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Abstract: Soil nutrient balance is related to the interaction mechanism between soil fertilizer, soil
water, climate change, and plant capability. This paper provides a perspective from bibliomet-
ric analysis based on data from the Web of Science core collection with software tools, including
Vosviewer, HistCite Pro, and Citespace, in order to reveal the evolution of research trends in soil
nutrients. The results show that publication outputs have increased exponentially from 1992 to
2020. The synthetic parameter of the sum of normalized data (SND), calculated from the default
indicators of the bibliometric software tools, was used to rank the overall contribution of jour-
nal/authors/institutions/countries. The results demonstrate that Agriculture Ecosystems & Environ-
ment, Soil Biology & Biochemistry and Science of the Total Environment are the leading journals in the
soil nutrient field. The Chinese Academy of Sciences had the highest total citations and collaborated
most closely with other organizations, followed by United States Department of Agriculture (USDA)
Agricultural Research Service (ARS) and Agr& Agri Food Canada. In addition, USA, China, and UK
are the top three research centers for this topic. Moreover, Ken E Giller, Qirong Shen, and Rattan
Lal were the top three authors, while Andrew Sharpley ranked the first depending on citations per
publication. In terms of co-occurrence of keyword analysis, the results indicate that nitrogen fertilizer,
green manure, and soil population have gained close attention from scholars, while soil amendment
of biochar have evolved as a hot topic in recent years. Perspectives on future studies are also given.

Keywords: soil nutrient; bibliometric; visualization; citations; publication outputs

1. Introduction

Soil nutrients are a critical factor determining crops growth [1,2], soil microbial ac-
tivity [3,4], and potential environmental pollution [5–7]. The availability of soil nutrients
is not only related to the absorption capacity of crops [8], but it is also related to the
transformation, migration, and microbial decomposition of fertilizer in soil [9–11]. Soil
nutrient balance is closely related to the concentration or proportion of soil fertilizers (e.g.,
nitrogen-N, phosphate-P, potassium-K, or carbon/organic-C). Studies have shown that
the concentration or ratio of main N-, P-, and K-fertilizer in topsoil can be used as a good
indicator illustrating soil nutrient status and can serve as the basis for calculating soil
nitrogen content [12]. In addition, soil nutrients are closely linked to microbial community
composition, which could impact on soil environment. Studies have shown that nitrogen
status should be an important factor for sustainable agricultural management [13], while
organic manure, applied alone or in combination with chemical fertilizers, would increase
the soil fertility and functional diversity of soil microbial communities [14]. Generally,
nitrogen deposition could change microbial community composition [15,16], and nitrogen
addition significantly reduced microbial community diversity and changed bacteria and
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fungi communities [17]. Furthermore, the most commonly accumulated nitrogen or sulfur
fertilizer exists in the form of nitrates or sulfate (S) in soil [18–20], which likely leads to
aggravated secondary salinization insoil layer [8,21,22]. The aggravated secondary salin-
ization may result in decreased availability of soil fertilizers, inhibiting the productivity
of crops such as cotton [23,24], sunflower [25,26], and maize [22,27]. To some extent, soil;
N-, P-, K-, and C-fertilizer; and the microbial community significantly affect plant growth
and soil environment. Nonetheless, soil nutrient balance is difficult to achieve as soil
fertilizer aims to maximize economic benefit. An overdose of N-, P-, K, -or S-fertilizer
leads to soil pollution and plant poisoning, while insufficient fertilizer applications cannot
meet the needs of plant growth, which leads to declined yield and quality due to plant
malnutrition [28–30]. Therefore, the appropriate use of soil nutrient plays a vital role in
sustainable soil ecological environment and the growth of plants.

Numerous studies have been conducted on soil nutrients field. However, no attempt
has been made to provide a whole picture of the research status on soil nutrients from a
bibliometric perspective. Bibliometrics or scientometrics is a quantitative analysis method
based on mathematical statistics [31]. It has been widely applied to analyze research hotpots
and development trends of a specific field. For instance, researchers have analyzed global
research based on bibliometric reviews on soil moisture [32], soil environment [33–35], soil
microplastics [36], soil hydrothermal properties [37], soil micro-morphological [38], soil
pollution [39], soil health [40], and soil remediation [41–43]. In order to better understand
the current research status of soil nutrient research, the scientometric review is adopted,
which is conducive to show hot research topics in this field and their evolution. Perspectives
are also given to promote further studies to fill knowledge gaps.

