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Abstract: Combining modern technology and agriculture is an important consideration for the
effective management of oil palm trees. In this study, an alternative method for oil palm tree
management is proposed by applying high-resolution imagery, combined with Faster-RCNN, for
automatic detection and health classification of oil palm trees. This study used a total of 4172
bounding boxes of healthy and unhealthy palm trees, constructed from 2000 pixel × 2000 pixel
images. Of the total dataset, 90% was used for training and 10% was prepared for testing using
Resnet-50 and VGG-16. Three techniques were used to assess the models’ performance: model
training evaluation, evaluation using visual interpretation, and ground sampling inspections. The
study identified three characteristics needed for detection and health classification: crown size, color,
and density. The optimal altitude to capture images for detection and classification was determined
to be 100 m, although the model showed satisfactory performance up to 140 m. For oil palm tree
detection, healthy tree identification, and unhealthy tree identification, Resnet-50 obtained F1-scores
of 95.09%, 92.07%, and 86.96%, respectively, with respect to visual interpretation ground truth and
97.67%, 95.30%, and 57.14%, respectively, with respect to ground sampling inspection ground truth.
Resnet-50 yielded better F1-scores than VGG-16 in both evaluations. Therefore, the proposed method
is well suited for the effective management of crops.

Keywords: high-resolution imagery; deep learning; oil palm tree; CNN; Faster-RCNN

1. Introduction

Oil palm trees are one of Thailand’s most essential economic crops considering it has
the highest oil production when compared to other oil-producing plants such as soybean,
peanut, sunflower, and rapeseed. Palm oil can be processed into various products such as
cooking oil, soap, margarine, and sweetened condensed milk. In addition, it is also used as
a raw material in the manufacturing of biodiesel and pulp. Oil palm trees grow well in
tropical climates, which are often found in countries situated in equatorial regions. Thus,
the oil palm is a crop that is widely cultivated by farmers in Southern Thailand.

Precision agriculture requires reliable data on the current situation at the right time.
Therefore, the automated detection of oil palm trees and health disorder recognition is
an alternative method for farmers to manage their resources using technology instead of
a manual approach. The method also provides information on plant growth and health,
which is especially useful to track the age and survival rate of plants that will contribute to
the oil palm tree production in the future. Oil palm tree detection and enumeration are
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mostly performed using high-resolution imagery. For instance, many researchers have
used high-resolution satellite images [1] and unmanned aerial vehicle (UAV) images [2].
UAVs have played a vital role in remote sensing in recent years as they can provide
high-resolution images when there is no cloud cover. Users can set the altitude and
time to fly. Aliero et al. used UAVs for automated counting of oil palm trees based on
crown properties and the plants’ response to radiation. Moreover, spatial analysis and
morphological analysis were also used in their study [3]. Daliman et al. used Haar-based
rectangular windows and support vector machines (SVMs) to detect oil palm trees on the
WorldView-2 satellite imagery dataset [4]. Manandhar et al. presented a methodology for
object detection with aerial imagery by applying shape feature characteristics for oil palm
tree detection and counting. They used circular autocorrelation of the polar shape matrix to
represent images as the shape feature and used a linear SVM to standardize and reduce the
feature dimensions. Finally, they used local maximum detection on the spatial distribution
of standardized features for oil palm tree detection [5].

Deep learning is one of the various machine learning procedures with a mechanism
similar to that of the human brain. In addition, it is commonly applied to analyze visual
imagery. Recently, much attention has been paid to this method and it has been applied
in many fields, such as image recognition [6], handwriting recognition [7], medical, and
healthcare [8]. Moreover, deep learning has also been applied to agricultural management
to reduce production costs resulting in more effective agricultural production. For example,
our method was used to detect and enumerate agricultural populations, including the
classification of diseased plants. Cheang et al. proposed a system for the counting and
positioning oil palm trees using a convolutional neural network (CNN) to classify the oil
palm dataset on a high-resolution satellite image with a sliding window technique [9].
Li et al. proposed using deep learning to detect plants instead of manual detection meth-
ods. They used data from a manual count to train and improve the performance of the
CNN system. Then, all samples were predicted on images using the sliding window
technique [10]. Sladojevic et al. studied the development of plant disease patterns from
leaf images using deep convolutional networks. The results of their study demonstrated
the ability to distinguish diseased plants from healthy plants [11]. Mubin et al. used a
geographic information system (GIS) and CNN named LeNet on WorldView-3 images for
young and mature oil palm detection [12]. They used a training dataset with a mini-batch
of size 20 and used GIS software to display and create maps of oil palm tree prediction.

