This study explored the performance of FLDA-kNN, FFST-kNN, and FUDT-kNN to
qualitatively detect lambda-cyhalothrin on cabbage leaves. Some researchers used kNN to
classify different kinds or concentrations of pesticide residues on vegetables after feature
extraction [17,18]. In both of these publications, kNN and support vector machine (SVM)
were employed as the classifier after extracting the feature. When classifying different
concentrations of fenvalerate and triazoline on lettuce surfaces, accuracy rates on the test
set using deep brief network-kNN (DBN-kNN) and DBN-SVM were 76.66% and 95%,
respectively [17]. Using SVM as the classifier also outperformed kNN when classifying
different kinds of pesticide residues. Accuracy rates on the test set using Competitive
adaptive reweight sampling-kNN (CARS-kNN) and CARS-SVM were 84.44% and 97.78%,
respectively [18]. kNN, as the classifier, performed unsatisfactorily in these publications.
This might be related to the feature extraction algorithm, and could be studied in future
research. In some cases, kNN could perform satisfactorily. When classifying four kinds of
Chinese vinegar based on the electronic nose system, the highest identification rate using
FFST-kNN was 96.92%. [22]. Additionally, it is easy to build the kNN model [30]. We can
add samples with new labels into the training set directly, then an unknown sample is
decided by its k nearest neighbors. The SVM model needs to be retrained when new kinds
of samples appear. However, kNN is not suitable when the training set is large since the
distances between the unknown sample and all objects in the training set are calculated [30].
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Future work could address the balance between the computing time required and the size
of the training set.

The method proposed in this article can be used for on-site and nondestructive
detection of pesticide residues. Even though some of the traditional methods might
be more sensitive [7–11], they require multistep sample preparation, are time-consuming
and can only be conducted in the laboratory [12]. The spectroscopy method that we
used could realize on-site detection of pesticide residues with portable spectrometers [31].
Moreover, there is no requirement for the use of chemical reagents for detection, which
reduces the cost and effect on the environment. This method might also be utilized to
inspect pesticide residues on other vegetables, or even be used for large scale residue
detection on an automated production line. If such a system were placed in the factory,
the mid-infrared spectrum of each product might be collected by a portable spectrometer.
These data could then be sent for computation and classification using computers. Thus,
products with excess pesticide residue could be sent for further processing. As more
products were detected before going to the market, the pesticide concentration on the food
could be maintained under the safety threshold. The public would be better protected from
food poisoning by pesticide. This will also incentivize farmers to follow the standard of
pesticide usage during the growth of vegetables.

Future work could be done to better distinguish lambda-cyhalothrin and other
pyrethroid products (cypermethrin, deltamethrin), since they have very similar molecular
structures. In comparison to cypermethrin and deltamethrin, lambda-cyhalothrin has a
unique group (C-F bond) that has a unique absorption peak in the mid-infrared spectrum.
By modifying the feature extraction algorithm to the unique absorption peak, the tech-
nology can be made more accurate in lambda-cyhalothrin detection. Additionally, full
spectra were used for classification in our work. This might lead to interference and longer
computational times. He et al. applied interval partial least squares (iPLS) to select a range
of wavelengths containing the most useful information in the laser-induced breakdown
spectroscopy (LIBS) spectra [32]. If combined with a region selection method, our method
might be faster and more sensitive when interference exists.

5. Conclusions

In this study, mid-infrared spectroscopy combined with SNV, MSC, PCA, kNN, and
three fuzzy feature extraction methods were successfully used to qualitatively analyze
lambda-cyhalothrin residues on Chinese cabbage leaf samples. Under certain parameter
settings, we achieved a classification accuracy of 100%.

When processing the spectra, SNV and MSC were used to eliminate the noise and
prepare for PCA. Conducting PCA reduced the dimensionality of the data for faster
processing speed. Using fuzzy theory, FFST, FLDA, and FUDT were employed to find
spectra features. When classifying Chinese cabbages leaf samples with different amounts
of lambda-cyhalothrin residues, the results showed that the highest classification accuracy
rates of FFST, FUDT, and FLDA were 100%, 100%, and 97.22%, respectively. Among these
methods, FUDT performed the best, considering the accuracy rate and computational
time required.

This study describes a promising approach to realize fast and nondestructive detection
of lambda-cyhalothrin residues on Chinese cabbage leaves using mid-infrared spectroscopy
and fuzzy uncorrelated discriminant transformation (FUDT). This method can be applied
to qualitatively detect different levels of pesticide residues in other vegetables as well.
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