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Abstract: The purpose of the research was to determine the influence of selected factors on the
average degree of coverage and uniformity of liquid spray coverage using selected single and dual
flat fan nozzles. The impact of nozzle type, spray pressure, driving speed, and spray angle on the
average degree of coverage and coverage unevenness coefficient were studied. The research was
conducted with special spray track machinery designed and constructed to control and change the
boom height, spray angle, driving speed, and spray pressure. Based on the research results, it was
found that the highest average coverage was obtained for single standard flat fan nozzles and dual
anti-drift flat fan nozzles. At the same time, the highest values of unevenness were observed for these
nozzles. Inverse relationships were obtained for air-induction nozzles. Maximization of coverage
with simultaneous minimization of unevenness can be achieved by using a medium droplet size for
single flat fan nozzles (volume median diameter (VMD) = 300 µm) and coarse droplet size for dual
flat fan nozzles (VMD = 352 µm), with low driving speed (respectively 1.1 m·s−1 and 1.6 m·s−1) and
angling of the nozzle by 20◦ in the opposite direction to the direction of travel.

Keywords: average degree of coverage; coverage unevenness coefficient; optimization; neural network

1. Introduction

The use of a chemical method of plant protection results in high yields with significant
qualitative values. However, adverse effects may occur during the application of plant
protection products. The use of chemicals may cause natural environment pollution, as
well as operators of sprayers, are exposed to contact with spray liquid. Also, agricultural
products can be contaminated by chemicals what is dangerous for consumers [1–5]. How-
ever, the spraying process is still one of the most difficult agrotechnical processes. Efforts
have therefore been made to reduce the negative effects for human health and the environ-
ment. These activities include the use of air-induction nozzles, the use of decision support
tools [1,6–8], and injection into trunk trees of plant protection products [9]. In addition,
the use of the latest advanced sprayers equipped with various sensors reduces the risk of
hazards [10,11]. Scientists have also presented results of research on the exposure of by-
standers to the drift liquid. Based on the conducted research, it was shown that adjustment
parameters of a sprayer to meteorological conditions result in a reduction of exposure of
bystanders. The experiments were carried out in vineyards located in mountainous areas
during windless weather [12]. Similar studies were conducted by Butler-Ellis et al. and
Kennedy et al. in field and orchard conditions. Scientists developed models that describe
pesticide exposure in the short and long terms [13–15]. Moreover, the necessity to conduct
experiments in regard to epidemiological research was emphasized [16]. The nature of
problems in the field of plant protection and the need to take action to reduce them was
emphasized by the Food and Agriculture Organization FAO, which established the year
2020 as the International Year of Plant Health.

Research into the modeling of spray drift and the optimization of the spraying process
has progressed considerably in recent years. On the basis of the conducted research, sci-
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entists have emphasized the importance of knowledge about spray drift. The researchers
pointed out, above all, the need for further work on drift curves under field conditions.
Emphasis was also placed on the establishment of a system for EU Member States to
prevent diffuse contamination.

Baldoin, Friso, and Pezzi, in their studies, used two adjuvants and performed the
experiments at wind speed 1, 3, 5 m/s−1, relative humidity 30%, 50%, and 70% at a
temperature of 27 ◦C. On the basis of the conducted experiments, it was found that by
the use of adjuvants, the droplet spectrum was modified by eliminating fine and very fine
droplets. Thus, the predictions of mathematical modeling were confirmed [17–19], while
Griesang et al. conducted a study to assess the spray drift potential [20]. Three types of
nozzles were selected for testing: air-induction single flat fan, standard dual flat fan, and
hollow cone at a pressure of 300 kPa. The application liquid consisted of glyphosate and
a combination of glyphosate and adjuvant. Based on the conducted experiments, it was
found that after adding the adjuvant to the liquid, the drift of the liquid was reduced by
about 40% when using standard dual nozzles. On the other hand, in the case of using an
air induction single nozzle, the addition of the adjuvant did not affect the drift, despite the
increase in volume median diameter (VMD) value and improvement of droplet uniformity.