There are various popular deep learning algorithms, such as recurrent neural networks
(RNNs), long short-term memory networks (LSTMs), and CNNs. RNNs and LSTMs have
similar capabilities and are widely used in time series problems/forecasting, but LSTM
can be trained for tasks that require long-term memory. CNN is the deep neural network
most commonly used in computer vision and object detection [13]. Many CNN models
are available in the public repository. VGG-16 [14] and Resnet-50 [15] are examples of the
CNN models commonly used for image classification. In recent years, a selective search
based on regions was introduced to improve the speed and performance of a detector. The
most common models include R-CNN, Fast R-CNN [16], and Faster R-CNN [17]. Faster
R-CNN performed best among those three in terms of accuracy and detection speed.

The use of remote sensing in conjunction with these deep-learning techniques is
common in the agricultural industry in many countries. Most research on oil palm tree
detection uses satellite imagery and focuses solely on detection and counting. For example,
Zheng et al. used Faster-RCNN, one of the most popular networks for object detection,
to detect tree crowns from satellite images [18]. In contrast, in this study, high-resolution
images from UAVs are used instead. Due to this approach, data surveys can be performed
without time restrictions and under any cloud conditions. Our study focuses on oil
palm health classification (healthy or unhealthy) rather than just detection and automatic
counting as other research. Therefore, it is useful for modern precision agriculture, which
focuses on reducing farmer work processes and unnecessary production costs.
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This study proposes a technique to automatically detect and count oil palm trees and
recognize oil palm health from high-resolution images using CNN with Faster-RCNN
structure. The training data included over 4000 images of individual oil palm trees with
healthy and unhealthy classes. We evaluated the model by conducting model training
evaluation and comparing prediction results with visual and ground inspections. The
model was also tested with images taken at different altitudes.

2. Materials and Methods
2.1. Data Used

Detection and health classification of oil palm trees by using the deep learning need
to be performed using high-resolution images and require field survey data to study
important physical characteristics of oil palm trees and evaluate the reliability of the results.
Thailand is the 3rd largest producer of palm oil in the world [19]. Southern Thailand is
the region with the most oil palm plantations. The study areas included three oil palm
plantations, two of which were located in Surat Thani and the other one was located
in Krabi, shown in Figure 1, with approximately 40 Rai (64,000 square meters) in each
plantation area. Surat Thani and Krabi are the two provinces with the largest oil palm
production, ranked first and second, respectively. The recommended practice for oil palm
plantation is to allocate an area of 9 m × 9 m for each oil palm tree. This results in a regular
pattern of oil palm positions within an area.
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row, starting with the first tree of the row. 

Figure 1. Location of study area.

The dataset used in this study consists of high-resolution RGB images taken from a
UAV by a DJI Phantom 4 Pro camera with a 20 megapixel resolution using a D-Log color
profile, as illustrated in Figure 2. All the images used were captured at an altitude of 100 m,
and the ground sampling distance (GSD) was approximately 2.8 cm.

Moreover, field survey data were obtained by performing a health assessment using a
paper survey and ground photography. Field observation data such as crown size, crown
density, crown color, and examples of problematic oil palm trees were used to study the
correlation between oil palm trees in plantations and UAV images.

2.2. Methodology

The methodology section of this paper presents the research process used during this
study. First, data collection is discussed, together with the data preparation process used to
prepare the high-resolution image dataset for use as training and testing data. Second, the
method used to develop training data and a model for counting and health classification is
addressed. Last, we covered model evaluation, which included three techniques: model
training inspection, visual inspection, and ground inspection.
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Figure 2. Unmanned aerial vehicle (UAV) image of the study area.

