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Abstract: Chemical defoliation of seed corn production fields accelerates seed maturation and
desiccation and expedites seed harvest. Early seed harvest is important to minimize the risk of frost
damage while in the field. This newly adopted seed production practice also allows seed companies
to plan harvest and manage dryer space more efficiently. However, premature defoliation may
interfere with the migration of oil bodies within embryo cells during desiccation and affect seed
germination and vigor. The objective of this study was to investigate the effect of chemical defoliation
on the migration patterns of oil bodies within embryo cells during desiccation. Chemically defoliated
and non-defoliated plants from five commercial hybrid seed corn fields were sampled in 2014 and
2015. Whole ears with husks were harvested before and after defoliant application at 600 g H2O kg−1

fresh weight (fw), and weekly thereafter until seed reached approximately 300–350 g H2O kg−1 fw.
Ten embryos extracted from center-row seeds were fixed to stop metabolic processes, then sliced,
processed, and photographed using scanning transmission electron microscopy. The oil bodies within
embryo cells followed normal migration patterns according to seed moisture content, regardless of
defoliation treatment. Seed germination and vigor were verified and were not significantly affected
by defoliation. Chemical defoliation is a viable production practice to accelerate seed corn desiccation
and to manage harvest and seed dryer availability more efficiently without negatively affecting seed
germination and vigor.

Keywords: corn; seed acquisition of desiccation tolerance; oil-bodies migration; physiological maturity;
seed quality

1. Introduction

Seed corn (Zea mays L.) is harvested close to physiological maturity and dried artifi-
cially in specialized seed dryers before storage. Physiological maturity is the developmental
stage at which seeds reach maximum dry weight [1,2]. At this developmental stage, seed
moisture content ranges from 300 to 380 g H2O kg−1 fresh weight (fw) depending on the
genetic background of the plant and environmental conditions during seed development
and maturation [3]. Seed corn is harvested early to avoid possible seed freezing injury
caused by an early frost event [4]. The seed industry in the US Upper Midwest experiences
significant monetary losses from early frost events every five to six years [5].

Many seed companies have adopted a new seed production practice of chemical
defoliation to accelerate seed corn harvest. The defoliant is applied to the plants when
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seed corn is close to 600 g H2O kg−1 fw or approximately 14 days before normal seed corn
harvest. The seed moisture content of chemically defoliated plants decreases more rapidly
than in untreated plants because of earlier senescence (personal observation). Chemical
defoliation expedites harvest by two to five days, thus widening the harvest window
of optimal seed moisture in different hybrid fields. This practice also facilitates harvest
schedules and management of seed dryer space.

Although defoliants have been used in cotton to accelerate plant senescence and
facilitate mechanical harvest in the US since 1945 [6–8], little is known about the use of
defoliants in seed corn production. Drexel Defol® 5, a chemical defoliant salt solution
used in the US, has not been readily adopted or widespread used. Moreover, the effect
of this defoliation treatment on seed quality (seed germination and vigor) has not been
fully investigated.

Orthodox seeds, such as corn, undergo a desiccation phase towards the end of seed
development. These seeds survive desiccation through physiological changes called ac-
quisition of desiccation tolerance [9]. Seed dehydration is an adaptive mechanism that
allows seeds to survive unfavorable weather conditions common in temperate zones. These
physiological changes are essential to the normal development of high seed quality. Seed
quality in this work is defined as seed germination and vigor.

One important physiological change during the acquisition of desiccation tolerance
is the migration and alignment of oil bodies along the cell membrane in corn embryo
cells. These oil bodies are accumulated in the cytoplasm of the embryo cell during seed
development and, as seeds dehydrate, they migrate to the cell membrane to protect cells
from dehydration [10,11]. This migration of oil bodies and alignment alongside of the cell
membrane is essential to seed quality.

The objective of this study was to document the migration of oil bodies in embryo
cells from chemically defoliated and untreated plants.

2. Materials and Methods
2.1. Seed Production and Defoliation Treatment

A commercial hybrid seed field was sampled in 2015 near Nevada, Iowa. The field
was planted in blocks with a 4:2 female-to-male ratio and managed by the seed company
Corteva (Johnston, IA, USA) according to their established hybrid seed production prac-
tices.