Many researchers have developed model-based computational fluid dynamics (CFD).
Research has been conducted mainly in orchard crops as well as in greenhouses. CFD
modeling has been the dominant technique in the design of air-assisted sprayers in recent
years. Duga et al. and Salcedo et al. presented the results of research carried out in orchard
crops. The authors presented a 2D and 3D computational model of fluid dynamics (CFD).
The model took into account the tree habit and wind flow in the tree crown as well as
the speed of the sprayer. On the basis of the model, the amount of liquid carried into the
atmosphere (air drift) and into the soil (sedimentation drift) was calculated [21,22].

The aim of the research conducted by Gregorio et al. was to evaluate the drift reduction
potential for hollow cone nozzles using light detection and ranging (LiDAR) technology.
Based on the analysis of the results of this work, it was concluded that the LiDAR technique
is an advantageous alternative in the evaluation of spray drift potential reduction [23,24].

Methods and algorithms of artificial intelligence are increasingly popular and very
useful for solving various problems in agriculture. Some of these techniques have been
employed for mathematical modeling of complex and nonlinear relationships, prediction,
classification, and optimization. Thanks to artificial intelligence algorithms, complex agri-
cultural ecosystems can be better described and understood. Wen et al. developed an
unmanned aerial vehicles variable spray system based on an error back propagation artifi-
cial neural network (ANN) [25]. The ANN was trained to predict droplet deposition based
on environment temperature, humidity, flight speed and altitude, wind speed, prescription
value, nozzle pitch, and propeller pitch. The system, which is a combination of ANN
(stable and reliable model with a prediction error of less than 20%) and multi-sensor for col-
lecting real-time information about the spraying process, was successfully used for variable
spray operation under different conditions. The ANN predictor model useful for spraying
process optimization in precision agriculture was presented by Azizpanah et al. [26]. They
developed accurate models for predicting the volumetric median diameter and drift phe-
nomenon. The accuracy of the models described by the coefficient of determination (R2)
was higher than 90%. Yang et al. presented an approximate mathematical model of droplet
drift for multirotor plant protection unmanned aerial vehicles [27]. In this model, a radial
basis neural network was combined with computational fluid dynamics to better under-
stand the influence of droplet size and windward airflow on the movement of droplets.
In the work of Zhai et al. a precision farming system based on a combination of genetic
algorithm and particle swarm optimization algorithm was proposed [28]. This system
was validated through simulations of precise pesticide spraying. In these simulations,
unmanned aerial vehicles were used as agents and were expected to complete the mission
of precise pesticide spraying cooperatively. The aim of the mission was to optimize benefits
and costs.
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Many researchers have emphasized that the quality and effectiveness of the spraying
procedure depends on the uniformity of the spray liquid fall, the coverage of the sprayed
objects [29,30], and the application of the spray liquid [31]. Both the degree of coverage and
the application of utility liquid can be used to assess changes in spraying technique, verify
selected parameters of the sprayer, and assess the work of nozzles, depending on technical
and technological factors [32,33]. Analysis of existing research results indicates that there
is a relationship between the degree of coverage and biological effectiveness. According to
some scientists, 30% covering of plants with liquid provides satisfactory efficacy (for most
plant protection products). The assessment of the quality of sprayers and nozzles based on
the coverage of sprayed objects is the fastest and simplest method [34]. The values of the
degree of coverage are obtained after computer image analysis of the probes, which are
most often water-sensitive papers [6,35,36].

However, the research does not show clearly whether this value applies to the average
degree of coverage, calculated taking into account all components of the sprayed plants
and in relation to systemic or contact pesticides.

According to the authors, the indicators presented above can serve as basic param-
eters for comparing the spraying equipment with various types of nozzles. Additional
information useful in the assessment of the spraying procedure can be provided to the
sprayer user by indicators proposed by the authors—average coverage of sprayed objects
and coverage unevenness coefficient.

