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Abstract: Smart and precision agriculture concepts require that the farmer measures all relevant
variables in a continuous way and processes this information in order to build better prescription
maps and to predict crop yield. These maps feed machinery with variable rate technology to apply the
correct amount of products in the right time and place, to improve farm profitability. One of the most
relevant information to estimate the farm yield is the Leaf Area Index. Traditionally, this index can
be obtained from manual measurements or from aerial imagery: the former is time consuming and
the latter requires the use of drones or aerial services. This work presents an optical sensing-based
hardware module that can be attached to existing autonomous or guided terrestrial vehicles. During
the normal operation, the module collects periodic geo-referenced monocular images and laser data.
With that data a suggested processing pipeline, based on open-source software and composed by
Structure from Motion, Multi-View Stereo and point cloud registration stages, can extract Leaf Area
Index and other crop-related features. Additionally, in this work, a benchmark of software tools is
made. The hardware module and pipeline were validated considering real data acquired in two
vineyards—Portugal and Italy. A dataset with sensory data collected by the module was made
publicly available. Results demonstrated that: the system provides reliable and precise data on the
surrounding environment and the pipeline is capable of computing volume and occupancy area from
the acquired data.

Keywords: leaf area index; multi-view stereo; optical sensing; photogrammetry; precision agriculture;
structure from motion

1. Introduction

Smart and precision agriculture is a developing topic about the introduction of tech-
nologies in agricultural processes that enhance the farmer’s action and planning about
applying products in the correct quantity, in the right place, and at the right time.

The access to information about crop canopies such as geometric morphology (width,
height, volume, etc.), vegetation indices—Normalised Difference Vegetation Index (NDVI),
Leaf Area Index (LAI)—, yield and biomass, enables the production of prescription maps
that in turn allow farmers to make sustainable decisions in crop management [1]. LAI
and NDVI correspond to structural characteristics of plantations, while width, height,
volume, and shape are geometric characteristics. Although both these two types of features
present some differences among themselves, they both share increasing importance, related
to vegetation cultures, about the implementation of precision agriculture procedures [2].
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NDVI is an index that indicates the vegetation greenness of a certain analysed area and can
be potentially correlated with LAI. This index defines itself as one-half of the total green
leaf area per unit ground surface area for uniform conditions and single plant species [3].
Moreover, with this type of information, it is possible to maximise crops income, reduce
resource usage and minimise the environmental impact, since a planned use of irrigation
water, pesticides, and fertilisers is performed [4].

The traditional methods for gathering canopy features are based on field and hand-
made measurements, which commonly comprises a high-cost in time and labour, making
the measuring task inadequate for large croplands [5]. More efficient and equally effective
methods emerged in recent years: satellite-based imagery and the processing of 3D point
clouds—sets of points spread along with the 3D space—generated from photogrammetry
techniques, namely Structure from Motion (SfM) and laser scans. SfM is a computer vision
approach that reconstructs a scene by combining overlapping photographs taken from
different perspectives, setting up the scene 3D point cloud [6]. Usually, the cameras and
Light Detection And Ranging (LiDAR) systems are mounted on aerial or terrestrial vehicles
to take photographs and make laser scans, respectively.

Using Unmanned Aerial Vehicles (UAVs) for collecting several images to serve as
input to SfM is proven to be a quick and inexpensive method for estimating LAI, achieving
similar results to the ones obtained with LiDAR data for a viticultural area [6], where
the SfM output point cloud was transformed to a Digital Terrain Model (DTM) or Digital
Surface Model (DSM) to separate the ground from non-ground points visually. The latter
was used for computing LAI. Additionally, UAV imagery has also attained comparable and
highly-correlated accuracy with traditional LAI manual measurements [5]. Furthermore,
LAI estimation from images provided by UAVs can also be accomplished with other image-
based techniques such as: combining a set of oriented images with a culture DSM, resulting
in a 2D orthomosaic; and forming a hyperspectral mosaic with the data returned from
a Near-Infrared sensor (NIR) mounted on a UAV [3]. However, concerning these two
techniques, only the hyperspectral-based one showed good correlation levels. Also, for
LAI estimation, the same can be calculated using LiDAR data from Aerial Laser Scanning
(ALS) or Terrestrial Laser Scanning (TLS) [7].

Regarding NDVI, it is mostly estimated using imagery systems like satellites and
UAVs. Both imagery platforms, recurring to multispectral images, achieve similar results
on the calculation of NDVI. However, only the inter-row pixels of the NDVI maps from
satellite images show considerable correlation with UAV ones. Beyond that, concerning
vigour assessment, the satellite-derived NDVI maps present significant differences in
comparison to field measurements [8].