The chemical defoliant Drexel Defol® 5 (42.3 ai NaClO3) (Drexel Chemical Company,
Memphis, TN, USA) was applied to the corn plants when seed moisture content was
approximately 600 g H2O kg−1 fw with a Hagie high-clearance sprayer (Hagie Manufac-
turing Co., Clarion, IA, USA) equipped with a 27.4 m boom and 68 L water tank. A strip
that was two to three female blocks wide and 800 m long was not sprayed as a control.
Two replications of twenty ears were hand-harvested from the treated and control areas,
once prior to the application of the defoliant and at least once a week after application.
Sampling continued until the field was mechanically harvested by the seed company
when seed moisture content reached approximately 350–370 g H2O kg−1 fw. Therefore,
harvest dates are 31 August 2015; 4 September 2015; 11 September 2015; 18 September
2015; and 22 September 2015. Field replications were maintained separately throughout
the experiment.

2.2. Seed Moisture Determination and Seed Drying

At each sampling date, the sampled ears were brought immediately into the Iowa
State University Seed Science Center for processing. All ears were husked by hand within 1
h after sampling the field. To consistently evaluate seeds at the same developmental stage
within the ear [12], seed moisture content was determined on forty seeds removed from
the center portion of five ears. Seed were divided into two 5 cm diameter aluminum trays
and placed inside of an 80 ◦C oven and weighed daily until seed reached constant weight.
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Moisture content was calculated on a fresh weight basis by using the following formula:
(fresh weight − dry weight) fresh weight−1.

2.3. Ultrastructure Determinations

Ten embryos extracted from seed in the central portion of the ear were prepared
for microscopy following the protocol described in Perdomo and Burris [10] with the
following modifications. The extracted embryos were dissected in two through the point
of attachment perpendicular to the embryo axis to allow the fixative solution to penetrate
rapidly throughout the embryo axis. Embryo halves were immediately placed in freshly
prepared fixative solution (3% glutaraldehyde (w/v) and 2% paraformaldehyde (w/v) in
0.1 M cacodylate buffer, pH 7.2). Embryos in fixative solution were stored in a refrigerator
at 4 ◦C for 12–24 months before they were processed for microscopy. Once fixed, all
metabolic processes within the embryo ceases.

For microscopy, samples were dissected and fixed with 3% glutaraldehyde (w/v) and
2% paraformaldehyde (w/v) in 0.1 M cacodylate buffer, pH 7.2 for 48 h at 4 ◦C. Fixed
samples were rinsed three times in 0.1 M cacodylate buffer and then post-fixed in 1%
osmium tetroxide in 0.1 M cacodylate buffer for 1 h at room temperature. The samples were
rinsed in deionized distilled water and enbloc stained with 2% aqueous uranyl acetate for
1 h, dehydrated in a graded ethanol series, cleared with ultra-pure acetone, infiltrated and
embedded using Spurr’s recipe epoxy resin (Electron Microscopy Sciences, Ft. Washington,
PA, USA). Resin blocks were polymerized for 48 h at 65 ◦C. Thick and ultrathin sections
were made using a Leica UC6 ultramicrotome (North Central Instruments, Minneapolis,
MN, USA). Thick sections were stained with 1% toluidine blue stain and imaged with an
Olympus BX-40 light microscope (Olympus Scientific Solutions Technologies, Waltham,
MA, USA). Ultrathin sections were collected onto copper grids and images were captured
using a JEOL 2100 scanning and transmission electron microscope (Japan Electron Optic
Laboratories, Peabody, MA, USA). Images were captured using an UltraScan 1000 camera
(Gatan, Inc., Pleasanton, CA, USA).

2.4. Seed Quality Determination

Standard germination tests were conducted on seed from the last harvest according to
the Association of Official Seed Analysts (AOSA) rules for testing seeds [13]. One hundred
seeds per each treatment and field replication were planted on crepe cellulose paper media
(Kimberly Clark Corp., Neenah, WI, USA) moistened with 800 mL of tap water on fiberglass
trays (45 cm × 66 cm × 2.54 cm). Seeds were lightly pressed into the media to create good
seed–media contact. After planting, the trays were placed inside germination carts, and the
carts were placed inside a walk-in germination chamber at constant 25 ◦C with alternating
8 h of light and 16 h of darkness d−1. Final seedling evaluation was performed at 7 days
after planting.

Seed vigor was evaluated using the tray-method cold test [14]. One hundred seeds
from each treatment and field replication were planted on top of crepe cellulose paper
media watered with 1100 mL of water pre-chilled for 24 h at 10 ◦C on fiberglass trays
(45 cm × 66 cm × 2.54 cm). After planting, trays were covered with approximately 1 cm of
dry 80% sand: 20% soil mixture. The trays were placed inside enclosed germination carts,
and the carts were placed inside a dark walk-in chamber at constant 10 ◦C for 7 days and
then moved to a constant 25 ◦C walk-in germination chamber with alternating 8 h of light
and 16 h of darkness d−1. Normal seedlings [13] were evaluated and recorded at 7 days
after placing in the constant 25 ◦C walk-in germination chamber.