Therefore, the purpose of this research was to determine the impact of the type and
size of the nozzles, liquid pressure, spray angle, and driving speed on the average degree
of coverage and coverage unevenness coefficient, using various single and dual nozzles.

2. Materials and Methods
2.1. Experimental Set-Up

The following parameters of nozzles’ work were used for the research:

• Pressure: 200, 300, and 400 kPa,
• Height of boom: 0.5 m,
• Spray angle, perpendicular to the ground: angled forward +20◦, +10◦, and 0◦ and

backward −10◦, and −20◦

• Driving speed: 1.1, 2.2, and 3.3 m·s−1,
• Dose of liquid: 200 L·ha−1 (200 kPa), 240 L·ha−1 (300 kPa), 275 L·ha−1 (400 kPa))

Four types of nozzles were selected for testing: standard and air-induction single flat
fan and anti-drift and air-induction dual flat fan. Standard nozzles are used in favorable
weather conditions. A pre-orifice was applied to the anti-drift nozzle; thus, droplets would
be larger and less prone to drift when compared with the standard nozzles. The largest,
air-filled droplets were produced by the air-induction nozzles through the use of a Venturi
air aspirator while reducing drift.

For each combination, the type of nozzle, and the pressure of the spray liquid, the
droplet size was measured by laser diffraction method (Table 1). The Malvern Spraytech
spray particle size analyzer was used for determining the droplet size distribution.

The tests were carried out under laboratory conditions. The test stand consisted of a
device functioning as a self-propelled field sprayer and of artificial plants positioned along
the machine’s route (Figure 1).

Three artificial plants as three replicates were placed under a spray boom. Water
sensitive papers were attached to artificial plants to form specific surfaces: the upper
horizontal level surface, the bottom horizontal level surface, the vertical transverse leaving
surface, and the vertical transverse approach surface. The scheme of the test stand was
presented in our previous publication [37].
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Table 1. The droplet size for each combination of the type of nozzle and the pressure.

Type of Nozzle Nozzle
Manufacturer

Pressure
(kPa)

Flow Rate
(l·min−1)

Droplet Size—VMD
(µm)

single standard flat-fan—AXI 11002 Albuz 200 0.65 212
single standard flat-fan—AXI 11002 Albuz 300 0.79 193
single standard flat-fan—AXI 11002 Albuz 400 0.91 182

single air-induction flat-fan—AVI 11002 Albuz 200 0.65 554
single air-induction flat-fan—AVI 11002 Albuz 300 0.79 440
single air-induction flat-fan—AVI 11002 Albuz 400 0.91 382
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 200 0.65 299
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 300 0.79 264
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 400 0.91 249

dual air-induction flat-fan—AVI TWIN 11002 Albuz 200 0.65 543
dual air-induction flat-fan—AVI TWIN 11002 Albuz 300 0.79 436
dual air-induction flat-fan—AVI TWIN 11002 Albuz 400 0.91 384

VMD: volume median diameter.

Agriculture 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

Table 1. The droplet size for each combination of the type of nozzle and the pressure. 

Type of Nozzle Nozzle Manufacturer Pressure 
(kPa) 

Flow Rate 
(l·min−1) 

Droplet Size—VMD 
(μm) 

single standard flat-fan—AXI 11002 Albuz 200 0.65 212 
single standard flat-fan—AXI 11002 Albuz 300 0.79 193 
single standard flat-fan—AXI 11002 Albuz 400 0.91 182 

single air-induction flat-fan—AVI 11002 Albuz 200 0.65 554 
single air-induction flat-fan—AVI 11002 Albuz 300 0.79 440 
single air-induction flat-fan—AVI 11002 Albuz 400 0.91 382 
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 200 0.65 299 
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 300 0.79 264 
dual anti-drift flat-fan—DGTJ 60 11002 TeeJet 400 0.91 249 

dual air-induction flat-fan—AVI TWIN 11002 Albuz 200 0.65 543 
dual air-induction flat-fan—AVI TWIN 11002 Albuz 300 0.79 436 
dual air-induction flat-fan—AVI TWIN 11002 Albuz 400 0.91 384 

VMD: volume median diameter. 