With respect to geometric features (volume, occupied area, etc.) of vegetation canopies,
they can also be appraised using ALS, TLS, aerial and dynamic (UAVs), or static (satellites)
imagery systems. The use of TLS systems for measuring the height, width, and volume of
canopies was demonstrated to be faster and equally accurate than handmade and image
analysis-based measurements [2]. The same geometric aspects were also estimated using
UAVs. The correlation results between the manual measurements and the estimations
performed over the images collected by a UAV indicated that an aerial imaging system
is suitable for tasks of this kind [1]. Another application that UAVs demonstrate their
suitability is the measuring of tree row volume. The assessment of tree row volume
with a UAV combined with photogrammetric steps resulted in low estimation errors,
outrunning manual and traditional methods, and at the same time being work and time
efficient [4]. Another metric to be considered is the canopy cover, defined as the occupied
area percentage by the canopy’s vertical projection. This metric can be evaluated using ALS
systems, aerial imagery, and satellite imagery; however, only laser-derived estimations
are promising alternatives to field measurements since imagery-based estimations often
confuse soil with tree canopies [9].

Considering that any of the ALS, TLS, aerial or terrestrial imagery (with photogram-
metry post-processing stages) systems rely on the processing of 3D point clouds to compute
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the aforementioned measures, the reduction of the amount of data is fundamental to min-
imise the computational time and, consequently, empower the processing of information
within point clouds during field operations and in real-time [10].

This work is a case study in vineyards where a tractor was used with a data acquisition
module mounted on top of it. The vehicle made a trip around a vineyard, and, at the same
time, the module gathered sensor data, namely geo-referenced images, and laser scans.
This data collection was important for further processing steps, like photogrammetry and
point clouds-based, to help categorising and characterising the crop canopy in terms of
its volume and occupied area. With these geometric characteristics, a prescription map-
alike image can be generated in which zones of possible product applicability may be
extracted, helping farmers to make decisions about their crops. This being said, the major
contributions of this work are:

• public dataset made of sensory data;
• portable and standalone data acquisition hardware module;
• benchmark and assessment of open-source and commercial software tools about

performing Structure from Motion and Multi-View Stereo tasks;
• data processing pipeline capable of transforming raw data (monocular images and

laser scans) to fine agriculture-based 3D models and the interpretation of their geo-
metric aspects.

This paper is structured as follows. Section 2 presents the methodology and the
materials used to develop this work. Section 3 shows the results obtained from this work,
including their discussion. Section 4 ends this paper, drawing conclusions about the
discoveries made and proposing development domains to be considered in the future.

2. Materials and Methods

This section presents the hardware module used to acquire data, the study area and
path, the built dataset, the manual measurements made on-site, and the data process-
ing pipeline.

2.1. Data Acquisition Hardware Module

The data acquisition hardware module used in this work and its components are
presented in Figure 1. The components of the module are:

- 1× No-Infrared (NoIR) camera (Pi NoIR Camera (https://www.raspberrypi.org/
products/pi-noir-camera-v2/ accessed on 3 March 2021));

- 2× thermal cameras (MLX90640 (https://bit.ly/3p63a5y accessed on 3 March 2021));
- 1× planar LiDAR with mechanical motion (Slamtec’s RPLIDAR A2 (https://www.

slamtec.com/en/Lidar/A2 accessed at on 3 March 2021));
- 1× Recommended Standard 232 (RS232) to Universal Serial Bus (USB) adapter

(https://bit.ly/3ixhrWM accessed on 3 March 2021);
- 1× Global Navigation Satellite System (GNSS) receiver (GP-808G (https://www.

sparkfun.com/products/14198 accessed at on 3 March 2021));
- 1× Raspberry Pi 3B+ (https://www.raspberrypi.org/products/raspberry-pi-3-model-

b-plus/ accessed on 3 March 2021);
- 1× 3D printed with Polylactic Acid filament case that accommodates all previous

components.

https://www.raspberrypi.org/products/pi-noir-camera-v2/
https://www.raspberrypi.org/products/pi-noir-camera-v2/
https://bit.ly/3p63a5y
https://www.slamtec.com/en/Lidar/A2
https://www.slamtec.com/en/Lidar/A2
https://bit.ly/3ixhrWM
https://www.sparkfun.com/products/14198
https://www.sparkfun.com/products/14198
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
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(a) Side-view image of the module showing the
LiDAR, the GNSS receiver and the USB power
input.
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(b) Front-view image of the hardware module
showing the two thermal cameras and the NoIR
camera.
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cameras

RS232-USB
converter

Raspberry Pi
location

(c) Bottom-view of the hardware module showing
the interior area of its case with the two thermal
cameras, the Raspberry Pi location and the RS232-
USB adapter.