2.2.1. Data Collection and Data Preparation

The study area survey was critical given that the survey data would be used to check
and monitor physical characteristic changes and oil palm tree health. The data collection
process focused on three obvious external physical characteristics that could easily be
observed: color (the level of green in the canopy), crown density, and crown size. Moreover,
other general information such as age, height, diameter at breast height (DBH), nutritional
deficiency symptoms, diseases at various levels, and the approximate amount of production
were recorded for every sample tree. All the data above could be used as indicators of
oil palm health and abnormalities. A tree under stress was also classified as unhealthy.
Figure 3 showed the example of unhealthy trees. A laser range finder collected information
on height and crown size (measured along the x- and y-axes). The DBH was measured
using a tape measure or rope with scale. A sample of surveyed oil palm trees was chosen
using a systematic sampling method, sampling approximately 25% of the total area. The
sample trees were chosen by selecting every fourth tree in a row, starting with the first tree
of the row.
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Figure 3. Examples of unhealthy trees with nutrient deficiencies and Ganoderma.

The ground truth labels were acquired through sample observations using the follow-
ing criteria: crown size was determined by measuring the crown’s radius, and the crown
color was assessed by classifying the amount of green in the canopy at different heights
(lower fronds, middle fronds, and upper fronds) into three levels. We also separated crown
density into three levels: low, moderate, and high, as shown in Figure 4. The measurements
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and labeling were assessed in collaboration with agricultural officers specializing in oil
palms. To obtain additional information, a sample leaf from the 17th frond was collected
for nutrient inspection in the laboratory. However, the aim of this study is to emphasize
external indicators and focus on large-scale measurements before considering other meth-
ods such as the use of a multispectral camera or spectroradiometer for leaf inspection.
Thus, obscure health conditions in oil palms may be less well detected, and this one of the
limitations of this study.
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Figure 4. Examples of ground truth observations.

The preparation of the processed UAV images with red, green, and blue (RGB) bands
began by converting the format of orthophotos from .TIF to .JPG. The image size used as
data for training and testing had an extreme effect on memory and data processing. Thus,
each image was divided into smaller images of similar sizes. Therefore, each image was
split into equal-sized 2000 pixel × 2000 pixel images without taking image overlap into
account, as shown in Figure 5.
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2.2.2. Training Data Development and Oil Palm Tree Classification Model

In accordance with the development of training data, for automatic oil palm tree
detection and counting based on deep learning techniques, this method required data that
were already classified (labeled data). The data used for training were divided into two
classes, i.e., healthy oil palm trees and unhealthy oil palm trees, as illustrated in Figure 6.
In the train set, the class of healthy oil palm trees included healthy oil palm trees on images
in various conditions, such as blurred images of healthy oil palm trees and healthy oil palm
trees with incomplete canopies (however, more than 50% of the canopy is still present). It
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also included healthy oil palm trees that overlapped other objects, other plants, and other
backgrounds. For the unhealthy oil palm tree class, the dataset included unhealthy oil
palm trees on images in various conditions similar to that of the healthy dataset. To reduce
the problem of detecting the same tree in multiple images, the bounding boxes were drawn
around the regions that enclose more than 50% of the canopy.
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Figure 6. Examples from the (a) healthy and (b) unhealthy datasets.

During the preparation of a training set, including healthy and unhealthy oil palm
trees, the palm trees were separated from other objects that were not of interest by finding
the Xmin, Ymin, Xmax, and Ymax values for each canopy boundary. These values were
determined by using the program LabelImg and drawing a bounding box surrounding
each canopy along with providing the class definition. The program generated the training
dataset as the Pascal VOC dataset in .xml format. This format was then converted into a
text file (.txt), with each line containing “filepath, Xmin, Ymin, Xmax, Ymax, class_name”
before being used for processing. Additionally, the testing dataset was prepared the same
as the training dataset, with the testing dataset accounting for testing was 10% of the
total dataset.

According to Figure 7, the processing procedure for classifying and counting oil
palm trees began with data collection and training data development. Then it followed
with the selection of CNN architecture, including parameter optimization. The CNN
architecture was then trained and tested using the dataset with Python3. Another criterion
for architecture selection was the availability of the software, which enables people from
multiple disciplines to benefit from the findings of this study.