The tests were carried out under laboratory conditions. The test stand consisted of a 
device functioning as a self-propelled field sprayer and of artificial plants positioned 
along the machine’s route (Figure 1). 

 
Figure 1. Experimental set-up: 1—artificial plant, 2—spray boom, 3—metal track guide. 

Three artificial plants as three replicates were placed under a spray boom. Water 
sensitive papers were attached to artificial plants to form specific surfaces: the upper 
horizontal level surface, the bottom horizontal level surface, the vertical transverse 
leaving surface, and the vertical transverse approach surface. The scheme of the test 
stand was presented in our previous publication [37]. 

The degree of coverage was obtained based on a computer image analysis in Pho-
toshop CC 2019 software. Water-sensitive papers change color from yellow to dark blue 
after contact with water, making it possible to analyze them. The dimensions of the wa-
ter-sensitive papers are 26 mm × 76 mm, and three fragments with an area of 100 mm2 
were randomly selected for analysis. The degree of coverage was determined as the ratio 
of the surface covered with the liquid to the surface of the sampler. 

Figure 1. Experimental set-up: 1—artificial plant, 2—spray boom, 3—metal track guide.

The degree of coverage was obtained based on a computer image analysis in Pho-
toshop CC 2019 software. Water-sensitive papers change color from yellow to dark blue
after contact with water, making it possible to analyze them. The dimensions of the water-
sensitive papers are 26 mm × 76 mm, and three fragments with an area of 100 mm2 were
randomly selected for analysis. The degree of coverage was determined as the ratio of the
surface covered with the liquid to the surface of the sampler.

Psp =
Apc

Ap
·100 [%], (1)

where: Psp—degree of coverage (%), Apc—surface covered with liquid (pixels), Ap—sampler
surface (pixels)
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The average degree of coverage was calculated as follows

χPsp =
Pspg + Pspn + Pspo

n
[%], (2)

where χPsp—average degree of coverage; Pspg—average degree of coverage of the upper
horizontal level surface (%); Pspn—average degree of coverage of the vertical transverse
approach surface (%); Pspo—average degree of coverage of the vertical transverse leaving
surface (%); n—number of tests.

During the experiments, the bottom horizontal surface was not covered by liquid in
any of the tests. Therefore, this surface was not taken into account in further analysis.

The coverage unevenness coefficient was calculated based on Equation (3) according
to the formula [38]

η =

√
1

n−1 ∗ ∑n
i=1

(
Pspi

− χPsp

)2

χPsp
[−] (3)

where η—coverage unevenness coefficient (−); Psp—degree of coverage of particular
objects; χPsp—average degree of coverage of all objects; n—number of tests.

2.2. Neural Network Models

Artificial neural networks are a very popular tool from artificial intelligence methods
used for mathematical modeling, classification, clustering, and other tasks. ANNs are
particularly useful when multidimensional, nonlinear relationships must be analyzed.
ANNs are composed of very simple units called artificial neurons. Each neuron produces
its output signal based on a vector of input signals, a vector of synaptic weights, and its
activation function. The most popular are nonlinear activation functions such as sigmoid
and hyperbolic tangent functions. In this research, a multilayer perceptron (MLP) as a
neural network was used. MLP is a feedforward artificial neural network and consists of
at least three layers: an input layer, one or more hidden layers, and an output layer. MLP
networks are usually trained by an error backpropagation algorithm, which uses small
incremental changes in connection weights in each iteration. After the training process
(usually several thousand training cycles), the vector of connections weights changes from
initial, random values to minimize the error between actually calculated and target output
vector. The MLP with one hidden layer was used for this neural model’s development.
Four separate neural models were built, and for each model, the input signals were as
follows: droplet size, driving speed, and spray angle. Two models were developed for
single nozzles (with an average degree of coverage and coverage unevenness coefficient
as an output signal). Analogous models were developed for the dual nozzles. To find the
best MLP configuration for each model, 2000 ANNs were trained. The number of neurons
in the hidden layer was changed from 10 to 40, different activation functions were used,
and the matrix of initial synaptic weights was randomly generated. The experimental data
were first normalized, and then the 270 data set was divided randomly into training, test,
and validation sets at a 70:15:15 ratio. The accuracy of neural models was evaluated based
on the coefficient of correlation (R), and the root mean squared error (RMSE), which are
given by the following Equations (4) and (5)