2. Material and Methods

The datasets on soil nutrient were searched from the database of the Web of Science
Core Collection (WoSCC), including the Science Citation Index Expanded (SCI-EXPANDED,
since 1992) and Social Sciences Citation Index (SSCI, since 2004). The data from January
1992 to December 2020 were downloaded from the WoSCC for analysis. The query sets
used in the advanced search mode of WoSCC collection were: TS = (“soil fertility” OR “soil
nutrient” OR “soil nutrition” OR “soil fertilizer” OR “soil fertilization” OR “plant nutrient”
OR “plant nutrition” OR “chemical fertilizer” OR “organic fertilizer” OR “green manure”
OR “inorganic fertilizer” OR “mineral fertilizer” OR “nitrogen fertilizer” OR “phosphorus
fertilizer” OR “potassium fertilizer” OR “calcium fertilizer” OR “magnesium fertilizer”
OR “sulphur fertilizer” OR “micronutrient fertilizer” OR “fertilizer with inhibitor” OR
“Controlled-Release Fertilizer” OR “Slow-release fertilizer” OR “dry fertilizer” OR “Water-
soluble Fertilizer”) OR TS = ((compost OR manure OR “sewage sludge”) AND (agricultur*
OR farmland OR grassland OR forest OR ecosystem)), where TS indicates “topics” in Web
of Science. Document types of publications containing “Article” OR “Book” OR “Book
Chapter” OR “Data Paper” OR “Database Review” OR “Letter” OR “Note” OR “Review”
written in English were retained. The resulted documents were exported as a text file with
the “full record and citation data” for bibliometric analysis. This returned a total number
of 51,640 publications.

Data visualization was analyzed using software tools containing the VOSviewer 1.6.15,
HistCite Pro, and CiteSpace 5.6.R3. VOSviewer, as a freely available computer program,
is developed for constructing and viewing bibliometric maps, and is especially useful for
displaying large bibliometric maps in an easy-to-interpret way [44]. The co-authorship of
authors/organizations/countries was performed using the VOSviewer. The full counting
method was used in this paper, and publications with maximum 25 authors per docu-
ment were kept for analysis by default. The default settings excluded 1232 publications
for analysis that exceeded 25 authors per article. HistCite Pro, a modified version based
on the original HistCite, was sorted the leading status of authors/institutions/countries
depending on total global citation (TGCS) and total local citations (TLCS) [45]. CiteSpace
can be applied to track the development of a field closely and extensively and provide a net-
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work analysis, which is used for the treatment and presentation of results [46]. Keywords
with the strongest burst citations were found using CiteSpace, which vividly showed the
research topics in this field. Figures in this study were produced using VOSviewer 1.6.15,
Origin 2021, and Arc GIS 10.8.

In order to rank the overall contributions of journals/authors/institutions/countries
and to eliminate the dimensional influence among indicators provided by the bibliometric
software tools, the sum of normalized data (SND) method was adopted [47]:

SD =
(X − Xmin)

(Xmax − Xmin)
(1)

SND = SD1 + SD2 + · · · SDn (2)

where Xmax and Xmin are the maximum and minimum value of sample data, respectively,
and n represents different indicators.