Figure 1. The hardware module: (a) side-view, (b) front-view and (c) bottom-view showing the
interior of the module case.

The inter-connections between the components can be observed in the high-level
scheme presented in Figure 2. The thermal cameras, the NoIR camera, the GNSS receiver,
and the USB power input are directly connected to the Raspberry Pi. On the other hand, the
connection between the LiDAR and the Raspberry Pi is inter-mediated by the RS232-USB
adapter. For the module to work, the Raspberry Pi needed to be powered by electricity.
This was accomplished by wiring the USB power input with a 5 V cable connector to a
5 V–12 V converter, which was connected to the 12 V output connector of the tractor. The
purpose of the NoIR monocular camera was to collect images of the crop used by the
photogrammetry techniques. The LiDAR was responsible for scanning precisely the same
crop to generate, along with the GNSS receiver, a precise point cloud.
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Moreover, the GNSS receiver—with European Geostationary Navigation Overlay
Service (EGNOS) corrections—is accurate within a 2.5 m radius under open sky [11] and
its use made possible the tractor’s localisation during operations in the field. The data
provided by the two thermal cameras were not used because they are irrelevant for the
purpose of this work. The Raspberry Pi was in charge of reading and storing all sensor
measurements and data.

Thermal 
camera

Thermal 
camera

NoIR
camera

GNSS
receiver

Raspberry Pi

LiDAR

USB
power 
input

RS232-
USB

converter

C
as

e

Figure 2. High-level scheme of the hardware module showing the connections between its components.

The hardware module was placed on top of a tractor, as can be observed in Figure 3, at
the height of approximately 2.4 m above the ground. This height was considered sufficient
to capture the entire canopy since the latter present an average height below 2.4 m. The
inclination of the LiDAR comparatively to the module’s base was about 22.5 degrees, as
can be seen in Figure 1a. This inclination was selected because the vineyard information
gathered by the planar (2D) LiDAR earns 3D features, becoming more relevant structurally.
The data were stored in the Robot Operating System (ROS) [12] format, known as rosbags,
to further offline processing.

Figure 3. Tractor with the hardware module mounted on top (inside the green rectangle).
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2.2. Study Area and Path

The collection of the necessary data to produce this work was made in a vineyard in
Albugnano, Province of Asti, Italy (45°04′50.7′′ N, 7°57′11.5′′ E). The data collection was
performed on 02-July-2020 with a clear sky, and during operation, there were no persons
in the way of the vehicle, and no occlusions were found. The tractor covered the entire
area of the field, gathering along with its sensor measurements, namely images and laser
scans from the monocular camera and LiDAR. Nevertheless, in this work, only a portion
of the tractor course was considered due to the extremely high execution time that the
photogrammetric techniques would take to generate a result if all data were used. The path
selection focused on choosing a path that was inside the target site (in green in Figure 4)
and that contained curves and at least two corridors (or three-leaf walls). These criteria
were considered to assess the photogrammetric procedures’ potential in creating a 3D scene
from monocular images. The selected path is shown in Figure 4 in red dots, which denote
precise positions of the tractor. Also, in the same figure, the start and end location in yellow
of the tractor course can be seen.

This paper focuses on Italy’s vineyard, but we did the same procedure for one vineyard
in Portugal, and it can be done in other vineyards as well.

Target site

Start

End

Figure 4. Italy’s target site in green; studied path in red and its start and end locations in yellow.

2.3. Dataset Description

The dataset containing all sensory data collected in Italy is available online (http:
//vcriis01.inesctec.pt/datasets/DataSet/Water4Ever/Bags-Italy/ accessed on 3 March
2021). The dataset is made up of several rosbags, and they all share the same main topics
shown and described in Table 1.

Table 1. Description of the dataset built with data acquired by the hardware module.

Topic Type Description

/fix sensor_msgs/NavSatFix GNSS localisation data
/scan sensor_msgs/LaserScan Scanning data from the planar LiDAR
/fisheye_cam/camera_info sensor_msgs/CameraInfo Information data about the NoIR camera
/fisheye_cam/image/compressed sensor_msgs/CompressedImage Compressed image data

http://vcriis01.inesctec.pt/datasets/DataSet/Water4Ever/Bags-Italy/
http://vcriis01.inesctec.pt/datasets/DataSet/Water4Ever/Bags-Italy/
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2.4. On-Site Manual Measurements

The manual measurements made on-site were performed on the same day that the
tractor coursed around the vineyard, and they are all related to the target site already
introduced in green by Figure 4. These measurements are shown in Table 2, along with
their average values, and they will serve as a comparative baseline to assess the quality of
the predicted measurements that will be presented later on this paper.