As a result, Faster-RCNN was chosen as the underlying network architecture, and
the two models selected for this research were VGG-16 and Resnet-50. These models are
common options for Faster-RCNN and were mostly used as baseline models for further
improvements. The models were implemented using the TensorFlow and Keras deep-
learning libraries for Python3. Model training was performed on a PC running Windows
10 and equipped with a GeForce RTX 2080 Ti. The parameters were optimized using
1000 iterations per epoch with a batch size of 1, as supported by Faster RCNN. The training
was halted at 39 epochs for the VGG-16 network and 40 epochs for the Resnet-50 network
when no further increase in accuracy was noted.
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2.2.3. Evaluating Model Performance

The evaluation of performance after processing was evaluated in three parts. A
preliminary assessment of the effectiveness of the model was done by observing the
accuracy and loss function values. After processing, classifier accuracy for bounding
boxes from the region proposal network (RPN), four loss values, and elapsed times were
compared for this research. Next, visual inspection, which evaluated the model’s accuracy
by comparing the number of oil palm trees predicted by the model to the number counted
on UAV imagery. The performance evaluation of an object detection model commonly uses
precision, recall, and F1-score without considering intersection over union (IoU), which
is more suitable for image segmentation evaluation. Moreover, it takes a long time and is
difficult to generate labeled training data for an IoU-based evaluation, especially for oil
palm trees, because of the overlapping boundaries of the oil palms. Therefore, a confusion
matrix was used to describe the achieved model classification showing true positive (TP),
false negative (FN), false positive (FP), and true negative (TN). Then, the values from the
confusion matrix were used to measure performance by calculating precision, recall, and
F1-score defined by the following equations.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score = 2 × Precision × Recall
recision + Recall

(3)

The ground inspection was performed by comparing the predicted results from the
CNN model with the physical characteristics of oil palm tree samples observed from
surveying and ground photography. This method showed the consistency between the
predicted results of the model and the oil palm trees in plantations. The result obtained
from this evaluation was the ratio of all predicted oil palms to the total number of oil
palms surveyed. Further, it compared the proportion of healthy and unhealthy oil palms
predicted by the model to healthy and unhealthy oil palms from the survey.

3. Results and Discussion
3.1. Physical Characteristics and Data Preparation

The physical characteristics of oil palm trees are essential, as they indicate good or
bad health. The health of oil palm trees on high-resolution imagery at vertical angles
can be observed using three crucial characteristics: crown size, crown color, and crown
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density. The crown size relates to the age of the oil palm tree. Young oil palms (less
than eight years) have a small crown size, becoming larger as they grow, and reaching
full size at about eight years. Aside from the oil palm’s age, the canopy’s size can also
be affected by exposure to Ganoderma disease. Concerning color, most healthy oil palm
trees have a green canopy. In contrast, unhealthy oil palms tend to have different colored
canopies ranging from yellowish green to brown, resulting from water or essential nutrient
deficiency. Additionally, crown density is another important physical feature as the number
of fronds can inform whether the oil palm tree is healthy or not. Specifically, healthy oil
palm trees have very dense fronds and when viewed from a vertical angle it is almost
impossible to see the ground below. However, problematic oil palm trees have fewer
fronds; therefore, it is possible to see the ground below. Figure 8 presents a few examples
of the important physical characteristics indicative of oil palm health.
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The general characteristics of healthy, mature oil palm trees are usually dark green
leaves, about 18–25 fronds, and a diameter of approximately 7.5 m [20]. Nutritional
deficiencies are most often the cause for the deterioration of oil palm health. Nutrients
that play an essential role in changing the physical characteristics of oil palms are nitrogen,
phosphorus, potassium, magnesium, and boron. The epidemic disease in the oil palms,
called Ganoderma, is also a significant problem that stunts growth and reduces production.

In this study, observing the physical characteristics on the UAV images and surveying
oil palms on plots suggested that most of the oil palm trees were healthy. The healthy palm
trees in the images appeared with large crown sizes, had a dark green color, and a higher
frond density than unhealthy oil palms. However, the classification of health according to
significant external features was determined by all the characteristics mentioned above.
For example, a young oil palm with a small crown size and low density could be a healthy
oil palm. On the contrary, oil palms with large crown sizes and low density were classified
as unhealthy.

Furthermore, the images oil palm trees that had differences in color, crown density, and
crown size when compared to healthy oil palm trees were investigated further. The survey
found that images showing a yellow canopy indicated an oil palm with nitrogen deficiency.
Similarly, canopies with a greenish orange color indicated a palm with potassium deficiency.
It was also found that most of the deficient palm trees were not only lacking in one nutrient
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but often lacked multiple nutrients. In the case of trees with severe nutritional deficiencies,
reductions in crown density and size were noted. Additionally, some oil palm trees
presented on the images with tiny crown sizes, low frond density, and colors of light green
and yellow. When surveying and investigating these oil palm trees in the field, it was
discovered that this resulted from the palm trees being affected by an advanced stage of
Ganoderma. This disease causes leaves to dry out and to eventually drop down against the
trunk, resulting in reduced crown size and density.