2.5. Statistical Analysis for Seed Quality

The two field replications were maintained throughout the experiment, and data were
analyzed as a completely randomized design (CRD). The main effects were harvest time
and defoliation treatment. All main effects were fixed, and replications were random.
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Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Carey,
NC, USA) [15]. The analysis of variance was estimated using the restricted maximum
likelihood method after testing the data for normality and homozygous error variances.
Mean comparisons were made using Fisher’s protected least significant difference (LSD)
test (p < 0.05).

3. Results

Light micrographs show the different radicle tissues (Figure 1). Transmission electron
microscopy (TEM) micrographs were recorded from the epidermis and cortex cells of the
radicle (Figure 1).
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Figure 1. Light microscopy image showing the different tissues of the radicle tip: (A) pericycle;
(B) cortex; (C) epidermis; (D) root cap. Magnification = 10×.

Prior to defoliation, the oil bodies in epidermis and cortex cells were located randomly
throughout the cytoplasm of the cells (Figure 2). The moisture content of the seed was
approximately 600 g H2O kg−1 fw. Four days after defoliant application, seed moisture
content decreased to 517 and 509 g H2O kg−1 fw in the untreated and treated samples,
respectively. The oil bodies in epidermis cells showed the initiation of migration and
alignment alongside the cell membrane for both treatments, defoliated and non-defoliated
plants (Figure 2). However, the oil bodies in cells from the cortex did not show oil bodies
migration for the same seed moisture content.

At 11 days after defoliant application, seed moisture content decreased to 434 and
400 g H2O kg−1 fw in seed samples from the untreated and treated plants, respectively.
The migration and alignment of oil bodies along the cell membrane was evident in both
tissues, epidermis, and cortex cells. These oil bodies remained aligned along the cell
membrane, as observed 18 days after defoliant application (Figure 2). The seed moisture
content at this stage was 375 and 368 g H2O kg−1 fw in the untreated and treated seed
samples, respectively (Figure 3). The seed field was harvested immediately after these
samples were collected.
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Figure 2. Transmission electron microscopy images of radicle epidermis and cortex cells. Oil body migration is recorded as
seed desiccate. All images are taken at 1000×, except for cells in the cortex of untreated plants, which were photographed at
1500×. (Day) Days from defoliant application on the treated plants: day (−1) seeds were harvested and artificially dried
with forced ambient air before defoliant application; days (+3), (+11), (+18) indicate seeds were harvested and artificially
dried with forced ambient air at 3, 11, and 18 days after defoliant application, respectively. Seed moisture content was
expressed on a fresh weight basis as gr H2O kg seed−1 for all treatments. The seed moisture content of untreated plants was
605 on date (−1); 517 on date (+3); 434 on date (+11); and 375 on date (+18). The seed moisture content for seed of plants
treated with a defoliant were 581 on date (−1); 509 on date (+3); 430 on date (+11); and 368 on date (+18).
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Figure 3. Mean moisture content in percentage at each harvest date for corn hybrid seeds harvested
at different harvest dates in 2015. 31-Aug (Pre) refers to harvest before defoliant application; all
other harvest dates are post-defoliant application. Aug and Sep indicate the months of August and
September. The blue line represents seed moisture values for seed harvested from plants treated with
a defoliant; the yellow line represents seed moisture values for seed harvested from the untreated
control plants. Means are not significantly different (p ≤ 0.05).

The germination (Figure 4) and cold test (Figure 5) values of seed harvested from
defoliated and non-defoliated areas were not significantly different (p ≤ 0.05).
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Figure 4. Mean standard germination test values in percentage for corn hybrid seeds harvested
at different harvest dates in 2015. 31-Aug (Pre) refers to harvest before defoliant application; all
other harvest dates are post-defoliant application. Aug and Sep indicate the months of August and
September. Blue columns are the values for seed harvested from plants treated with a defoliant;
yellow columns are the values for seed harvested from the untreated control plants. Bars indicate
standard error of the mean (SEM). Means are not significantly different (p ≤ 0.05).
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Figure 5. Mean cold test values in percentage for corn hybrid seeds harvested at different harvest
dates in 2015. 31-Aug (Pre) refers to harvest before defoliant application; all other harvest dates are
post-defoliant application. Aug and Sep indicate the months of August and September. Blue columns
are the values for seed harvested from plants treated with a defoliant; yellow columns are the values
for seed harvested from the untreated control plants. Bars indicate standard error of the mean (SEM).
Means are not significantly different (p ≤ 0.05).