3. Results and Discussion
3.1. Publication Outputs Analysis over the Years

The annual number of publications and citations per paper between 1992 and 2020
are shown in Figure 1. The number of publications increased significantly from 1992 to
2020, from 480 publications in 1992 to 4614 in 2020. This is similar to results from previous
studies pertaining to soil fertilizer [48] and soil monitoring [33]. The increasing trend may
be attributed to the “green revolution” that is associated with the greater input of chemical
fertilizer for greater yield [49–51], which intrigues scholars in the soil nutrient research
field. In addition, easier access to online literature compared to library subscriptions since
1990 could be another reasons [32]. The number of citations per publication showed a
fluctuated increasing trend from 1992 to 1998, reaching a peak value of 55.4 in 1998. It
showed a decreasing trend thereafter, with only 1.1 in 2020. This value showed a general
decreasing trend since 1999, especially after 2009, which could be attributed to the rapidly
evolved research topics, high volume of publications, and shorter time for accumulating
citations [32]. The trend of citations per publication was basically similar with the study
result for soil fertilizer (from 2007 to 2016, there was a decreasing trend) [48].
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Figure 1. Annual number of publications and citations per article in soil nutrient field from 1992 to 
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journals are shown in Figure 2. Communications in Soil Science and Plant Analysis (1239 
publications) made the highest contributions to the total number of publications, ac-
counting for 14.4% of total publications, followed by Science of the Total Environment (1106 
publications), Agriculture Ecosystems & Environment (1071 publications), and Plant and Soil 
(1061 publications), each accounting for 12~13%. There were no significant differences 
among the other five journals, including the Journal of Environmental Quality (760 publi-
cations), Soil Biology & Biochemistry (740 publications), Journal of Plant Nutrition (700 pub-
lications), Nutrient Cycling in Agroecosystems (678 publications), and the Agronomy Journal 
(667 publications) in terms of the total number of publications. 
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A total of 2498 journals published research on soil nutrients. The top 10 productive
journals are shown in Figure 2. Communications in Soil Science and Plant Analysis (1239 publi-
cations) made the highest contributions to the total number of publications, accounting for
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14.4% of total publications, followed by Science of the Total Environment (1106 publications),
Agriculture Ecosystems & Environment (1071 publications), and Plant and Soil (1061 publica-
tions), each accounting for 12~13%. There were no significant differences among the other
five journals, including the Journal of Environmental Quality (760 publications), Soil Biology &
Biochemistry (740 publications), Journal of Plant Nutrition (700 publications), Nutrient Cycling
in Agroecosystems (678 publications), and the Agronomy Journal (667 publications) in terms
of the total number of publications.

According to Table 1, Agriculture Ecosystems & Environment had the maximum TLCS
(=12,048) and TGCS (=46,115). There was a large gap when Agriculture Ecosystems &
Environment was compared to Communications in Soil Science and Plant Analysis (with
TLCS = 2407 and TGCS = 9917). Science of the Total Environment has the greatest impact factor
according to Journal Citation Report in 2019 (IF2019 = 6.6) and the greatest TGCS per year
(TGCS/t = 4173). There was a significant difference when Science of the Total Environment
was compared to Communications in Soil Science and Plant Analysis (IF2019 = 0.767 and
TGCS/t = 741) and the Journal of Plant Nutrition (IF2019 = 1.132 and TGCS/t = 522). In
addition, publications in Soil Biology & Biochemistry were highly cited with 58.9 citations per
article, ranking first among journals (data not shown). According to synthetic parameter
(sum of normalized data (SND)), Agriculture Ecosystems & Environment ranked the first with
SND = 4.30, followed by Soil Biology & Biochemistry with SND = 3.72 and Science of the Total
Environment with SND = 3.70. Therefore, they are the leading journals in this field.
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Table 1. Top 10 productive journals in soil nutrition research between 1992 and 2020.

Journals N TLCS TGCS IF TGCS/t SND

Communications in Soil Science and Plant Analysis 1239 2407 9917 0.767 741 1.25
Science of the Total Environment 1106 5219 27,645 6.551 4173 3.70

Agriculture Ecosystems & Environment 1071 12,048 46,115 4.241 3972 4.30
Plant and Soil 1061 9200 43,105 3.299 3164 3.56

Journal of Environmental Quality 760 8761 34,148 2.142 2140 2.36
Soil Biology & Biochemistry 740 9955 43,600 5.795 3612 3.72

Journal of Plant Nutrition 700 1308 6524 1.132 522 0.26
Nutrient Cycling in Agroecosystems 678 7162 20,013 2.45 1390 1.58

Agronomy Journal 667 4458 16,512 1.683 1192 1.04
Applied Soil Ecology 566 3857 14,952 3.187 1540 1.15