A dataset of high-resolution images from UAVs with visible bands (RGB) was used for
training and testing on a deep learning model. The images used were images taken in May
2019 at an altitude of 100 m with a spatial resolution of approximately 2.8 cm. The images
of each study area were converted into .JPG format before splitting them into equally sized
images of 2000 pixels × 2000 pixels each. This was determined to be the optimal size to
maximize memory usage and processing performance. The dataset comprised 133 images
total, 116 were assigned to the training set and 17 to the test set.

3.2. Training Data Development and Model for Oil Palm Tree Classification

The training dataset contained the position of each oil palm tree, known as bounding
boxes. From the 116 images in the training dataset, 3780 bounding boxes were created and
used for training. The dataset comprised 3035 healthy oil palms and 745 unhealthy oil
palms. The testing dataset contained 392 bounding boxes, with 325 healthy oil palms and
67 unhealthy oil palms sourced from 17 images. Table 1 shows a breakdown of the 4172
bounding boxes used in this study. Data augmentation was used to reduce the impact of
the imbalanced data.

Table 1. The total amount of bounding boxes for the training and testing datasets used in this study.

Dataset Healthy Unhealthy Total

Number of training bounding boxes 3035 745 3780
Number of testing bounding boxes 325 67 392

This study used the same dataset to train and test two different base models, namely
Resnet-50 and VGG-16, both of which were based on the Faster-RCNN structure. The
training and testing results were compared to assess the ability and efficiency of the model.
Additionally, we conducted experiments to test the ability of automatic oil palm tree
detection at different flying altitudes and settings. We flew the UAV at low altitudes
of 50 m, 80 m, and 90 m. Image mosaicking was an issue because palm trees have a
similar pattern, and lower attitude images mostly contained palm trees. This resulted in
unmosaicking in many areas. The overlap and sidelap parameters were adjusted, but this
did not solve the issue. In addition to the flights at these altitudes, we performed flights
using different color profiles and at different times to determine the best lighting. The
experimental results demonstrated that flying with a D-log color profile before 3:00 PM
was a suitable scenario.

The experiment was performed using UAV images taken at altitudes of 100, 120,
140, 160, 180, and 200 m. The results are shown in Figure 9, and Table 2 summarizes the
experimental results.

Table 2. Automatic detection of oil palm trees at various altitudes.

Altitude (m.) Actual Oil Palm Tree Detected Oil Palm Tree Accuracy (%)

100 856 852 99.53
120 856 836 97.66
140 856 769 89.84
160 856 422 49.30
180 856 75 8.76
200 856 3 0.35
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Accuracy was evaluated by comparing the results with actual data derived from the
visual interpretation of high-resolution images. Thus, this assessment emphasizes counting
the number of oil palms. Table 2 indicates that oil palm trees are best detected on UAV
images taken at a 100 m altitude, with accuracy measuring at 99.53%. Therefore, images
taken at a height of 100 m were used in this study to detect and classify oil palm tree health.
After the training, the results were tested using the test dataset that were prepared to be
approximately 10% of the training set. The Resnet-50 network model predicted 331 healthy
palms, and only 51 oil palm trees were predicted as unhealthy. Therefore, this model
detected a total of 382 oil palm trees on 17 images. The VGG-16 network model predicted
268 healthy palms, and 103 oil palm trees were predicted as unhealthy. In summary, this
model detected a total of 371 oil palm trees on 17 images. The prediction results of each
image for the two models used are shown in Table 3. Example images of prediction results
from Resnet-50 and VGG-16 are shown in Figure 10.

Table 4 shows the comparison of the actual counts and each model’s predictions. The
results show that both models were useful in terms of oil palm tree detection (healthy and
unhealthy) as the number of predicted palm trees is very close to the actual count, with
the Resnet-50 model performing slightly better. When comparing health classification, the
number of healthy and unhealthy oil palms detected by the Resnet-50 model was more
accurate than those of the VGG-16 network. Further, the accuracy and precision ratios were
calculated and will be discussed in the section evaluating model performance.