R =
∑(Ymeas − Ymeas)

(
Ypred − Ypred

)
√

∑ (Ymeas − Ymeas)
2

∑
(

Ypred − Ypred

)2
, (4)

RMSE =

√
1
n

n

∑
i=1

(
Ypred − Ymeas

)2
, (5)
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where: Ypred—the absolute predicted value; Ypred—the average predicted value; Ymeas—the
absolute measured (experimental) value; Ymeas—the average measured value.

The accuracy of models is particularly important in the case of validation data set.
One of the phenomena that can occur during the training process is overfitting. It occurs
when the model is of great accuracy for the training data set (very best fit to the training
data), but the accuracy for the validation data set is low. As a result, a neural network
would not be able to generalize well to new data and is unsuitable for real-life applications.

Based on the best neural models, a sensitivity analysis was performed to indicate the
contribution of the independent input variables in the models. For the simulations, the
software Statistica v. 10 was used.

2.3. Optimization

The aim of the optimization process was to maximize the average degree of coverage
and minimize the coverage unevenness coefficient at the same time. As an optimization
method, a genetic algorithm (GA) implemented in the Excel 2013 Solver tool was cho-
sen. The Excel Solver has been successfully applied for optimization procedures in prior
literature. It was used by Barati in the estimation of nonlinear Muskingum routing parame-
ters [39] and by Bhattacharjya for solving a groundwater flow inverse problem (estimation
the unknown pumping rates of an aquifer, and estimation the aquifer transmissivity) [40].
The genetic algorithm is a search heuristic strongly inspired by nature, namely Charles
Darwin’s theory of natural evolution. GA works based on a population of individuals—
potential problem solutions. Every individual is a vector of parameters known as genes.
A set of genes is called a chromosome, which is an encoded form of a solution. Genes
can be coded in various forms: as binary numbers, as real numbers, or as text. In each
algorithm iteration, the tree operations: selection, crossover, and mutation are performed
on individuals. The general rule of the algorithm is to assess each individual based on an
objective function that represents the solution quality and to find the individual having the
best objective function. This individual is considered as an optimal and, after decoding, is
interpreted as a solution. In this work, the objective function was constructed as follows:

y = χPsp + (2 − η), (6)

The objective function is the sum of two terms, the degree of coverage, which must
be maximized, and the expression (2 − η), which is related to the coverage unevenness
coefficient, and maximization of this expression means coverage unevenness coefficient
minimization. The values of χPsp and η were calculated based on neural models of the best
accuracy. The aim of the optimization process was to find values of droplet size, driving
speed, and spray angle, which maximizes the objective function. The optimization was
performed separately for single and dual nozzles. Parameters of the algorithm were set
as follows: population size—100; mutation rate—0.075; convergence—0.0001; random
seed—0; and maximum time without improvement—30.

3. Results and Discussion

The test results are shown in Figures 2–7. Average coverage for various nozzles and
spraying parameters is presented in Figures 2–4. An extremely important value of the
presented results of the experiments is to emphasize the differences in both the values of
the degree of coverage and the unevenness index.