Note: TLCS, total global citation; TGCS, total local citations; IF, Journal impact factor trend 2019; TGCS/t, total global citation per year;
SND, sum of normalized data (original data used for calculating SND include N (number of publications), TLCS, TGCS, IF, and TGCS/t).
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3.3. Analysis of Authors, Institutions, and Countries

When 20 was set as the minimum number publications per author using the VOSviewer,
the co-authorship network map of authors included 222 authors who had 2003 total link
strength (TLS) and obtained 183 clusters closely linking with each other. However, some
labels did not show due to overlap. For example, label of Christie Peter (China Agricultural
University, China) in the dark blue network was overlapped by the label of Ken E Giller
(Wageningen University, Netherlands) in the pink network (Figure 3). Among others, it
was found Ken E Giller with 147 publications, Qirong Shen (Nanjing Agricultural Univer-
sity, China) with 133 publications, and Rattan Lal (Ohio State University, USA) with 131
publications were the top three productive researchers in soil nutrient field (Figure 3 and
Table 2). In recent years, Ken E Giller is among the most active researcher in the topic of
soil fertilizer [52–54]. Giller’s publications were highly cited [55], accounting for 19% of
9647 total citations (Table 2). Rattan Lal (Ohio State University, USA) has focused on surface
layer of carbon and nitrogen [56], the soil-plant system [57], and the variability of soil
organic matter [58]. These papers had profound influence on the soil nutrient field because
of their higher citations [59,60], accounting for 42% of 11,097 total citations (Table 2). It is
noteworthy that papers written by Andrew Sharpley also obtained higher citations [61,62],
accounting for 39% of 11,565 total citations (Table 2). The results indicate that these highly
cited papers play a very important role in soil nutrition field, and the authors (Ken E Giller,
Rattan Lal, and Andrew Sharpley) play a role in advancing this field. In addition, Andrwe
Sharpley and Rattan Lal are the most influential figures in the soil nutrient field due to their
high total citations and citations per publication (Table 2). For instance, each publications
of Andrew Sharpley was cited 132.9 times on average, which was significantly higher than
others. Recently, Andrew Sharpley has been the most active researcher on topic of soil
phosphorus fertilizer loss [63–65] and agricultural soil pollution [66], while he has not been
closely linked with others. Qirong Shen ranked the first in terms of collaborating with
other authors, with the greatest TLS of 846, followed by Bernard Vanlauwe (International
Institute of Tropical Agriculture, Nigeria) with TLS = 545, Ken E Giller with TLS = 543, and
Minggang Xu (Chinese Academy of Agricultural Sciences, China) with TLS = 513 (Figure 3
and Table 2). According to synthetic parameter of SND, Ken E Giller ranked first with
SND = 2.32, followed by Rattan Lal with SND = 2.16, Qirong, Shen with SND = 2.15, and
Andrew Sharpley with SND = 1.37 (Table 2). These scholars are the top influential authors
in this field.
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Table 2. Top 10 productive authors/institutions/countries in soil nutrition research from 1992 to 2020.

NO. Items N TC TLS SND TC/N

Top 10 Authors

1 Giller, Ken E. (Wageningen University, Netherlands) 147 9647 543 2.32 65.6
2 Shen, Qirong (Nanjing Agricultural University, China) 133 4326 846 2.15 32.5
3 Lal, Rattan (Ohio State University, USA) 131 11,097 478 2.16 84.7
4 Vanlauwe, Bernard (Int Inst Trop Agr, Nigeria) 108 4339 545 1.36 40.2
5 Sharpley, Andrew (University Arkansas, USA) 87 11,565 292 1.37 132.9
6 Xu, Minggang (CAAS, China) 77 2155 513 0.73 28.0
7 Christie, Peter (China Agricultural University, China) 76 2677 415 0.60 35.2
8 Olesen, Jorgen E. (Aarhus University, Denmark) 68 2306 279 0.25 33.9
9 Wardle, David A. (Nanyang Technol University, Singapore) 64 3909 262 0.32 61.1
10 Buerkert, Andreas (University Kassel, Germany) 63 978 241 0.00 15.5
11 Kuzyakov, Yakov (University Gottingen, Germany) 63 1559 369 0.27 24.7
12 Ok, Yong Sik (Korea University, Korea) 63 4178 390 0.55 66.3