The initial assessment results also indicated that errors occurred because the oil palm
trees were obstructed by other tree canopies. Coconut and other trees with similar physical
characteristics to those of oil palm trees were another cause of errors. The number of
detectable and undetectable oil palm trees was affected by palms located on the edges of
an image, where some parts of the crown area extended across two images. Moreover, the
crown size, especially in young oil palms with small crown sizes, was another cause of
detection error. This was due to the small number of young oil palm samples with small
crowns, as the study focused on large number of mature oil palms that appear in the study
area. However, the errors related to crown size could be addressed to improve performance
by increasing the number of young oil palms in the training data. Figure 11 illustrates
examples of misclassification cases.
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Table 3. The predictable number from Resnet-50 and VGG-16.

Image
Predictable Number from

Resnet-50 Network
Predictable Number from

VGG-16 Network

Oil Palm Healthy Unhealthy Oil Palm Healthy Unhealthy

1 42 42 0 40 40 0

2 41 41 0 41 41 0

3 39 39 0 36 36 0

4 13 13 0 9 7 2

5 5 5 0 4 3 1

6 19 19 0 22 17 5

7 11 11 0 18 12 6

8 9 8 1 9 7 2

9 45 21 24 41 8 33

10 27 17 10 26 14 12

11 1 1 0 8 3 5

12 40 27 13 33 12 21

13 23 20 3 21 13 8

14 3 3 0 3 3 0

15 12 12 0 11 3 8

16 12 12 0 12 12 0

17 40 40 0 37 37 0

Total 382 331 51 371 268 103Agriculture 2021, 11, x FOR PEER REVIEW 12 of 17 
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Table 4. The comparison of results to the actual count.

Dataset Oil Palm Healthy Oil Palm Unhealthy Oil Palm

Actual count 392 325 67
Resnet-50 382 331 51
VGG-16 371 268 103
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other trees.

3.3. Oil Palm Tree Classification Model Performance Evaluation

The model’s performance was evaluated in three main sections that evaluated the
accuracy of data training, comparing the prediction results with visual interpretation and
field surveys by using precision, recall, and F1-score as measures.

3.3.1. Model Training Inspection

Figure 12 shows the evaluation of the model performance focusing on accuracy and
loss. The results indicate that the Resnet-50 network achieved higher performance than
the VGG-16 network in all aspects. However, both models’ values increase or decrease
similarly. Therefore, evaluating model performance with multiple indicators is advised to
assist in choosing an appropriate model.
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Figure 12. Comparison of model training performance.

Apart from accuracy and loss, the time used to train the model is another indicator
that can assess a model’s ability. Figure 13 illustrates the comparison of the time spent on
each epoch for the models used. From the graph, it can be observed that Resnet-50 used
approximately 10 min less time to process than VGG-16. Thus, the total processing time
between the two-model differed with about 5 h, with Resnet-50 using approximately 40 h,
while VGG-16 took approximately 45 h.
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3.3.2. Visual Inspection

In this section we discussed the model performance when evaluated by comparing
the results of both models with actual data derived from visual interpretation of high-
resolution images in another area. As mentioned before, the effectiveness was measured
using precision, recall, and F1-scores, as shown in Figure 14 below.
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Figure 14. Comparative performance of oil palm tree classification between Resnet-50 and VGG-16
after compared with visual interpretation.

Each model’s performance was evaluated by dividing the prediction results into three
classes: oil palm tree detection, healthy, and unhealthy. Overall, the Resnet-50 network
showed superior performance when comparing F1-scores. However, the Resnet-50 model
had lower precision than VGG-16, when identifying healthy oil palms. Resnet-50 achieved
91.24%, while VGG-16 had a high value of 98.13%.

3.3.3. Ground Inspection

This evaluation was performed by using the results of the model showing the perfor-
mance, i.e., Resnet-50. The results were compared with the field survey’s sampling data to
verify the predicted results from the model. In addition, this evaluation method determined
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the pattern of physical characteristics and their associated symptoms that the model can
detect and classify. A total of 251 samples of oil palm trees were obtained from field survey
sampling. Among these, 236 were healthy palm trees and 15 were unhealthy palm trees.
The prediction results obtained from the Resnet-50 model comprised 223 healthy palm trees
and 6 unhealthy palm trees. The performance evaluation was performed by calculating
precision, recall, and F1-score.