Table 2. Manual measurements made on-site and their average values.

Measurement Value (m)

Inter-row width 2.75
Row width 1.10
Row length 61.20
Row height 1.50
Distance between two vine trees 0.90

In each row of the target site, the distance between each pair of vine trees was 0.90 m.
Also, each row was formed by 69 vine trees giving an average row length of 61.20 m. The
distance between each pair of rows was 2.75 m and each row averaged 1.10 m in width
and 1.50 m in height.

2.5. Data Processing Pipeline

The construction of 3D point clouds from raw data was achieved using a data pro-
cessing pipeline that is shown in Figure 5. The inputs of the pipeline are geo-referenced
monocular images and laser scans. The stages that make up the pipeline are presented next.

Image-based 
point cloud 

construction 

Laser-based 
point cloud 

construction 

Sparse 
point 
cloud 

Digital 
surface 
model 

Point cloud 
registration 

Fine 
registered 
point cloud 

Data format 
conversion octree 

Measurements

- Canopy volume

- Canopy occupancy areaLaser 
scans 

Images 

Figure 5. Data processing pipeline used to generate 3D models from raw data and further canopy
measurements. The green rectangles correspond to pipeline processing stages; the blue ellipses
represent data, and the list at the end contains the measurements made.

2.5.1. Point Cloud Construction

To generate an image-based 3D model of the study path, first, the images captured by
the monocular camera on-board of the tractor were extracted from the rosbags. An example
of one of the captured images is shown in Figure 6. Then, they went through Structure
from Motion (SfM), Multi-View Stereo (MVS), and surface reconstruction steps.

SfM is a method that reconstructs a 3D scene structure from a set of photographs taken
from distinct viewpoints [13]. The result is a sparse 3D point cloud (low populated cloud)
representing the scene. In this work, we used a variation of this method called Incremental
SfM, a sequential pipeline that reconstructs iteratively. It starts by extracting and matching
image features, and then a geometric verification is performed. After these first initial steps,
a scene graph is obtained that is the start point for the reconstruction phase, which gives
the model input, a reconstruction based on only two views (the two images presenting
more affiliation among each other). Then, incrementally, new images are registered, scene
points are triangulated, outliers are filtered, and the reconstruction is refined using bundle
adjustment [13].

MVS is a method that reconstructs dense 3D geometry by searching for visual cor-
respondences among the images and using camera parameters roughly calculated in the
SfM step or estimated through camera calibration processes [14]. Such correspondences
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are triangulated, generating dense 3D data (highly populated cloud). Then, the 3D dense
model can be converted to a surface mesh by surface reconstruction processes [14].

Figure 6. Example of an image captured by the NoIR monocular camera.

The software solutions that were chosen for the 3D scene reconstruction from cap-
tured images were: two open-source tools named Open Multiple View Geometry (Open-
MVG) [15] (for SfM) and Multi-View Environment (MVE) [14] (for MVS and surface
reconstruction); and a commercial tool called PIX4D [16] capable of doing the entire process
(from initial images to a final mesh).

The tests with both open-source and commercial software mentioned above were
carried out with 600 monocular images, with a size of 640 × 480 pixels (width × height),
captured during the tractor’s movement on the study path. Two tests were performed on
each software solution: in the first one, the raw images were used without any other type
of data, and in the second one, GNSS data were added to the images, providing to each
image the precise GNSS coordinates where it was captured and following the Exchangeable
image file format (Exif).

Additionally, the camera calibration matrix was also considered as an input param-
eter for both software solutions. This matrix is presented in Equation (1), where fx and
fy denotes the focal length in the x and y directions, and Cx and Cy correspond to the
coordinates of the principal point.

K =

 fx 0 Cx
0 fy Cy
0 0 1

 =

526 0 315
0 526 232
0 0 1

 (1)

The 3D point cloud that was built through LiDAR laser scans was performed using
ROS [12]. The GNSS data were converted to local coordinates, and by computing the
transformation of the tractor frame to the reference origin frame and by publishing the
point cloud messages, previously converted from laser scan messages, the laser-based 3D
point cloud was formed. Also, it is important to mention that, as the GNSS messages rate
was 1 Hz and the laser scan messages rate was 10 Hz, a linear interpolation of the tractor
positions was needed to avoid overlapping of multiple laser scans on the same position.
The minimum, maximum, and average distances of consecutive GNSS path points were
0.472 m, 2.098 m, and 1.044 m, respectively.