Top 10 organizations

1 Chinese Academy of Sciences (China) 2579 61,078 2069 3.00 23.7
2 USDA ARS (USA) 1577 55,055 1214 1.92 34.9
3 Agr& Agri Food Canada (Canada) 880 25,193 473 0.61 28.6
4 University Chinese Academy Sciences (China) 735 8160 984 0.50 11.1
5 University Florida (USA) 693 20,361 377 0.37 29.4
6 Chinese Academy of Agricultural Sciences(China) 687 13,336 671 0.40 19.4
7 China Agricultural University (China) 665 13,839 608 0.37 20.8
8 Swedish University Agricultural Sciences (Sweden) 550 22,033 275 0.28 40.1
9 Wageningen University (Netherlands) 527 18,042 346 0.23 34.2
10 Nanjing Agricultural University (China) 514 14,712 354 0.17 28.6

Top 10 countries

1 USA 10,789 399,320 5876 3.00 37.0
2 China 8772 165,595 4472 1.83 18.9
3 India 3264 58,926 959 0.20 18.1
4 UK 3197 140,102 4384 1.12 43.8
5 Germany 3079 108,578 3457 0.83 35.3
6 Canada 2909 88,035 1858 0.43 30.3
7 Brazil 2698 42,463 1476 0.20 15.7
8 Australia 2516 94,612 2635 0.56 37.6
9 Spain 2362 69,576 1823 0.31 29.5
10 Italy 1852 45,912 1500 0.12 24.8

Note: N, total number of publications; TC, total citations; TLS, total link strength; TC/N (equal to TGCS/N), citations per publication. Int
Inst Trop Agr, International Institute of Tropical Agriculture; CAAS, Chinese Academy of Agricultural Sciences. SND, sum of normalized
data (original data include N, TC, and TLS).

When 100 was set as the threshold of the minimum number of publications per
institution or per country, institutions were grouped into 144 clusters with TLS = 11,078, and
countries were grouped into 73 clusters with TLS = 28,376. The top 10 most contributing
institutions in this field are shown in Table 2. It was found that the ChineseAcademy
of Sciences (China), with 2579 publications, made the most contributions, followed by
the USDA ARS (USA), with 1577 publications. Agr& Agri Food Canada (Canada) had
880 publications, the University of Chinese Academy Sciences (China) had 735 publications,
and the University of Florida (USA) had 693 publications. The top two institutions with the
greatest total publication citations were the Chinese Academy of Sciences and the USDA
ARS, with 61,078 and 55,055 citations, respectively. Their citations were considerably higher
than other institutions, while per article citations of the Chinese Academy of Sciences were
only 23.7, ranking sixth among the top 10 institutions. In addition, the Chinese Academy
of Sciences was the most active organization that was in close connection with others, as
indicated by the greatest total link strength of 2069. Although the number of publications
for the Swedish University of Agricultural Sciences (Sweden) and Wageningen University
(Netherlands) were only 550 and 527, respectively, roughly accounting for 1.0%, their
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respective per article citations were 40.1 and 34.2, ranking first and third. The Chinese
Academy of Sciences obtained the greatest SND of 3.00, and the USDA ARS ranked second
with SND = 1.92. Their SND were much greater than other organizations, which may
indicate that the Chinese Academy of Sciences and the USDA ARS are the most impactful
organizations in this field.