Figure 15 illustrates the performance of Resnet-50. The precision of the predicted
results was 100% for both the oil palm tree and unhealthy oil palm tree classes, while
precision for the healthy oil palm tree class was 96.54%. For recall, the model achieved
the highest percentage in the oil palm class, at 95.62%, with the healthy and unhealthy
palm tree classes achieving 94.09% and 40.00%, respectively. For the F1-score, the class
of oil palm tree had the highest performance, at 97.76%. Then followed the healthy and
unhealthy oil palm tree classes with percentages of 95.30 and 57.14, respectively.
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Evaluating the model’s predictive performance demonstrated that the model was
best used for oil palm tree detection. The model showed predictive errors for health
classification, especially in unhealthy oil palm. However, this model can be used for
preliminary detection of health issues, since it is effective in identifying significant physical
symptoms in palm trees.

According to the survey of 15 unhealthy oil palms on the plot, there were six oil palms
with nitrogen deficiency, 12 oil palms with potassium deficiency, and seven oil palms with
boron deficiency. Moreover, there were also two oil palms suffering from magnesium
deficiency and two oil palms with Ganoderma disease. Of the six palms that were predicted
to be unhealthy, two were lacking nitrogen, four were lacking potassium, two had boron
deficiency, one had boron deficiency, and the last had Ganoderma disease. From the results,
it can be concluded that the most common problem of unhealthy oil palm trees is a lack
of nitrogen. However, the abnormality of the oil palm is usually not caused by the lack
of one nutrient, but several. In addition, Ganoderma is another significant factor affecting
the health classification since it always shows apparent physical symptoms. Based on the
evaluation, the model can accurately predict up to 50% of all the oil palm trees that face
this problem.
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4. Conclusions

Since oil palms are one of the most important economic plants in Thailand, developing
technology that can help to manage and maintain them is important. It can be a tool for
farmers to become more efficient and increase their income. Currently, UAVs are widely
used in agriculture as it can take many images with high spatial resolution in a short
time, while traditional methods such as field surveying take longer. This research studied
the detection and health classification of oil palms by using high-resolution imagery in
conjunction with deep learning. Our study used Faster RCNN for object detection and
evaluated the Resnet-50 and VGG-16 models.

The research used three important physical characteristics for detection and health
classification: crown size, crown color, and crown density. These characteristics could
indicate the age of the oil palm, nutrient deficiencies, and the presence of an epidemic
disease, named Ganoderma.

In evaluating model performance, the accuracy from model training indicated that
the Resnet-50 model was more accurate than VGG-16, and had fewer errors. Moreover,
training on Resnet-50 was approximately 5 h faster than on VGG-16. The evaluation of the
test prediction results was done by comparing them with both visual interpretations and
field survey results. Next, precision, recall, and F1-score were calculated and evaluated.

Based on the study results and performance assessments, it can be concluded that the
Resnet-50 network performed better in detection and health classification than the VGG-16
network. Further, the analysis of results highlighted that primarily the unhealthy palm
trees faced potassium deficiencies and infection with Ganoderma. Additionally, the results
showed that the model was often unable to detect young palm trees due to their smaller
crown sizes.

In conclusion, our study showed that our proposed method could be used in the
effective management of oil palm trees in Thailand. By tracking the number and health of
oil palm trees this method can reduce fieldwork and the number of laborers. In addition, it
can help to reduce the cost of production as treatments and fertilizer can only be applied in
areas where it is needed. This will be beneficial to both farmers and organizations.

For the recommendation, the short processing time is an advantage of the Faster-
RCNN structure, but it requires a large amount of varied training datasets. Therefore, we
recommend that future studies increase the amount and variety of datasets, including
varied image sizes, as this will improve model performance. Our study found errors in oil
palm tree detection often occurred at the edge of the image. Consequently, increasing the
overlap between images will result in a reduction of prediction errors. Our study focused
on only three significant physical characteristics for oil palm tree health classification, all of
which can be detected in RGB images. Thus, only preliminary classification of the health
of oil palm trees can be done. For future studies, a multispectral camera could be used to
enhance health classification.
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