2.5.2. Point Cloud Registration

The registration of point clouds is an important step that allows transforming point
clouds with an arbitrary coordinate system to a specific coordinate system [17]. A well-
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known method of this domain is the Iterative Closest Point (ICP) algorithm [18] that is a
scan-matching algorithm, i.e., it aligns a source with a target point cloud, computing their
relative transformation [19]. In this work, we used ICP to perform a fine registration of the
image-based 3D point cloud with respect to the laser-based one. The latter corresponds
to a more precise representation in orientation and translation than the former. The
implementation of the algorithm was based on the Point Cloud Library (PCL) [20] with a
maximum number of iterations of 100.

2.5.3. Point Cloud to Octree Format

The OctoMap [21] framework represents data through an octree, a hierarchical data
structure where each node is represented by a voxel—space contained within the volume
of a cube. Each voxel is subdivided into eight sub-voxels until a minimum voxel size is
reached [21]. This minimum size specifies the octree resolution.

The representation of the data in this format is quite convenient because a voxel-
based representation enables the calculation of some canopy’s geometric measures such as
volume, occupied area, row height, width, and inter-row width. Therefore, the resulting
point cloud from the algorithm described in Section 2.5.2 was converted to an octree
with a resolution of 0.1 m. This resolution was considered good enough for the made
measurements since the voxels would exhibit 0.1 m of size.

2.5.4. Geometric Measurements

This work focused on assessing the measurement of canopy volume and occupancy
area. Firstly, the octree voxels representing the soil had to be classified and separated from
the voxels corresponding to the crop canopy. This step was accomplished by computing,
for the projection of each pair of coordinates (x, y) in the xOy plane, the variance in the
z-axis (or in height) of the voxels that are part of the same projection.

To calculate the variance, initially, the average of z (z̄) was computed using Equation (2).
Next, having z̄, the variance of z (s2) can be computed through Equation (3). In both equa-
tions, zi and N represent a sample of z and the total number of samples, respectively.

z̄ =
∑N

i=1 zi

N
(2)

s2 =
∑N

i=1(zi − z̄)2

N
(3)

After calculating the z variance for all (x, y) pairs being completed, a variance thresh-
old was selected, which determined whether the voxels contained within any (x, y) pair
were considered soil or canopy voxels. The concept of using a variance threshold in the
z-axis to distinguish the canopy from the soil can be observed in Figure 7, where two
top-view images are presented: Figure 7a was generated with no z variance threshold.
Thus, it shows coloured pixels corresponding to all available voxels that were considered
part of the canopy, and Figure 7b was generated with a z variance threshold of 0.3 m².
Therefore, it shows fewer coloured pixels than the previous. The use of that value for the
variance threshold in z was merely exemplary.
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(a) Top-view coloured image of the canopy volume obtained with no variance threshold.

(b) Top-view coloured image of the canopy volume obtained with a variance threshold of 0.3 m².

Figure 7. (a,b) Top-view images, based on the Jet colour-array, representing the volume of the
vineyard segment. Colder or hotter colours mean lower and higher volumes, respectively.

The volume of each voxel (Vvoxel) follows Equation (4), where l is the size of the voxel
(cube) sides.

Vvoxel = l3 (4)

The agglomeration of the voxel volumes, whose pair (x, y) holds a voxel set with a z
variance above the specified threshold, resulting in the canopy volume (Vcanopy) was made
through Equation (5), where Vvoxel j is the volume of the voxel j and M is the total amount
of voxels that are part of canopy.

Vcanopy =
M

∑
j=1

Vvoxel j (5)

The canopy occupancy area’s measurement was achieved using the division men-
tioned above among the voxels representing soil or canopy. Additionally, the base area
(Abase) of the prism formed by the voxel set of each (x, y) pair (projection in the xOy plane)
was calculated, according to Equation (6), where l is the size of the voxel side. Then, the
voxels’ base areas were summed up originating the global occupied area (Acanopy) of the
crop canopy. This last step is defined in Equation (7), where Abase k corresponds to the area
of the base of the voxel set k, and L is the total number of bases (or voxel sets) figuring in
the canopy.

Abase = l2 (6)
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Acanopy =
L

∑
k=1

Abase k (7)

3. Results and Discussion

This section presents the results of each stage of the pipeline and the volume and
occupancy area measured on the final octree-based 3D model. Also, a discussion about the
obtained results is addressed.

3.1. Results of the Point Cloud Construction

The main results of the 3D point cloud construction recurring to images (with and
without Exif GNSS data) and laser scans are presented in Table 3.

Table 3. Results of the 3D construction obtained from different methods and presented in terms of
the number of points of three distinct models: number of points of the Sparse Point Cloud (SPC),
Dense Point Cloud (DPC), and Digital Surface Model (DSM) or mesh.