Taking into account the average coverage values, it should be stated that the liquid
pressure influences this parameter. Moreover, higher values of the average coverage were
recorded for single standard and dual anti-drift nozzles.
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Only a few studies have presented the on average degree of coverage results in
the aspect of field crops. Average coverage studies were conducted by Qin et al. in the
cultivation of cotton [41]. The authors of this study concluded that three factors, horizontal
boom height, hang boom sprayer, and nozzles angle, were influenced by the average degree
of coverage. Dereń et al. presented research results of the average total degree of coverage.
This was based on experiments that found that higher values were obtained for dual flat
fan nozzles [42]. In another study, the type of nozzles as well as the speed of sprayer and
pressure of liquid influenced on the degree of coverage [43,44].

The results of the coverage unevenness coefficients are shown in Figures 5–7. The
lowest values of this parameter, and thus the highest uniformity, are characteristic for dual
air induction nozzles, regardless of the spraying conditions.

Analysis of the average coverage and uniformity of coverage were carried out, among
others by Cai et al. in horticulture with the use of a fan sprayer equipped with a laser
scanning system [45].

Based on the analysis of the experiments carried out by Musiu et al., it was found that
reducing the liquid dose deteriorated the liquid coverage of plants but at the same time
improved the homogeneity of distribution [33].

The four neural models were developed and then used for sensitivity analysis and
the optimization process. The MLP structure and accuracy parameters for the best models
obtained are presented in Table 2. The low values of residual mean square error (RMSE)
error and high values of coefficient of correlation (R > 0.9) for the train, test, and validation
data sets prove the high accuracy of all neural models.

Table 2. Error metrics of best model performances.

MLP Structure
Train Test Validation

R RMSE R RMSE R RMSE

Single nozzles, average degree of coverage as an output parameter

3-15-1 0.961 0.0020 0.968 0.0022 0.968 0.0019

Single nozzles, coverage uniformity coefficient as an output parameter

3-36-1 0.968 0.0015 0.967 0.0019 0.933 0.0041

Dual nozzles, average degree of coverage as an output parameter

3-17-1 0.959 0.0024 0.970 0.0021 0.976 0.0022

Dual nozzles, coverage uniformity coefficient as an output parameter

3-11-1 0.979 0.0016 0.968 0.0027 0.992 0.0007
MLP: multilayer perceptron; RMSE: Residual mean square error.

Additionally, high values of R for the validation data set suggest that no over-
fitting effect occurred during the training process, and that models could be used in
real-life applications.

Some mathematical models of the spraying process have been proposed in the litera-
ture. Baetens and coauthors proposed a 3D computational fluid dynamics model and a 2D
diffusion-advection model for drift prediction [46,47]. The RTDrift model of spray drift
was developed by Lebeau et al. [48]. These models included more input parameters than
our model and took into account environmental parameters; however, their accuracy was
lower. Li and coauthors proposed a prediction model of droplet coverage depending on
droplet size, application distance, air delivery speed, and target leaf surface. The predic-
tion accuracies of the model were 87.5%, 80%, and 100% for the three states of uniform,
accumulation, and loss [31]. Slightly lower accuracies of neural models were obtained in
our previous work, where the coverage of the three leaf surfaces was predicted based on
droplet size, spray angle, and driving speed [49].

Based on the models presented in Table 2, a sensitivity analysis was performed to
determine the parameters influencing the most and average degree of coverage and a
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coverage unevenness coefficient for single and dual nozzles. The results are presented in
Figures 8 and 9. In the case of both parameters, the average degree of coverage and the
coverage unevenness coefficient, the most influencing parameter is droplet size, which
depends on nozzle type and pressure. The influence of driving speed and nozzle angular
position is significantly lower. These results are in agreement with those presented for the
coverage of the sprayed surfaces where the vertical transverse approach surface, the vertical
transverse leaving surface, and the upper level surface were analyzed separately [49].
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Figure 8. The relative importance of the input variables of the MLP model on the average degree
of coverage.
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Figure 9. The relative importance of the input variables of the MLP model on the coverage
unevenness coefficient.