4. Discussion

The US seed corn market is very competitive [16]. Farmers expect rapid and uniform
field emergence of their crop under a wide range of environmental conditions. Cold and wet
conditions at planting are common in the upper Midwest of the USA [17]. The use of seeds
with high physiological potential is essential to achieve rapid and uniform emergence under
these stressful environmental conditions [18]. Seed physiological potential is the maximum
at physiological maturity [1,3]. Physiological maturity is defined as the developmental
stage at which the seed reaches maximum dry weight [1]. Seed physiological potential
for this article comprises an active seed metabolic system capable of producing a healthy
seedling under a range of environmental conditions in the field (seed germination and
vigor). In corn, this developmental stage coincides with black layer formation or the
formation of callus tissue that marks the end of seed development and severs the connection
between the seed and female parent [3].

The environmental conditions during seed development play a crucial role in seed
physiological potential. Abiotic stresses such as plant defoliation during the critical stages
of flowering, seed development, and seed maturation can reduce seed yield and seed
physiological potential. Freezing temperatures in early fall may cause irreversible damage
to cells and reduces seed physiological potential when seed moisture content is greater
than 350 g H2O kg−1 fw [4]. These freezing events cause intercellular and intracellular
ice formation within the seed embryo, which results in irreversible damage to cells and
reduces seed physiological potential [19]. Consequently, seed corn is harvested on or
before physiological maturity and dried artificially. At this developmental stage, seed is
also at high moisture content, approximately 300 to 400 g H2O kg−1 fw [20]. Seed corn is
harvested on the cob and artificially dried until seed reaches a safe moisture content for
storage, approximately 120 g H2O kg−1 fw [16]. Seed dryer space may become a limiting
factor at the peak of seed corn harvest. In these instances, an early fall frost event can
threaten the physiological potential of seed in the field.

Plant defoliation accelerates senescence and seed maturation. Defoliation early in seed
development can trigger seed abortion, which lowers seed yields and seed physiological
potential. The defoliation stress restricts photosynthesis and reduces the production of
sugars necessary for the developing seeds. In sorghum, plants subjected to severe defolia-
tion stress early during seed formation produced larger proportions of low specific gravity
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seeds with extensive hollow areas in the endosperm [21]. In corn, severe defoliation stress
approximately 3 weeks after pollination accelerated seed maturation and reduced seed
weight [3]. As seed approaches physiological maturity, however, defoliation accelerates
seed maturation, with no negative effects on seed physiological potential.

Seed dehydration capacity is unique to orthodox seeds. These seeds are named “or-
thodox” because they have the capability to dehydrate to very low moisture content of 40
to 50 g H2O kg−1 fw, while remaining alive. These seeds undergo a series of metabolic
changes known as acquisition of desiccation tolerance. The seeds accumulate protective
compounds and inactive forms of germination-promoting compounds as they lose wa-
ter [22]. Also, lipid bodies from the cytoplasm of embryo cells migrate to align along the
plasma membranes of the cells [10]. Cells in the root meristem exhibit a distinct migration
of the lipid bodies towards the cell walls in response to desiccation. This lipid alignment is
essential to seed survival and optimal seed physiological potential [11]. Seeds where lipid
alignment is incomplete exhibit an increase in seed leakage during imbibition. The authors
theorized that the alignment of lipid bodies along the plasma membrane leads to a more
organized dehydration during seed drying [11].

5. Conclusions

In our study, plant defoliation late in seed development did not change patterns of
lipid-body migration and alignment along the cell membrane. The application of a defoliant
resulted in slow plant senescence and seed dehydration. The treated plant senesced a
few days earlier, but the difference in moisture content between seeds from the untreated
and treated plants remained within 10 to 20 g H2O kg−1 fw. However, the faster seed
dehydration time was enough to allow one or two days harvest-date difference between
treated and untreated plants. Our study also demonstrated that chemical defoliation did
not reduce seed quality, which was defined as germination and vigor in this article. The
use of a defoliant allows seed companies to harvest seed earlier, thus reducing the chance
of seed deterioration in the field. Farmers also benefit from this technology, as high-quality
seed of multiple genetic backgrounds are available for planting.

Even though this defoliation method is not available for use in EU countries, alter-
native defoliation methods should be investigated to broaden seed harvest timelines and
reduce the need for building additional seed dryers when dryer space is limited. These
expensive buildings are an additional cost for the seed companies, which may lead to
increased production costs and higher seed price.
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