Method
Number of Points

SPC DPC DSM

Image
(without GNSS data)

OpenMVG + MVE 41,853 8,213,802 510,049

PIX4D - - 252,182

Image
(with GNSS data)

OpenMVG + MVE 74,351 8,357,579 501,756

PIX4D - - 317,889

Laser 91,554 - -

Regarding the 3D construction using images without embedded GNSS data, Open-
MVG resulted in a Sparse Point Cloud (SPC) with 41,853 points and, MVE generated a
Dense Point Cloud (DPC) and a Digital Surface Model (DSM) or mesh with 8,213,802 and
510,049 points, respectively. The three models obtained from the open-source tools are
presented in Figure 8. About PIX4D (commercial software), the result was a DSM with
252,182 points and its representation is shown in Figure 9.

From these constructions, it should be noted that the DSMs retrieved from open-
source and commercial tools are globally similar in terms of structure; however, PIX4D’s
DSM presents more precision and less noise in its 3D representation. Additionally, this
commercial tool did not split the vine row that separates the two biggest corridors as
the open-source tools did (Figure 8e,f). Despite that, both solutions (open-source and
commercial) did not reconstruct quite well the path (camera poses path) that the tractor
went through in any of their 3D models. Considering that three segments compose the
path, in Figure 8a one may observe that the reconstructed path (in green points) has flaws
in the shorter segment. This may be due to external factors during the capture of the
images, such as wind and light intensity that are very common in outdoor environments
and compromise the accuracy of 3D reconstruction processes [22] like SfM and MVS. In
case the images present low-quality levels or even data losses, the reconstructed model
will be less accurate and will demonstrate more flaws in its 3D representation. In this
particular case, wind conditions would make shivering the leaves of the vine trees, and
the respective images of the trees would not be similar. Thus, they could be discarded
as a possible match during the feature matching phase of the reconstruction processes
mentioned above. Another factor that could potentially impact the 3D reconstruction is the
reduced quantity of data (images) that the smaller path segment comprises since only 70
of the 600 images are related to this segment. So, as SfM and MVS are quite challenging
by themselves with a good amount of data, when there is a lack of data, the results are
expected to present some flaws.
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(a) The OpenMVG resulting SPC that was built
using images without embedded GNSS data. The
green points represent the camera poses path that
was computed by OpenMVG.

(b) The OpenMVG resulting SPC that was built
using images with embedded GNSS data. The
green points represent the camera poses path that
was computed by OpenMVG

(c) The MVE resulting DPC that was built using
images without embedded GNSS data.

(d) The MVE resulting DPC that was built using
images with embedded GNSS data.

(e) The MVE resulting DSM that was built using
images without embedded GNSS data.

(f) The MVE resulting DSM that was built using
images with embedded GNSS data.

Figure 8. SPCs (a,b), DPCs (c,d) and DSMs (e,f) obtained from OpenMVG and MVE. The left and
right columns refer to models which were constructed using images without and with Exif GNSS
data, respectively. These images are screenshots taken from CloudCompare Viewer [23].

(a) The PIX4D resulting DSM that was built using
images without embedded GNSS data.

(b) The PIX4D resulting DSM that was built using
images with embedded GNSS data.

Figure 9. DSMs (a,b) obtained from PIX4D. The left and right figures refer to models which were con-
structed using images without and with Exif GNSS data, respectively. These images are screenshots
taken from CloudCompare Viewer [23].

Concerning the 3D construction using images with embedded GNSS data, OpenMVG
resulted in a SPC with 74,351 points and MVE generated a DPC and a DSM with 8,357,579
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and 501,756 points, respectively. These three models obtained from the open-source tools
are presented in Figure 8. With respect to PIX4D, it resulted in a DSM with 317,889 points
and its representation is shown in Figure 9.

About these constructions, a detail that must be mentioned is that the DSM generated
by PIX4D is in disagreement with the reality since the two corridors of the vineyard are
incorrectly separated, as can be observed in Figure 9b. On the other hand, the 3D models
obtained from the open-source tools are globally correct and did not gather rough errors
like the ones PIX4D originated. Therefore, the resulting DSM from PIX4D was not used in
this work. Nonetheless, both software solutions (open-source and commercial) failed again
at reconstructing the path travelled by the tractor in the same segment (the smaller), as can
be seen in Figure 8b.

For the 3D construction with and without GNSS data, a comparison can be made.
Figure 8a,b shows the cameras poses (in green) in the SPCs obtained from OpenMVG,
where can be noticed that the green path is more similar to the original path, shown in
Figure 4, when the image-based construction is performed with GNSS data than without
GNSS data. This similarity can be observed specifically in the last segment of the path in
Figure 8b, where the green path does not reach the same length as the biggest segment,
showing more compliance with the original path presented in Figure 4. Consequently, only
GNSS-based models, derived from open-source tools, were further used in this work.