The analysis of experimental data shows that in the case of single nozzles, the highest
value of an average degree of coverage was observed for small droplet size (182.4 µm—
produced by a single standard flat-fan nozzle with a pressure of 400 kPa), low driving speed
(1.1 m·s−1), and nozzle angular position of −20◦. On the other hand, the lowest value of the
coverage unevenness coefficient was produced by medium droplet size (400 µm—obtained
from a single air-induction flat-fan nozzle with a pressure of 300 kPa), high driving speed
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(3.3 m/s−1), and nozzle angular position of 20◦. Taking into account the average degree
of coverage, a well known fact that the application of higher pressure results in a higher
degree of coverage could be confirmed. At the same time, it can be concluded that standard
nozzles have greater coverage unevenness compared to air induction nozzles. This is
related to the range of coverage of individual horizontal and vertical surfaces. During the
spraying process, there was significantly lower coverage on vertical surfaces and much
higher coverage on horizontal surfaces obtained with single standard flat fan nozzles
in comparison to single air induction flat fan nozzles. Therefore, greater uniformity of
coverage was obtained when using single air induction flat fan nozzles.

The configuration of optimum parameters described above makes simultaneous
optimization of the two indicators of spray process quality fairly difficult. As a result of the
optimization carried out with the use of a genetic algorithm combined with neural models,
the following optimum parameters of the spraying process were calculated: droplet size
of 300 µm, driving speed of 1.1 m·s−1, and nozzle angular position of −20◦. For these
parameters, the average degree of coverage equaled 35.54% (the range of experimental
data was from 11.66% to 37.08%), and the coverage unevenness coefficient equaled 0.85
(the range of experimental data was from 0.80% to 1.25%). It can be stated that the spraying
process parameters calculated in the optimization process give an average degree of
coverage close to the maximum value and the coverage unevenness coefficient close to the
minimum value.

In the case of dual nozzles, based on experimental data, it can be stated that the highest
value of an average degree of coverage was observed for small droplet size (248.9 µm—
produced by the dual anti-drift flat-fan nozzle with a pressure of 400 kPa), medium driving
speed (2.2 m/s−1), and nozzle angular position of −20◦. The lowest value for the coverage
unevenness coefficient was produced by a large droplet size (542.8 µm—obtained from
the dual air-induction flat fan nozzle with a pressure of 200 kPa), low driving speed
(1.1 m/s−1), and nozzle angular position of −20◦. When using dual flat fan nozzles, similar
relationships were observed as in the case of using single flat fan nozzles. Based on the
optimization process, the following optimum parameters of the spraying process could be
proposed: droplet size of 352 µm, driving speed of 1.6 m/s−1, and nozzle angular position
of −20◦. For these parameters, the average degree of coverage equaled 28.32% (the range
of experimental data was from 13.81% to 35.31%), and the coverage unevenness coefficient
equals 0.71 (the range of experimental data is from 0.63 to 1.06). It can be stated that for
single nozzles, the spraying process parameters produced by optimization gave an average
degree of coverage and coverage unevenness coefficient closer to optimum values than in
the case of dual nozzles. The optimum spraying parameters obtained in this work generally
correspond to these proposed in our previous work, where the coverage of three sprayed
surfaces (the vertical transverse approach surface, the vertical transverse leaving surface,
and the upper level surface) was optimized [49].

4. Conclusions

The findings provide a practical basis for the selection of appropriate nozzle param-
eters to ensure the highest uniformity with the best average liquid coverage. The main
results of this study are as follows:

The highest value for an average degree of coverage was observed when applied with
a single standard flat fan nozzle with a pressure of 400 kPa and a dual anti-drift flat fan
nozzle with a pressure of 400 kPa.

The air induction flat fan nozzles were characterized by greater uniformity of coverage.
Based on the optimization results (maximization of coverage and minimization of

unevenness), the two combinations of spraying conditions can be proposed. The first is
single air induction nozzles using a pressure above 400 kPa, driving speed of 1.1 m/s−1 and
spray angle, perpendicular to the ground of −20◦. The second is dual air induction nozzles
at pressure above 400 kPa, driving speed of 1.6 m·s−1 and spray angle, perpendicular to
the ground of −20◦.
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