The top 10 most contributing countries in this field are shown in Table 2, and the
distribution map of number of publications for the 180 contributing countries are shown
in Figure 4. USA (with 10,789 publications) was the most productive country, accounting
for 20.9% of the total publications, while the second most contributing country was China
(with 8772 publications), accounting for 17.0%. The number of publications for the other
top 10 countries was relatively small compared to USA and China, ranging from 3264 for
India to 1852 publications for Italy. There were big differences in the total citations among
countries as well. UK ranked the first in per publication citations with TC/N = 43.8. The
most productive country, USA, ranked third with TC/N = 37, and China ranked eight
with TC/N = 13.0. In addition, USA, China, and UK, with TLS = 5876, 4472, and 4384,
respectively, were the most active countries in international collaboration. In addition,
India showed a weaker international collaboration. USA, China, and UK were the top three
countries leading soil nutrient studies according to SND.
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3.4. Analysis of Keywords

Keyword burst detection in the documents was analyzed by the CiteSpace to illustrate
research hot spots in a specific period. The red dotted lines in Figure 5 are heat bars, repre-
senting the time period with the strongest citation bursts [67]. Hot topics of soil nutrient
field could be divided into three stages: (1) The topic of soil nitrogen (with keywords of
nitrate, N15, denitrification, nitrogen fixation, ammonium, and aluminum) and crop (corn,
tree and legume) became a research hot spot between 1992 and 2009. During this period,
there were many theoretical studies on soil nutrition [68–71]. The relationships between
soil fertilizers and plants were also gradually studied by scholars [72–74]. (2) The research
directions were then gradually shifted to focus on soil pollution (with keywords of loss,
litter, and population), forest (e.g., agroforestry, forest soil, and deforestation), and farmland
manure (e.g., cattle slurry and broiler litter). The hot study region and climate was West
Africa and Savanna, respectively. Scholars were interested in the research of maintaining
soil fertility in West Africa [75,76], likely with the goal of improving the environment
and the inherent poor soil fertility in West Africa [76], which could increase crop yield
and reduce starvation and malnutrition [77,78]. (3) Between 2015 and 2020, soil health
(including charcoal, biochar, and physicochemical property) and ecosystem service (e.g.,
biochar, physicochemical property, greenhouse gas emission, and pyrolysis temperature)
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became the hot research topics due to the increased concern on agricultural sustainability
with the goal of food security. Our analysis indicated that soil nitrogen fertilizer, soil
pollution, and soil health are of great importance in soil nutrient field. Scholars have tried
to find the best solutions for soil pollution, using farmyard manure, bacteria, and biochar
to remediate/reclaim soil properties [79–81]. These papers included topics of nitrogen
fertilizer [61], nitrate [82], green manure [83], nitrogen loss [84], biochar [85], and microbial
communities [86], which obtained higher citations. Biochar can impact soil biota [85], and
microorganisms play a regulating role in soil nutrition [87–89], as they have reinforced
soil nutrition health [90,91]. Therefore, these themes of nitrogen fertilizer, green manure,
biochar, and microbial communities have been favored by authors. The soil remediation of
biochar may become a breakthrough in the management of soil nutrients, as it had highest
strength burst (Figure 5).
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4. Conclusions

The scientific literature data on soil nutrient were analyzed from scientometric per-
spectives. The results showed that the number of publications has increased remarkably
from 1992 to 2020, while per article citations peaked in 1998 and then dropped during
1992–2020. Agriculture Ecosystems & Environment, Soil Biology & Biochemistry and Science
of the Total Environment were the leading journals in this field. The Chinese Academy of
Sciences (China) and USDA ARS (USA) made the most contributions to number of publica-
tions and total link strength, having strong collaborations with other institutions. USA and
China were the top two contributing countries and had close cooperative relationships with
others. USA was the most influential country according to its greatest total citations. The
authors Ken E Giller from Netherlands, Qirong Shen from China, and Rattan Lal from USA
were the leading authors in terms of the number of publications. Andrew Sharpley from
USA was as the leading author in terms of the total citations and per article citations. For
keyword analysis, soil nitrogen fertilizer, green manure, and soil population are ongoing
hot topics because of their strongest burst strength in recent years. Recently, soil health,
as indicated by keywords of microbial communities and amendment soil of biochar, has
been paid close attention by researchers. For the sake of resilience to climate change and
to increase the sustainability of soil productivity, the regenerative agriculture that aims to
regenerate topsoil, increase biodiversity, improve the water cycle, enhance the ecosystem
service, support biosequestration, and strengthen the health and vitality of farm soils could
be among the future hot topics [92].
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