Regarding laser-based 3D construction, the result was an SPC with 91,554 points. The
final structure of the laser SPC is demonstrated by Figure 10. In the same figure, it can be
seen the path travelled by the tractor in green points.

Figure 10. Laser scanning-based 3D point cloud with the path travelled by the tractor in green dots.

3.2. Results of the Point Cloud Registration

The point cloud registration was executed with MVE’s DSM and laser-based point
cloud to generate a more precise representation of the 3D scene regarding the scale of
the same. The algorithm that was chosen to achieve this was ICP that converged with a
score of 0.880257 and gave origin to a new point cloud with 501,756 points. The resulting
matrix representing the rotation and translation that occurred to form the new point cloud
is presented in Equation (8), where R is the rotation matrix, and t is the translation matrix.

[R | t] =


0.0327 −0.950 −0.309
0.710 0.240 −0.662
0.704 −0.198 0.683

0 0 0

∣∣∣∣∣
−52.292
−6.655
2.490

1

 (8)
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3.3. Results of the Point Cloud to Octree Conversion

The registered point cloud obtained from the previous section’s algorithm was con-
verted to an octree with a 0.1 m resolution. The resulting octree had 248,599 nodes,
166,501 leaves, a volume of 37,437.7 m³ and can be seen in Figure 11.

Figure 11. Resulting octree of the conversion from point cloud data.

3.4. Results of the Geometric Measurements

The results of the geometric measurements, volume (VM), and occupancy area (AM),
taken on the canopy are shown in Table 4, where three different variance thresholds were
considered. The values for the z variance threshold were carefully selected to be closer
to reality.

Table 4. Results of the canopy measurements: for each of the applied variance thresholds, the canopy
volume and occupancy area are presented.

s² Threshold
in the z-axis (m²) VM (m³) AM (m²)

0.10 105.19 189.12
0.15 100.44 179.32
0.20 95.19 169.22

As expected, increasing the threshold leads to a decrease in both VM and AM since
fewer voxels are at stake with bigger thresholds. In Figure 12, as a matter of visualisation,
the top-view images of the crop segment are presented according to canopy volume and
occupancy area with a variance threshold of 0.15 m². Concerning Figure 12a, it can serve as
a prescription map for farmers to pay attention to specific zones of the vineyard and take
some actions about them. Some zones of the map, like the ones presented by Figure 13,
can point out under (circle A) and over-populated (circle B) zones in terms of vegetation.
Although we do not have a real top-view picture of the vineyard, we checked that these
zones are present in the vineyard using the image sequences gathered by the hardware
module. Therefore, these types of maps are tools that farmers can take advantage of
to increase farm productivity and profitability, reduce plagues, and improve fertiliser
utilisation planning.
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(a) Top-view coloured image, based on the Jet colour-map array, of the canopy volume. Colder or
hotter colours mean lower or higher volumes, respectively.

(b) Top-view coloured image of the canopy occupancy area. The green colour represents the canopy
and the brown colour is the soil.

Figure 12. The top-view images representing the volume (a) and the occupancy area (b) of the
vineyard segment. Both images were obtained using a variance threshold of 0.15 m².

From Figure 4, it can be observed that the selected path coverage was about four
different vine rows. Nevertheless, as was already address in Section 3.1, the image-based
3D reconstruction did not work well on the smaller segment of the path. For that reason, we
will only take into account that three different vine rows were covered. Still, the three rows
were not fully covered—two completely and one partially (a little more than 1/2). Thus we
will consider that the right amount of vine rows is 2.5. Since manual measurements of the
vineyard’s target site were made, the quality of the geometric measurements obtained from
the 3D model can be appraised. Therefore, considering the values presented in Section 2.4,
we will approximate each vine row to a rectangular prism, similarly to the traditional
method [24], and geometrically compute the volume and occupancy area (base area) of the
same. The results are ground truth values related to the volume (VGT) and occupancy area
(AGT) that are shown in Table 5.

Table 5. Baseline measurements of the canopy volume and occupancy area for different numbers of
vine rows.

Number of Rows VGT (m³) AGT (m²)

1 100.98 67.32
2.5 252.45 168.30
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A
B

Figure 13. Critical zones of the vineyard: circle A may evidence lack of vegetation and circle B may
demonstrate an over-populated zone.

It was expected that both ground truth values of volume and occupancy area (VGT
and AGT) to be significantly bigger than the measured versions of the two (VM and AM)
through the data processing pipeline because both ground truth values were calculated
using average values of manual measurements that are related to the entire crop and
that do not take into account the shapes of the vine trees. Thus, these values roughly
represent the rows that are part of the selected path. In Table 6, is presented the relative
differences between the ground truth and the measures values, (VGT − VM)/VM and
(AGT − AM)/AM.

Table 6. Relative difference between the ground truth and the measured values for the canopy
volume and occupancy area with respect to distinct z variance thresholds.

s² Threshold
in the z-axis (m²)

(VGT − VM)/VM
(%)

(AGT − AM)/AM
(%)

0.10 +139.99 −11.01
0.15 +151.34 −6.15
0.20 +165.21 −0.54

In fact, from Table 6, it can be noted that for thresholds of 0.10 m², 0.15 m², and 0.20 m²,
the ground truth volume is about 139.99%, 151.34% and 165.21% bigger than the measured
volume. The ground truth occupancy area is about 11.01%, 6.15%, and 0.54% smaller than
the measured occupancy area, not demonstrating as big a difference as the ground truth
volume from its measured value. Still, on the contrary, it presents a slightly lower value.
The reason behind this may be derived from the fact that, as was already mentioned in
Section 3.1 and as can be observed in Figure 12a, the 3D reconstruction separated the two
corridors.

Consequently, the row that divided them was split into two rows, therefore occupying
more area. Otherwise, the ground truth value for the occupancy area would be bigger than
the estimated value. However, this phenomenon did not interfere with the volume value
because, even though the row is divided, the volume is the same as the tractor captured each
side of that row one at a time (while coursed the respective corridors). Thus the volumetric
representation of that row is considered realistic and precise. The authors in [4] conducted
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a similar study that included measuring Tree Row Volume (TRV) of different species of
cultivars using UAV photogrammetry. They compared the UAV-based measurements
(named TRV1) with two handmade-based methods, one of which (named TRV3) is similar
to our approach for computing the ground truth values. The results that they gathered
showed that the average value per row of the relative difference between TRV3 and TRV1
was equal to +24%, the minimum was +5%, and the maximum was +58% [4]. Also, the
authors stated that TRV3 generated uncommonly precise measurements because there were
used average values of 10 trees per row to compute TRV. In reality, the traditional method
uses only a pair of trees per hectare, leading to very unrealistic values. Then, although our
measured values for the volume show a considerable difference from the ones presented
in [4], they can be considered in accord with what is expected when the traditional method
is used as a baseline.

4. Conclusions and Future work

This work aimed to measure canopy characteristics, specifically volume and occupied
area, through image and point cloud data to provide prescription maps to farmers to help
them take well-planned actions towards farm productivity and profitability. With this
goal in mind, data from a vineyard were collected by a data acquisition hardware module
mounted on top of a tractor. The module captured geo-referenced monocular images using
a NoIR camera and laser scans using a planar LiDAR with mechanical motion. Then, these
data were fed to a data processing pipeline that generated an octree with some intermediary
stages. This final 3D model was then used to compute the canopy’s geometric structure.

The main contributions of this work are a public dataset, a portable and standalone
hardware module, and a data processing pipeline capable of providing a prescription map-
alike image to farmers so that they can make well-planned decisions on their vineyards.

Regarding the point cloud construction stage of the pipeline that utilises images, the
reconstructed path, travelled by the tractor, demonstrated to be more accurate when the
utilised images for making the 3D construction contained embedded Exif GNSS data than
when they did not have this type of information. Also, although the commercial software
solution (PIX4D) used in this work presented rough errors respecting the canopy structure
when GNSS data were used, the same exhibited more precision, in terms of portraying the
crop features, in its resulting DSM than the open-source combination (OpenMVG+MVE).
Furthermore, PIX4D did not split (when GNSS data was not used) the vine row that
separates the two biggest corridors as the open-source tools did with and without GNSS
data. These factors may hint that, at the time of writing this paper and with our dataset,
one can benefit from an additional cost for using commercial software. Concerning the
canopy structure geometric measuring, both volume and occupancy area, measured at the
final stage of the pipeline, presented reasonable values compared to the ground truth and
according to what is said in the literature.

Future work includes gathering manual measurements of several individual vine trees
that compose the crop to provide more accurate ground truth values of the canopy structure
within this work domain. Besides, the localisation in the vineyard of the critical zones,
found in the prescription map-alike image, can be addressed in the future for farmers
to know exactly the locations that may need action. In addition, a dataset with more
complexity and more data will be built that will allow us to identify leaves and grapes
and, consequently, characterise the development degree of them. Also, testing more 3D
reconstruction software tools (open-source and commercial) based on SfM and MVS tasks
would be interesting to make a deeper comparative analysis of their performances. Lastly,
an effort can be made to improve the performance of PIX4D when images with embedded
GNSS data are used so that bearish errors can be avoided.
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LAI Leaf Area Index
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MVE Multi-View Environment
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